On FSP and Extended MHD Models

J. D. Callen presented by C. C. Hegna University of Wisconsin Madison, WI

Basic philosophy is articulated in recent publications:

- J. D. Callen et al "Toroidal rotation in tokamak plasmas," Nucl Fusion 49, 085021 (2009).
- J. D. Callen et al, "Toroidal flow and particle flux in tokamak plasmas," PoP 16, 082504 (2009).
- J. D. Callen et al, "Transport equations in tokamak plasmas," PoP 17, 056113 (2010).

2010 CEMM Meeting Seattle, WA April 17

The advocated approach to FSP is consistent with basic CEMM philosophy

- One set of equations --- consistent with the basic extended MHD philosophy
 - Capability to access long transport times scales while retaining the ability to accurately portray faster timescale effects
- Outline
 - Desired physics capability that is ultimately required
 - What equations?
 - Why not gyokinetics for the entire plasma description?
 - Proposed hybrid kinetic/fluid model
 - What should extended MHD codes be doing now to proceed

What physics need to be included ultimately?

- Full magnetic geometry from hot core, through separatrix, out to divertor/walls and coils
- MHD waves and their constraints (in 3D) -- compressional, shear Alfven and sound
- Collisional equilibration to Maxwellian and poloidal flows, neo Ohm's law in tokamak plasmas
- Second order in gyroradius transport fluxes due to collisional and microturbulence processes
- Transport (mainly particle) fluxes caused by first order 3D departures from axisymmetry
- Relevant sources and sinks from heating, non-inductive CD, neutrals, nuclear reactions, etc.
- Extra "energetic particle" effects due to NBI, ICRF and AEs, to extent they are separable, additive

What physics need to be included ultimately? (continued)

- "Radial" motion and diffusion of poloidal and toroidal magnetic fluxes on magnetic diffusion time scale -- but faster for localized non-inductive current drives
- Third order plasma toroidal rotation equation (since V_t ~ first order) -- from toroidal torques --- more later --- use radial force balance and neoclassical poloidal flow damping to write $V_t \cong \frac{E_r}{B_p} \frac{1}{n_i q_i} \frac{dp_i}{dr} + \frac{B_t}{B_p} V_p \cong \frac{E_r}{B_p} \frac{1}{n_i q_i} \frac{dp_i}{dr} + \frac{1.17}{q_i B_p} \frac{dT_i}{dr}$
- Allow (in long run) for changes in topology to magnetic islands and locally stochastic fields
 - but only allow gyroradius small 3D perturbations (except fast MHD processes: ELMs, disruptions)
- Long-term issue -- what to do when lowest order distribution is not Maxwellian (e.g., due to ICRH)

IIC. Toroidal Rotation Eqn. Includes Many Different Effects

• Equation for the toroidal angular momentum density $L_t \equiv m_i n_{i0} \langle R^2 \Omega_t \rangle$ is:

$$\underbrace{\frac{1}{V'}\frac{\partial}{\partial t}\Big|_{\psi_{p}}^{(V'L_{t})} \simeq -\underbrace{\langle \vec{e}_{\zeta} \cdot \vec{\nabla} \cdot \vec{\pi}_{i||}^{\bar{\Sigma}^{NA}} \rangle}_{\text{NTV from } \vec{B}_{||}} - \underbrace{\langle \vec{e}_{\zeta} \cdot \vec{\nabla} \cdot \vec{\pi}_{i\perp} \rangle}_{\text{Reynolds stress}} - \underbrace{\frac{1}{V'}\frac{\partial}{\partial \rho}(V'\Pi_{i\rho\zeta})}_{\text{res. FE, Max}} + \underbrace{\langle \vec{e}_{\zeta} \cdot \vec{\sum}_{s} \vec{\vec{S}}_{sm} \rangle}_{\psi_{p} \text{ motion}} + \underbrace{\langle \vec{e}_{\zeta} \cdot \sum_{s} \vec{\vec{S}}_{sm} \rangle}_{\text{sources}}.$$

• Neoclassical toroidal viscous (NTV) damping⁹ by 3D $\tilde{\vec{B}}$ fields of Ω_t to Ω_* : $-\langle \vec{e}_{\zeta} \cdot \vec{\nabla} \cdot \ddot{\vec{\pi}}_{i\parallel}^{NA} \rangle \simeq -m_i n_{i0} \mu_{it} \left(\frac{\tilde{B}_{\text{eff}}}{B_0} \right)^2 (\langle R^2 \Omega_t \rangle - \langle R^2 \Omega_* \rangle), \quad \Omega_* \simeq \frac{c_p + c_t}{q_i} \frac{dT_i}{d\psi_p}, \text{ offset velocity.}$

Damping frequency $\mu_{it} \sim 1/\omega_E^2$ in low ν regime yields max NTV torque where $\vec{E} \times \vec{B}_0 \rightarrow 0.9$

• Collisional \perp viscous stresses are dominated by paleoclassical processes:

$$-\langle ec{e}_{\zeta} \cdot ec{
abla} \cdot ec{\pi}_{i\perp}
angle \simeq -rac{1}{V'} rac{\partial}{\partial
ho} \left[V' \left(ar{D}_{\eta} rac{\partial L_t}{\partial
ho} + L_t V_{
m pc}
ight)
ight], ext{ only significant for } T_e \lesssim 1 ext{ keV}.$$

• Microtubulence-induced ion Reynolds stresses cause radial transport of L_t :⁹

$$\Pi_{i\rho\zeta} \equiv m_i n_{i0} \langle \overline{(\vec{\nabla}\rho \cdot \vec{\tilde{V}_i})} (\overline{\vec{\tilde{V}_i}} \cdot \vec{e}_{\zeta}) \rangle + \langle \vec{\nabla}\rho \cdot \overline{\overleftarrow{\pi}_{i\wedge}} \cdot \vec{e}_{\zeta} \rangle \sim \underbrace{-\chi_t \frac{\partial L_t}{\partial \rho}}_{\text{diffusion}} + \underbrace{L_t V_{\text{pinch}}}_{\text{pinch}} + \underbrace{\Pi_{i\rho\zeta}^{\text{RS}}}_{\text{Residual Stress}} \cdot$$

See experimental studies of these effects see next invited talk NI3.002: W.M. Solomon, "Generation and Sustainment of Rotation in Tokamaks."

What equations?

- Advocating fluid moment approach with kinetically-determined closures --- this leads naturally to fluid equations ala extended MHD- -- --- pre-Maxwell equations
- Why not gyrokinetics for entire plasma description?
 - Maxwell equations only density and current moments
 - Present gyrokineitic incarnations use and/or are limited to:
 - Axisymmetric reduced MHD model for B-field geometry (no 3-D effects or evolution)
 - First order in gyro-radius
 - Second order has singularities and may not be rigorously definable (Sugiyama)
 - Implementing all second order terms would be heroic if not impractical

What equations?

- Why not gyrokinetics for entire plasma description? (continued)
 - Current gyrokinetic issues illustrate needs for long time scales required for realistic simulations
 - Combinations of electron and ion parallel streaming time scales
 - Electromagnetic plus electrostatic effects (fluid moments are being used to develop algorithms)
 - Collisional equilibration with full F-P operator to obtain poloidal flows, neo Ohm's law
- A hybrid kinetic/fluid approach should be possible and best because
 - Only first order gyrokinetics is needed to obtain Maxwell and Reynolds stresses, heat fluxes
 - Fluid model can supply needed E_r (or V_t) from 3rd order fluid equation
 - Also, gyrokinetics does not want (or need) to deal with all the transport time scale effects --- heat and particle sources and sinks, small 3D fields, poloidal flux motion and diffusion,etc.

Proposed Hybrid Kinetic/Fluid Model

- Assume axisymmetric magnetic field to lowest order in gyroradius
- Expand non-axisymmetries (due to fluctuations, field errors, etc.) in Fourier expansion
 - Assume Fourier spectrum is approximately separable (this may be questionable; check later) --- handle n = 0 and n up to say 20 fluid-like responses with extended MHD codes (M3D, NIMROD) --- handle n > 20 with gyrokinetics (presumably in Chapman-Enskog form for selfconsistency)
- Couple the fluid/MHD and gyrokinetic descriptions/simulations as follows:
 - Solve n = 0, 2D multi-collisionality extended MHD model for axisymmetric flux surfaces --- for "equilibrium" plasma description use available plasma profiles and Omega_t, E_r
 - use analytic parallel stress closures (UW-CPTC 09-6R), later solve kinetics (Held, Ramos)
 - evolve n = 0 magnetic field on transport time scale, determine poloidal flux surfaces of it
 - Evolve n = 1 to 20 modes in extended MHD simulation (proceed only if MHD effects are "modest")
 - calculate Reynolds, Maxwell stresses induced by n = 1 to 20 modes

Proposed Hybrid Kinetic/Fluid Model

- Run gyrokinetics using latest available plasma profiles, including Omega_t, E_r profiles
 - determine microturbulence and the Reynolds, Maxwell stresses and heat fluxes it induces
- Combine preceding two sets of results in extended MHD transport time scale evolution simulation
- solve for all n = 0 plasma profiles, poloidal flux surfaces and Omega_t, E_r
- Cycle through these steps, perhaps only doing gyrokinetics every 10-100 extended MHD time steps
- note: first n = 0 step only needed in first iteration or for collision time scale changes
- Possible complication: how to treat magnetic island effects due to tearing-type modes:
 - Treat regions outside island as above with island just producing n > 0 magnetic perturbations?
 - But really need full 3D magnetic topology (or 2D helical for thin island) inside island
 - Not obvious how to connect these two descriptions across (stochastic?) island separatrix.

What should extended MHD codes be doing now to proceed in this direction?

- Continue development of "fast MHD" hybrid-type models (SWIM) where only gyroviscosity is needed
- Facilitate "slow MHD" models by adding and including collisional parallel stress effects:
 - Analytic multi-collisionality parallel stress --- JDC CPTC Seminar Dec. '09
 - in long run one could obtain these effects from Held, Ramos kinetic approaches
- Begin to develop n = 0 2-D extended MHD model on transport time scale
- Seek to develop "extended MHD transport model" like that in UW-CPTC 09-11R inside separatrix
 - Decide on and test out (verify) procedure on some model transport problems (e.g. OH equil.)
 - Decide how to develop a reasonable 2D plasma/boundary model outside the separatrix

Some CEMM Issues to Discuss

- Is this hybrid fluid/kinetic model the right approach for FSP?
 - what might be its limitations?
- What next steps should CEMM do to proceed in this direction?
 - as indicated above? or ?
- Other issues?