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A HYBRID FLUID AND DRIFT-KINETIC SYSTEM [Phys. Plasmas 17, 082502 (2010) and
18, 102506 (2011)] IS BEING CONSIDERED FOR SIMULATION OF LONG-WAVELENGTH

INSTABILITIES IN HIGH-TEMPERATURE PLASMAS (e.g. TOKAMAK CORE NTM'’s).
THIS SYSTEM IS VERY GENERAL:

e FULLY 3-DIMENSIONAL AND ELECTROMAGNETIC

e FINITE-LARMOR-RADIUS TO FIRST ORDER IN p./L AND SECOND ORDER IN p;/L
e FOKKER-PLANCK-LANDAU COLLISION OPERATORS WITH v,L/v,s ~ p;/L
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SPECIAL LIMIT REDUCTIONS ARE USEFUL FOR INCREMENTAL IMPLEMENTATION
AND TESTING:

e THE FIRST ORDER IN p,/L, STATIONARY AND AXISYMMETRIC LIMIT YIELDS THE

RESULTS OF THE TOKAMAK NEOCLASSICAL THEORY IN THE BANANA REGIME



e THIS TALK WILL CONSIDER THE ZERO-LARMOR-RADIUS, COLLISIONLESS LIMIT

THIS CORRESPONDS TO THE KINETIC-MHD THEORY OF KRUSKAL-OBERMAN,
ROSENBLUTH-ROSTOKER AND KULSRUD

THE PRESENT FORMALISM IS PARTICULARLY WELL SUITED FOR DEALING
RIGOROUSLY WITH THE ISSUES OF CHARGE NEUTRALITY AND PARALLEL
ELECTRIC FIELD CONTRIBUTION, THAT WERE NOT COMPLETELY RESOLVED
IN THE CLASSIC PAPERS



ZERO-LARMOR-RADIUS, COLLISIONLESS, QUASINEUTRAL SYSTEM

Take the ()., — oo and v, — 0 limit of the general quasineutral system, for 5 ~ 1 and T, ~ T;.

Then, p; ~ d; ~ ps — 0 and u, — u; — u. Taking also m./m; — 0, the system becomes:
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NOTEWORTHY FEATURES OF THIS DRIFT-KINETIC EQUATION:

e THE PHASE-SPACE VELOCITY VARIABLE v/ IS THE RANDOM VELOCITY IN THE
REFERENCE FRAME OF THE MACROSCOPIC FLOW u(x,?). DIRECT EVALUATION
OF THE FLUID CLOSURE MOMENTS (p,; — p,.) AND g



NOTEWORTHY FEATURES OF THIS DRIFT-KINETIC EQUATION:

e WORKING IN THE REFERENCE FRAME OF THE MACROSCOPIC FLOW, THE
ELECTRIC FIELD HAS BEEN ELIMINATED ALGEBRAICALLY USING THE EXACT
MOMENTUM CONSERVATION EQUATION OF EACH SPECIES. ITS PARALLEL
COMPONENT IS ACCOUNTED FOR AUTOMATICALLY.



NOTEWORTHY FEATURES OF THIS DRIFT-KINETIC EQUATION:

e THE DYNAMIC EVOLUTION OF fy,,, PRESERVES THE CONSTRAINTS THAT
1 d*'(1,0],0”) fyas =0 . QUASINEUTRALITY IS ALWAYS SATISFIED AND THE
REDUNDANCY OF THE DRIFT-KINETIC EQUATION WITH PARTS OF THE
FLUID SYSTEM IS AVOIDED.



LINEARIZATION ABOUT A MAXWELLIAN EQUILIBRIUM WITHOUT FLOW
u, =0, by - Vny =0, by VT =0, /0t = —iw , u; = —iw &
B, = Vx(&xBy), j1 = VxB;
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CHANGE VARIABLES:
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from (x,7, x) to (x,2',\), with \ = sin®y/By(x)

THE LINEARIZED DRIFT-KINETIC EQUATION BECOMES
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THE NEW VARIABLES HAVE THE FOLLOWING MEANING:

e /., IS THE NON-CONVECTIVE PART OF THE TOTAL PERTURBED DISTRIBUTION
FUNCTION

ansO
ox

e \ IS THE RATIO OF THE MAGNETIC MOMENT TO THE KINETIC ENERGY IN THE
MOVING FRAME
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e THE PARALLEL COMPONENT OF THE LINEAR FLUID MOMENTUM EQUATION IS

wimin§) = Fy + Fy

e SEPARATING THE CONTRIBUTIONS OF {, AND &, TO @
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SPLIT /, INTO ITS EVEN AND ODD PARTS WITH RESPECT TO v”‘:
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NOW, THE VARIABLES NEEDED TO CLOSE THE FLUID MOMENTUM EQUATION ARE

1/B,
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THEREFORE, IN ORDER TO CLOSE THE FLUID SYSTEM, ONE NEEDS TO SOLVE ONLY
FOR THE EVEN PART OF THE PERTURBED DISTRIBUTION FUNCTION.
ELIMINATING f;dd, THE SECOND-ORDER EQUATION FOR ff“en IS
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TO BE SPECIFIC, CONSIDER AN EQUILIBRIUM WITH TOKAMAK-LIKE GEOMETRY:
e AXISYMMETRIC WITH NESTED FLUX SURFACES
e MOST FLUX SURFACES COVERED ERGODICALLY BY A MAGNETIC LINE
e ONE MAGNETIC WELL ON EACH FLUX SURFACE

use magnetic coordinates x(1, (, ()
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MAKE ONE LAST CHANGE OF VARIABLE:
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IN THE 7 VARIABLE, THE LINEARIZED DRIFT-KINETIC EQUATION BECOMES
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WHICH HAS THE GENERAL SOLUTION
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THE INTEGRATION CONSTANTS C¥ AND D¥ ARE SPECIFIED BY IMPOSING
APPROPRIATE BOUNDARY CONDITIONS ON f;ven

IN THE TRAPPED DOMAIN, 1/B,.; < A < 1/B;,;», THE BOUNDARY CONDITIONS ARE

Of " (r=my) _ Of"(r=m)
or or

SO THAT, WHEN EXPRESSED BACK IN (v, ) COORDINATES, /" HAS CONTINUOUS
DERIVATIVE AT x =7/2 , i.e. vf =0

= 0




IN THE PASSING DOMAIN, 0 < A < 1/B,,,,, THE BOUNDARY CONDITIONS ARE
DICTATED BY CONTINUITY AT THE BRANCH CUT OF ¢ AND ¢:

fseven<c — @Oal — lt—i—) - fseven(c = $0 + 27Tg7l — lt—) ) f§U€n<C — 9007l — lt—) — f’;@en(C = 0 — 27TQ7Z - lt—i—)

THEN, PIECING TOGETHER THE ff”en SOLUTIONS WITH DIFFERENT VALUES OF ¢
SHIFTED BY MULTIPLES OF 27q, AN EXTENDED FUNCTION CAN BE CONSTRUCTED

Afffe”(w, 7,0, \) with — oo <7 < 400 for an ergodic flux surface

WHICH MUST BE BOUNDED AS 7 — +c0

ASSUMING AN UNSTABLE MODE, —iw = v, Re v > 0, THE CONDITION THAT THE
EXPONENTIALLY GROWING TERMS OF f<"(r — +o0) VANISH, SPECIFIES C¥ AND D*



AFTER IMPOSING THE BOUNDARY CONDITIONS AND TAKING THE 7= —iw — 0
LIMIT, THE MARGINALLY STABLE DRIFT-KINETIC SOLUTION IS FOUND TO BE
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Note that (...), is continuous at the trapped-passing boundary \ = 1/B,,.,



AFTER IMPOSING THE BOUNDARY CONDITIONS AND TAKING THE 7= —iw — 0
LIMIT, THE MARGINALLY STABLE DRIFT-KINETIC SOLUTION IS FOUND TO BE
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THE PARALLEL DISPLACEMENT ¢ DOES NOT CONTRIBUTE TO (Q)-:
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AT MARGINAL STABILITY (y = —iw — 0), THE /d*V' fyys = 0 CONDITION AND THE
PARALLEL COMPONENT OF THE LINEAR FLUID MOMENTUM EQUATION YIELD
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WHICH HAS THE SOLUTION G, = G4(¢,¢) = (G,),. THEREFORE, F, =b; VG, =0
AND ONE CAN TAKE G,=0 WITHOUT LOSS OF GENERALITY



IN SUMMARY, THE MARGINAL STABILITY (y = —iw — 0) KINETIC SOLUTION IS
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THIS SOLUTION IS CONSISTENT WITH THE /d*v' fyus = 0 CONDITION (HENCE
QUASINEUTRALITY) AND THE PARALLEL COMPONENT OF THE FLUID MOMENTUM

EQUATION, WITH A FLUID COMPRESSIBILITY GIVEN BY

v.oe = 200 gy (1 ABy) Q).

EVALUATING WITH IT THE PRESSURE TENSOR CLOSURE VARIABLES:
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ALL OTHER MOMENT RELATIONS ARE SATISFIED IDENTICALLY



ALTERNATIVELY, ONE COULD USE AS CLOSURE VARIABLES THE PERTURBED
PARALLEL AND PERPENDICULAR PRESSURES:

2 15 1/B
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IN AGREEMENT WITH THE ROSENBLUTH-ROSTOKER RESULT (THAT WAS DERIVED
ASSUMING & =0 AND NOT ENFORCING QUASINEUTRALITY)



ELECTRIC FIELD

THE ELECTRIC FIELD WAS ELIMINATED FROM THE SYSTEM AND THE ANALYSIS
WAS CARRIED OUT WITHOUT ANY REFERENCE TO IT. AFTER THE SOLUTION HAS
BEEN OBTAINED, THE ELECTRIC FIELD CAN BE INFERRED.

e FROM FARADAY'’S LAW:
E = iWAl - VQb

¢ FROM THE PARALLEL MOMENTUM EQUATION OF EACH SPECIES:
Equilibrium: by- Vo, = 0

A A

Linearized at w = 0: FSH — eSnOEH = 0 or Gy + €5n0(¢1+£'v¢0) = 0

e FOR THE w=0, G,=0 SOLUTION:

o1 = —&-Vay or Ey = by-Vor+by-Voy = 0



CONCLUSIONS

e THE ZERO-LARMOR-RADIUS, COLLISIONLESS LIMIT OF A DRIFT-KINETIC
FORMULATION BASED ON THE MACROSCOPIC FLOW REFERENCE FRAME,
THAT INCORPORATES NATURALLY THE QUASINEUTRALITY CONDITION,
YIELDS THE ZERO-FREQUENCY PRESSURE TENSOR CLOSURE RELATIONS
OF ROSENBLUTH AND ROSTOKER'’S.

e AT ZERO-FREQUENCY, THIS SOLUTION SATISFIES QUASINEUTRALITY AND
PARALLEL FORCE BALANCE WITH A VANISHING PARALLEL ELECTRIC FIELD
AND A NON-ZERO PARALLEL FLUID DISPLACEMENT (DETERMINED FROM
A COMPRESSIBILITY CONDITION) THAT THE PRESSURE TENSOR CLOSURES
DO NOT DEPEND ON.





