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Thesis

Convergence from the stable side is achieved with a CY
spectral-element representation by projecting flow-
divergence and parallel vorticity at the limit of resolution.
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Introduction: NIMROD’s C° spectral-element

Implementation is formulated to allow dissipation for each
physical field.

« Like conventional thermal-conduction and structural-mechanics
applications, second-order derivatives lead to mathematical ‘energy’
increasing as the scale of oscillations decreases.

* In 1D, for example:

d%v dw dv
__2=f = f

O dx=(wfdx forallwinH)
dx dx dx f / ¢

« Continuous functions are necessary, and they are sufficient in the
sense that greater continuity is not required.

 First-order spatial derivatives do not provide a coercive energy. The
following single-field formulation does not bound fine-scale oscillations.

_dv_dv —fw@dx=fw@dx for all w in H .
dx dt dx dt

» The extended-MHD dilemma is that physical dissipation is important but
small, and interchange provides sources of energy at small scales.



NIMROD' s standard spectral-element representation
with equal-order V, B, and p expansions converges
on interchange from the unstable side.

* Test case is m=4, k=-1.78 Suydam mode at r,=0.371 and D(r,)=0.443.
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* Reducing the polynomial degree for V in NIMROD admits numerical O-frequency,
mesh-scale modes that accumulate in nonlinear computations.



Spectral projection: Including numerical responses
to the highest-order projections of flow divergence
and of parallel vorticity helps stabilize the numerics.

Spectral filtering has been used to stabilize spectral-element
computations of incompressible flow. [Fischer and Mullen, C.
R. Acad. Sci. Paris 332, 265 (2001).]

* In their paper, interpolation-based projection damps all
vector-components of highest polynomial-degree for V.

* |tis used to stabilize computation at large Reynolds
number.

‘Spectral projection’ for NIMROD means damping or
propagating the highest-order Legendre polynomial in the
spectral-element space.

Projection can target specific behavior, such as divergence,
perpendicular divergence, and/or parallel vorticity in MHD.



With NIMROD'’s 2D elements, divergence and parallel vorticity
are projected onto Legendre polynomials that are of highest

degree in one of the two logical coordinates.
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For bicubic V, the discontinuous fields for projection are N=3 Legendre polynomials
in one of the two logical coordinates and a full expansion in the other. (4 of 7 shown)



Auxiliary fields associated with projection can be used
for either hyperbolic or diffusive stabilization.

. d. A
Hyperbolic (loosely):  —V=p 'F+ fye,,Vo+ feabx VA

0
—o0=f;,, V'V
9t fd m

a A
—A=Ffcsb-VxV
9t fv A

L d » 512 5 12 .
Diffusive (loosely): EV=p F+(ddcmAt) Va+(dchAr) bxVA

) 1/2
o = (ddcmAt) V-V

5 1/2 ~
)L=(dchAt) b-VxV

where F is the physical force density, ¢, is the Alfven speed, c,, is
the magneto-acoustic speed, and At is the NIMROD timestep.



The weak form of the hyperbolic approach shows how

projection is implemented with spectral elements.
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for all W in the continuous 3-vector space used for V and for all

v and u in the discontinuous projection set used for ocand A,
respectively.

« Surface terms and gradients of background fields are discarded.

« Overlap with pressure and JXB responses only occurs at the limit
of resolution, where the physics is represented poorly.



Projections in NIMROD: Linear and nonlinear tests
substantiate the practicality and effectiveness of spectral
projections.

* The implementation incorporates a new modal-basis module.

* Routines for advancing V have new terms and equations for
projecting divergence and parallel vorticity.

« Coding for physical terms is unchanged.
» Tests of linear, initial-value behavior include:

 The cylindrical profiles used with CYL_SPEC for testing local
interchange,

 Tearing modes (not discussed here), and

» The circular cross-section, toroidal dens8 ELM profile from P.
Snyder. [See Burke, et al., PoP 17, 032103 (2010).]

* Nonlinear tests include:
* An unstable cylindrical interchange, and
 The circular cross-section ELM problem.



Time-dependent, linear ideal-MHD NIMROD computations
confirm the stabilizing effect when the divergence and
vorticity projections include dissipation.

« Computations for a physically stable m=3, D .=0.224 case show no

growth over 10,000s of time-steps when a separate field is also used for
magnetic divergence control.
« Convergence on the physically unstable m=4 is from the stable side.
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A variant of the cylindrical problem that is physically
unstable to interchange provides a nonlinear test.

« Theregion0=<r<0.466is
Suydam-unstable.

* With L=41/3, the (3,1) mode
resonant at 0.265 and the (7,2)
mode resonant at 0.404 are

unstable. The (4,1) mode resonant
at 0.5 is stable.

o 1,=LJc,=4T/3; .= aPuyn= 108; N =
Pm=10

* Dn= 77/#(); Xiso ~ 1077/MO

405"

Safety factor and Suydam parameter
for the nonlinear interchange
computation.

« The computations use a 32x36 mesh of biquintic elements with
0=<n<21 Fourier representation of the axial direction.

» The case with projection uses the diffusive method (d,=1, d,=0.3).



The computation with projection recovers from MHD
events, whereas one without projection accumulates noise.
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« The computation with projection progresses into a turbulent stage.
« The computation without projection crashes as noise accumulates.



The evolution of pressure with projection shows
a transition to turbulent transport.

= 4800 T,

Sequence of pressure from the nonlinear interchange computation
with projection shows an initial m=3 burst followed by multi-scale
nonlinear fluctuation.




The successful evolution has fine-scale fluctuations
without mesh-scale noise.

Velocity vectors overlaid on When the computation without
contours of pressure at the end of projection leaves the laminar stage,
the computation with projection. its flow field becomes noisy.

« The computation with projection is not fully resolved, but robust
progression facilitates nonlinear convergence.



Linear ELM computations also demonstrate
convergence from the stable side with prOJectlon

We consider the standard, circular cross-
section dens8 equilibrium as a starting point.

All physical dissipation coefficients have the
same small uniform value: S=1019, Pm=1, etc.

Like the interchange cases, projection leads to
convergence from the stable side.
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A nonlinear MHD computation from the same equilibrium
exercises projection with a more violent instability.

The domain imposes periodicity at 1/6™ of the toroidal angle.
Resistivity varies as T-32 with S(0)=108; Pm=0.1; x,., = 0.01n/u,.

Projective stabilization is also used in the continuity equation.
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« Having stabilized flow, preserving monotonicity in the n and T evolution
is now the most important consideration for fast dynamics.



Aside on DKE: The spectral-element form of the
collision operator has been implemented and is
more computationally efficient. [Held]

 Abenchmark uses an NSTX equilibrium at realistic temperature.
 The DKE is the Hazeltine-equivalent form solved by NEO.
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 The new implementation makes high-temperature computation practical.



Vacuum-field computations: Computing external
magnetic field on a spectral-element mesh is an
alternative to coupling Green’s function solutions.

Computational sub-domains can be assigned to solve the vacuum-
distribution without advancing a plasma model.

External solutions may be coupled by thin-wall approximation or by
meshing a finite-thickness wall.

Working directly with NIMROD’s magnetic-field representation leads to a
minimization problem at each time-step.

* For the external subdomains, minimize

Ly = [ [(VxB)2+)LB(v-B)2]dv01

vac

subject to B-n along JdR,,. , consistent with coupling to the plasma-
region.



The minimization computation has been

implemented in NIMROD and tests match analytics.
Tests are performed in a box that is periodic in one coordinate (¢).

Solutions to boundary-value problems are products of sine waves and
hyperbolic trigonometric functions.

Two example results of vacuum-B from NIMROD are shown below.
1 1 :
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Boundary conditions impose half a wave Here the bottom imposes half of a wave
on the bottom with n=1 variation in the and the top imposes a full wave, both with
perpendicular periodic coordinate. n=3. [Implementation & tests by Kyle

Bunkers.]



Conclusions

* Projecting parallel vorticity and flow-divergence at the limit of
spectral-element resolution is a practical approach for controlling
the convergence of numerical interchange. [See JP8.00125,
Tues. PM for more analysis.]

 Hyperbolic and diffusive methods are possible.
* Tests in NIMROD confirm 1D CYL_SPEC eigenmode results.

» Diffusive projection provides smoothing of nonlinearly driven
mesh-scale oscillations.

A nonlinear interchange problem successfully transitions to
turbulent transport.

« ELM computations progress into the late nonlinear phase.

« Computing vacuum-region magnetic field response with
NIMROD's B-field representation is tractable.
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