ITER disruptions and wall force

H. Strauss, *HRS Fusion* J. Breslau, S. Jardin, *PPPL* R. Paccagnella, *Istituto Gas Ionizzati, CNR* L. Sugiyama, *MIT*

> CEMM - APS Meeting 28 October 2012

Outline

- VDE and disruption
 - Unmitigated disruptions, caused by VDE, (2,1) mode
 - Mitigated disruptions (or disruptions not caused by VDE)
- Theory of sideways force (1,0), (1,1) and (2,1) modes
- 3D halo current
 - Toroidal variation of toroidal current
 - Simulations, data, theory
- Future plan: ITER vessel force
- Summary

AVDE disruptions

- VDE
 - Timescale: τ_{wall}
 - As plasma approaches wall, flux scrapes off and (2,1) mode is destabilized
- TQ
 - Timescale: independent of S, Alfven (?)
 - fast reconnection, stochastic magnetic field
 - T drops to about 30 eV
- CQ
 - Timescale: $\tau_{resistive}$ (30eV)
 - Halo current as plasma hits wall
 - Large wall force including sideways force F_x

Unmitigated disruption: VDE scrapes off magnetic flux, lowers q at last closed flux surface

VDE does not have to move plasma very far

Manickam et al. 2011

Scrape off destabilizes (2,1) mode

- Growth rate increases with y_{axis} , the vertical displacement of the magnetic axis, which lowers edge q
- Mode structure is (m,n) = (2,1)
- Mode is resistively unstable, approaches ideal marginal stability

(2,1) growth rate scales as S^{-1/3}

- As y_{axis} increases, $\frac{\eta}{g}$ rowth rate tends to S^{-1/3} scaling
- Approaches marginal ideal instability
- The S value near q=2 is what matters
- In graph S on axis is plotted

Sideways wall force

• Wall force is calculated from the jump in magnetic field across thin resistive shell

current in wall is given by
$$J_{wall} = \frac{\hat{n}}{\delta} \times (B_{vac} - B_{plas})$$

 δ is wall thickness

sideways wall force is $F_x = \delta \int d\varphi \int dl R \left(J_{wall} \times B_{wal} \right) \cdot \hat{x}$ where $\hat{x} = \hat{R} \cos \varphi \approx \hat{n} \cos \theta \cos \phi$

- Indicates that (1,1) perturbations required for sideways force
- also (2,1) beating against (1,0) VDE

resistive wall penetration time au_{wall} : $\frac{\delta}{\eta_{wall}}$

Wall force depends on $\gamma \tau_{wall}$

The value of $\gamma\tau_w$ for which F_x peaks depends on initial conditions, as will be shown analytically

Mitigated disruptions

- MGI (Izzo et al. 2008)
- Radiation cools plasma for q > 2
- Profiles become unstable to (2,1) and (1,1) modes
- In simulations, profiles were modified to set current = 0 for q > 2
- Current was increased for q<2 to keep total current constant
- VDE was evolved to different displacements of the magnetic axis in 2D before allowing 3D mode evolution
- Sideways force F_x increased linearly with magnetic axis displacement
- γт> 10

Theory of wall force produced by (2,1) modes

- Previous theory explained sideways force F_x produced by (1,1) mode (Zakharov 2008, Strauss et al. 2010)
- MGI disruption simulations show that F_x is linear in VDE displacement ξ_{VDE}
- F_x is linear in (1,1) amplitude and bilinear in the (2,1) and (1,0) (VDE) amplitude. Explains MGI F_x dependence on VDE amplitude, as well as peaking of F_x when γτ~1
- Based on Strauss et al. PoP 2010 model: circular cross section, constant current density. Plasma radius a, wall radius b

sideways force is
$$F_x = \frac{1}{(2\pi)^2} \oint d\phi \, d\theta f_r \cos\theta \cos\phi$$

where $f_r \propto \frac{b^m}{r^m} \xi_{m1} \sin(m\theta - \phi)$

Theory of (2,1) wall force

 F_x is normalized as in Strauss 2010

Peaking of $F_x(\gamma \tau)$

The peaking of the force as a function of $\gamma \tau$ can be explained as a competition between the (2,1) mode and VDE (1,0) mode to reach maximum amplitude. Let the amplitudes of the 2,1 and 1,0 modes have the form

$$\xi_{21} / a = \operatorname{sech}(\gamma t - \alpha_{21}) \qquad \xi_{10} / b = \operatorname{sech}(t / \tau - \alpha_{10})$$

The model assumes the modes grow exponentially and then decay. The decay of the VDE models moving into the wall. The α terms are the initial amplitudes at t=0. The force is maximum when the time derivative of $\xi_{21}\xi_{10}$ is zero.

$$F_{x} \propto \operatorname{sech}^{2} \left(\frac{\gamma \tau \alpha_{10} - \alpha_{21}}{\gamma \tau + 1} \right)$$
peak of $F_{x}(\gamma \tau)$ occurs when $\gamma \tau = \frac{\alpha_{21}}{\alpha_{10}} \ge 1$
in scrape off case, $\alpha_{10} \le 1$, $\alpha_{21} >> 1$
baseline is from ξ_{11} . Max/min $\propto \xi_{21}/\xi_{11}$

3D halo current

- In JET, the toroidal current varied as a function of toroidal angle • during disruptions
- Zakharov PoP 2008, Gerasimov et al, JET 2009 •

 $\omega 0$

38705

Zakharov: caused by Hiro current

2D and 3D halo current

- Halo current is poloidal current that flows into the wall in a VDE or disruption
 - Net conventional (2D) normal current density vanishes when integrated poloidally

2D halo current density

• 3D halo current density:

 $\nabla \bullet J = 0 \implies$

$$i_{halo} = \frac{1}{2} \int |J_n| R dl$$
$$i_{halo3D} = \oint J_n R dl$$

$$\frac{dI_{\phi}^{plasma}}{d\varphi} = -i_{halo-3D}$$

$$\frac{d}{d\phi} \left(I_{\phi}^{plasma} + I_{\phi}^{wall} \right) = 0$$

Halo currents and TPFs

Define Toroidal Peaking Factors (TPF) for halo current and 3D halo current

$$TPF = \frac{i_{halo-max}}{\langle i_{halo} \rangle}, \quad TPF_{3D} = \frac{i_{halo3D-max}}{\langle i_{halo} \rangle}$$

where $\langle i_{halo} \rangle = \frac{1}{2\pi} \int d\varphi i_{halo}$
Halo fraction: $HF = \frac{2\pi \langle i_{halo} \rangle}{I_{\phi}}$
 $\frac{\Delta I_{\phi}}{I_{\phi0}} = TPF_{3D} \times \frac{HF}{2\pi}$

In simulation, $\Delta I_{\varphi} / I_{\varphi 0} \approx 0.02$ $TPF_{3D} / TPF \approx 0.5$

Theory of toroidal current variation

Same model as before from Strauss et al 2010 VDE displacement of (1,1) mode gives toroidal current variation

$$\frac{\Delta I_{\phi}}{I_{\phi}} = \frac{(\gamma \tau + 2)(1 - q_0)}{[1 - (a/b)^2]\gamma \tau + 2} \left(\frac{a}{b}\right)^3 \frac{\xi_{11}}{a} \frac{\xi_{VDE}}{b}$$

example:
$$\gamma \tau >> 1$$
, $b / a = 2$, $q_0 = 0.8$, $\xi_{11} = a$, $\xi_{VDE} = b$ $\frac{\Delta I_{\phi}}{I_{\phi}} = 0.03$

Consistent with JET, simulations, and ITER database

Toroidal Current variation – ITER database

ITER database: X's are M3D results

$$\frac{\Delta I_{\varphi}}{I_{\varphi 0}} = TPF_{3D} \times \frac{HF}{2\pi}$$

 $TPF \times HF < 0.75$

$$\frac{\Delta I_{\varphi}}{I_{\varphi 0}} < 0.12 \frac{TPF_{3D}}{TPF}$$

ITER vessel forces

- Use GRIN to calculate Green's functions for vacuum B fields
- Resistive walls with different wall times
 - First wall
 - Blanket modules
 - Vacuum vessel
- Calculate wall forces
- Benchmark with DINA, TSC

FIG. 1 Vacuum vessel and blanket module poloidal segmentation

Coupling to 3D EM code

- Normal current given to CAFÉ
 3D EM code
- Calculate vessel force
- Loose coupling no feedback as with GRIN
- Should also provide toroidal current to calculate eddy current in vessel

Summary

- Calculated sideways force F_x in ITER disruptions
 - Disruption caused by VDE
 - scrapes off and cools plasma for q > 2
 - (2,1) mode more important than (1,1)
 - MGI induced disruption
 - F_x is offset linear in the VDE amplitude
- Theoretical model
 - can explain peaking of F_x
 - offset linear scaling with VDE amplitude
- 3D halo current gives toroidal variation of toroidal current
 Consistent with data and simulations
- Future plans: calculate F_x on blanket modules, coils

Toroidal eddy current in wall

- Poloidal flux dissipation in resistive wall gives toroidal wall current
- Recently measured (LZ)
- Wall current opposite sign as plasma current

$$\frac{\partial \psi}{\partial t} = -\eta_{wall} J_{\phi}^{wall}$$

$$\psi = \psi(r - \xi_{VDE} \sin \theta)$$

ITER disruptions and wall force

H. Strauss, *HRS Fusion* J. Breslau, S. Jardin, *PPPL* R. Paccagnella, *Istituto Gas Ionizzati, CNR* L. Sugiyama, *MIT*

> APS Meeting NP8, Poster Session V 31 October 2012

Previous Simulations

Strauss, Paccagnella, Breslau, PoP 17, 082505 (2010) Paccagnella, Strauss, Breslau, NF 49, 035003 (2009)

- Simulations with M3D MHD code with resistive wall boundary conditions
- Sideways wall force varied strongly with resistive wall penetration time, largest for mode growth time ~ wall penetration time
- S was relatively low (S = resistive time/Alfven time=10⁵)
 Now S=10⁶
- T_{wall} was short
 - Now $T_{wall} \sim 10^3 10^4$