
A NEW ELECTRON DRIFT-KINETIC EQUATION 
SOLVER FOR COUPLED NEOCLASSICAL-
MAGNETOHYDRODYNAMIC SIMULATIONS 

B.C. LYONS (PPPL), J.J. RAMOS (MIT PSFC), S.C. JARDIN (PPPL)

“RECENT STUDIES OF EXTENDED MHD AND MHD SIMULATIONS”
US-JAPAN JIFT WORKSHOP 
DENVER, CO
SUNDAY, NOVEMBER 10, 2013



Acknowledgements

 This work has been supported by
 the U.S. Department of Energy under grant nos. DEFC02-

08ER54969 and DEAC02-09CH11466 and the SciDAC Center for 
Extended Magnetohydrodynamic Modeling (CEMM).

 an award from the Department of Energy (DOE) Office of 
Science Graduate Fellowship Program (DOE SCGF). The DOE 
SCGF Program was made possible in part by the American 
Recovery and Reinvestment Act of 2009. The DOE SCGF 
program is administered by the Oak Ridge Institute for Science 
and Education for the DOE. ORISE is managed by Oak Ridge 
Associated Universities (ORAU) under DOE contract number DE-
AC05-06OR23100. All opinions expressed in this presentation 
are the author's and do not necessarily reflect the policies and 
views of DOE, ORAU, or ORISE.

2



Neoclassical tearing mode modeling
3

 NTM stability place a severe limit on maximum β

 Most common cause of disruptions on JET1

 High-fidelity simulations required for prediction, 
control, avoidance, and understanding of NTMs
 Especially important for ITER operation, in which very 

few disruptions can be tolerated2

 NTMs incorporate a lot of physics 
 Cause:  Neoclassical kinetic theory (bootstrap current)

 Effect:  MHD destabilization (island growth)

 Requires a hybrid model

1 P.C. de Vries, et al., Nucl. Fusion 51, 053018 (2011)
2 T.C. Hender, et al., Nucl. Fusion 47, S128-S202 (2007)



Framework for hybrid solver
4

 Use existing MHD time-evolution code (e.g., M3D-C1, 
NIMROD)

 Desirable traits for neoclassical drift–kinetic equation 
(DKE) solver
 Three-dimensional toroidal geometry

 Study nonaxisymmetric geometries with magnetic islands

 Full Fokker-Planck-Landau collision operator
 Use of model collision operators can lead to errors of 5%-10%3

 Continuum model
 Good convergence properties, especially for long times

 Straight-forward coupling to MHD solvers

 Potentially more computationally efficient than PIC

3 E.A. Belli and J. Candy, Plasma Phys. Control. Fusion 54, 015015 (2012)



Ramos Form of DKE
5

 J.J. Ramos (Phys. Plasmas 2010 & 2011) provides 
analytic framework for a neoclassical solver 
appropriate for core plasma instability simulations

 DKE evolves          , difference between full distribution 
function and shifting Maxwellian (similar to delta-f)

 Small parameters for high-temperature fusion plasmas  

 Important properties:  
 Maintained to collisional inverse timescale of

 Conventional neoclassical banana regime for electrons 

 Velocity      referenced to each species’ macroscopic flow

 Perturbed distribution function carries no density, parallel 
momentum, or kinetic energy



Overview of new code
6

 NIES code4 successfully solved axisymmetric Ramos 
DKEs to zeroth order in collisionality

 We’ll retain axisymmetric geometry for now

 Want to solve the full Ramos DKE without further 
expansions in collisionality

 Extends result to first-order in collisionality

 Allows solution to vary poloidally

 Solves for particles’ distribution functions in both 
trapped and passing regions

 Will couple directly to MHD equations
3 B.C Lyons, S.C. Jardin and J.J. Ramos, Phys. Plasma 19, 082515 (2012) 



Extended MHD equations
7

 Besides Maxwell’s and continuity eqs., we have:

 Ohm’s Law

 Momentum evolution

 Pressure evolution 



Required Moments for Closure
8

 Pressure Anisotropy

 Parallel Heat Flux

 Collisional Friction Force

 Collisional Heat Sources

 All of these moments are given by the solution to appropriate DKEs

 We’ll only consider the electron DKE here



Electron drift-kinetic equation
9

 Assumes equal ion & electron temperatures

 Axisymmetric 4D phase space
 denotes a flux surface,     is the poloidal angle

 is the total velocity,                   is cosine of the pitch angle

 Density, temperatures, and pressures are flux functions



Electron Collision Operator
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 Fokker-Planck-Landau form used

where

 Poisson equations for the Rosenbluth potentials



Time advancement of Electron DKE
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 Implicit, homogeneous convective and collision operator terms 

 Explicit, homogeneous moment terms
 No stability constraints expected since these are integrals over the solution

 Predictor-corrector option available, but no substantial effect observed

 Inhomogeneous drive terms



Expansions in DKE
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 Velocity

 Finite elements for

 Hermite cubics

 Cubic B-splines

 Pitch angle

 Legendre polynomials in 

 May try finite elements soon as well

 Configuration Space

 Fourier modes in

 is just a parameter (each flux surface treated locally)

 May try finite elements in     or in 



DKE Solution Method
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 Poisson equations for Rosenbluth potentials solved 
simultaneously with DKE at each time step

 Galerkin method creates a block diagonal matrix in

 Each block contains information on     and θ derivatives
 Two solver options implemented 

 Sparse banded matrix using ScaLAPACK
 SuperLU via PETSc



Timescales

 Distribution function will likely evolve to steady state 
within a resistive time

 Must consider full time dependence as MHD code 
time steps (10-100 Alfven times) can be less than the 
electron collision time

14



Hybrid iteration scheme
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Evolve DKE(s) to get 
(possible steady state) 
distribution function  
for given equilibrium

Take moments to get 
necessary closures for 

MHD equations 

(e.g., friction force)

Evolve MHD 
equations to get new 

equilibrium using 
extended MHD time 

evolution code



Status of code
16

 All terms have been implemented

 Good convergence properties observed

 See poster #89 on Tuesday afternoon if interested

 Initial benchmarks show good agreement with 
Sauter analytic formulae for

 Neoclassical conductivity

 Pressure gradient drive coefficient



Calculating Sauter-like coefficients
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 When run to steady state, we can calculate the 
neoclassical conductivity and bootstrap current 
coefficients for an equilibrium

 Must separate inhomogeneous source terms in DKE

 Coefficients given by collisional friction force and 
pressure anisotropy via parallel Ohm’s law



Benchmark with Sauter model (1)
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Benchmark with Sauter model (2)
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1D MHD Test Solver
20

 From                               ,                                                  , we

can show that                        where                                     ,

, and

 Assume a large aspect ratio, expansion equilibrium

 Current controller applies loop voltage at edge

 All knowledge of resistivity comes through the Ohm’s Law

 For stability:

 Initial studies do not include bootstrap currents



Evolution with Spitzer resistivity
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Evolution with DKE solver (no dP/d ψ)
22



Future work
23

 Complete Sauter benchmark for Te gradient drive

 Include bootstrap currents in MHD test solver

 Compare to MHD evolution with Sauter model on 
different timescales

 Implement separate, but similar, ion DKE solver for 
ion temperature gradient drive

 Couple to existing, more advanced MHD codes
 TSC

 M3D-C1

 Investigate alternate representations and  
extensions to non-axisymmetric geometries



Summary
24

 The operation of ITER and other future MCF experiments 
requires predictive capabilities for core plasma 
instabilities (e.g., Sawtooths, NTMs)

 To date, no neoclassical code exists that is well-suited for 
such simulations (work by E. Held excepted)

 We are creating such a code based on the Ramos drift-
kinetic formulation

 DKE solution benchmarked to Sauter in steady-state
 Temperature gradient coefficient benchmarks coming soon

 Initial hybrid simulations with neoclassical resistivity yield 
good results
 Hybrid simulations with bootstrap current coming soon

 Poster #89 Tuesday afternoon



Extra Slides
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Convergence of Conductivity
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Convergence of P Gradient Drive
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Convergence of Te Gradient Drive
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Legendre & Fourier Convergence
29

 Low collisionality requires many Legendre polynomials (L) 
and Fourier modes (M) to converge

 Likely due to steep trapped-passing boundary layer
 May necessitate move to finite element representations


