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Neoclassical tearing mode (NTMs) 
4 

 Density, temperature, pressure, etc. 
tend to equilibrate across an island 
width 

 Difference in current at O-point and 
X-point can drive island growth 
 Without these gradients, there can be 

no bootstrap current within the island 
 Bootstrap current at the X-point can 

drive island growth 

 Large islands allow hot, dense 
plasma near core to be transported 
outward, reducing confinement 

 Modifications to magnetic topology 
can result in macroscopic instability 
and disruption 

Images taken from The 

Theory of Toroidally Confined 

Plasmas by R. White, 2006 

 



NTM stability modeling 
5 

 NTM stability place a severe limit on maximum β 

 NTMs incorporate a lot of physics  

 Cause:  Neoclassical kinetic theory 

 Effect:  MHD destabilization 

 Requires a hybrid model 

 High-fidelity simulations required for prediction, 
control, avoidance, and understanding of NTMs 

 Especially important for ITER operation, where very 
few disruptions can be tolerated 

 



Framework for hybrid solver 

Solve the drift kinetic 
equation in a general, 
3D, toroidal geometry 
for the ion and electron 
perturbed distribution 
functions in parameter 
regimes relevant to ITER 
and reactors and couple 
to an MHD solver 

Solve the drift kinetic 
equation in a 2D, large 
aspect ratio tokamak for 
the neoclassical, 
electron perturbed 
distribution function  
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What’s needed Current work 
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1 Ramos, J.J.  2010.  Phys. Plasmas.  17, 082502. 



Electron DKE 
8 

 Derived from average of Fokker-Planck equation over gyromotion 
 Determines form of    ,     , and 

 Collision operators taken in their linearized Landau form 

 Two expansion parameters for high-temperature fusion plasmas                    

 

 Four common subsidiary parameters 

 

 Equations maintained to third order in 
 Scale at which collisional dynamics first become important 

 Terms of order           will be kept, but       dropped 

 Equivalent to neoclassical electron banana regime 

 
 



Stationary, Axisymmetric Equilibrium 
9 

 Nested flux surfaces labeled by  

 Fields: 

 

 Lowest-order fluid equations result in 



Resulting DKE 
10 

 Given these assumptions, it is convenient to write 

 

     where          and          have analytic forms 

 Then, the DKE for      can be reduced to 

 

 
where 



Source Term 
11 

    Source contains Ohmic drive, interaction with ion 
flow, and pressure and temperature gradient 
bootstrap drive 



Solubility Condition 
12 

 Standard solution method for neoclassical theory 

 

 

 DKE becomes 

 Solubility condition: 

 Contour integrals taken along one poloidal turn of 
magnetic field line 



Integral over Collision Operator 
13 

where 
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Expansions 
15 

 Expand Rosenbluth Potentials in Legendre and 
Fourier series 

 

 

 Then expand        ,          , and            in finite 
elements in     and     , as necessary 



Expanded Form 
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Galerkin Method 
17 

 Take the inner product of the previous equations with 
each finite element 

 Use linear tent functions: 
 Only overlap with their  

two nearest neighbors 
and themselves 

 DKE becomes tridiagonal 
in both     and 

 Rosenbluth Potential eqs.  
are tridiagonal in     and 
dense in  

0 

1 

i-2 i-1 i i+1 i+2 



Block Tridiagonal Algorithm 
18 

 Since all equations are tridiagonal in     , we rewrite 
the coupled set as a block tridiagonal matrix eq. 

 

 Size of each block matrix is  

 Given appropriate boundary conditions, there exists a 
straightforward algorithm to solve for 

 Computation time required is O(                                    )  



Boundary Conditions 
19 

 For 

   

   

    

 For 

                     must be regular  

   

                             requires boundary layer (future work) 
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Convergence (1) 
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Velocity 
Finite 

Elements 

Lambda 
Finite 

Elements 



Convergence (2) 
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Legendre 
& Fourier 

Terms 

Maximum 
Velocity 
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Example Distribution Functions 
24 

Ohmic Drive Density-Gradient Drive 



Calculating Current 
25 

 Need part of distribution function that is odd wrt 

 

 Requiring                          , we find that 

 

 Then we use  
 



Ohmic Drive Conductivity 

 On-axis: 

  

 Trapped particles carry 
no current 
 To lowest order, expect 

conductivity to decrease 
linearly with the trapped 
particle fraction 

 

 Sauter analytic fit1 
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1 Sauter, O et al. (1999) Phys. Plasmas: 6,7. 



Density-Gradient Bootstrap Current 

 Expect zero current  
for              

 To lowest order, 
current should 
decrease linearly with 
trapped particle 
fraction  

 Sauter Analytic fit 
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Summary 
29 

 A code has been written to solve for the 
component of the non-Maxwellian electron 
distribution function necessary to compute the 
current in an axisymmetric toroidal plasma 

 Code demonstrates good convergence 

 Ohmic and density-gradient sources have been 
benchmarked against the Sauter analytic fits for a 
large-aspect ratio expansion equilbrium 



Future Work 
30 

 Short Term 
 Complete implementation of temperature-gradient driven 

source 

 Generalize geometry to use solution from Grad-Shafronov solver 

 Benchmark against NEO and NCLASS 

 Implement simple (i.e., lowest-order) ion code 

 Couple with MHD code (e.g., M3D-C1) 

 Long Term 
 Generalize to 3D Geometry 

 Develop ion theory to appropriate ordering 

 Implement fully 3D, coupled ion-electron code 

 Couple with MHD code (e.g., M3D-C1) 

 Perform NTM and sawtooth studies 
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Coefficient functions 
33 

 Reference frame of the macroscopic flow 

   

   

 

   

  

 where 



Electron –Electron Collision Operator 
34 

where 



Electron-Ion Collision Operator 
35 



Gyro-average of the collision 
operators 

36 

 Maxwellian-test part of        has analytic solution 

 

 

 

 

 

 And the remainder is simple 

 

Or  

where 


