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Resistive DCON

» Ideal DCON computes the MHD stability of axisymmetric toroidal plasmas.
Thoroughly verified and validated, robust, reliable, easy to use, widely used.

» Integrates the Euler-Lagrange equation for Fourier components of the normal
displacement from the magnetic axis to the plasma-vacuum interface. This is an
initial value problem.

» Straightforward extension to compute the outer region matching data for resistive
instabilities converts it to a shooting method, which is numerically unstable.

» Pletzer and Dewar introduced a singular Galerkin method, avoiding this problem.

» We improve on their implementation with a better choice of basis functions and
grid packing, reusing most of our existing code.

» Solutions in the outer region are matched to the inner region resistive MHD model
of Glasser, Greene & Johnson, solved by DELTAR, and a vacuum region, solved
by Chance’s VACUUM.

'\e“ce and 4

» We have obtained some excellent agreement with the straight-through linear
7 1 £ MARS code.
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Pletzer & Dewar References

» A.D.Miller & R. L. Dewar, “Galerkin method for differential

equations with singular points,” J. Comp. Phys. 66,356-390 (1986).
Introduces Galerkin method for singular ODEs, solves test problems.

R. L. Dewar & A. Pletzer, “Two-dimensional generalization of the
Newcomb equation,” J. Plasma. Phys. 43, 2,291-310 (1990).
Derives 2D Newcomb equations, equivalent to DCON equation.

A. Pletzer & R. L. Dewar, “Non-ideal Variational method for
determination of the outer-region matching data,” J. Plasma Phys.
45,3,427-451 (1991).

Solves cylindrical problem with non-monotonic g profile.

A. Pletzer, A. Bondeson, and R. L. Dewar, “Linear stability of
resistive MHD modes: axisymmetric toroidal computation of the
outer region matching data,” J. Comp. Phys. 115, 530-549 (1994).
Solves toroidal problem, PEST 3, verified against MARS code.
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Galerkin Expansion

Euler-Lagrange Equation

LE= —(F2' + KE)' + (K'Z' + GE) =0
Galerkin Expansion

1
(u,v) = / ul (V) v(a))di
0
N

E() = Eeul®)

1=0
(Cl'i, LE) = (Q',;, LCI’j)Ej =0
Lij = (o, Fa) + (aj, Kaj) + (e, KTO*;) + (v, Gayj)

Finite-Energy Response Driven by Large Solution

.ence a = . —
g2, Lij:.j = —(O'i,L:)

O,

Plag,
25
wone™

Glasser, Resistive DCON, CEMM/APS/DPP 2014 Slide 3
PSI-Cente!



Plag,

Linear Finite Elements on a Packed Grid
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Dewar and Pletzer:
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The choice of basis functions determines
the rate of convergence.
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Better Basis Functions:
C! Hermite Cubics
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Cubic polynomials on (0,1), within each grid cell.

C! continuity of function values and first derivatives
across grid cells.

Imposes boundary conditions on nonresonant solutions
across the singular surface.
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Better Basis Functions:
Singular Elements

» Weierstrass Convergence Theorem:
Polynomial approximation uniformly convergent for analytic functions.

» Large and small resonant solutions are non-analytic near the singular surface.

» Supplement Hermite basis with power series for resonant solution near singular
surface.

» Evaluation of singular element quadratures with LSODE.

» DCON fits equilibrium data to Fourier series and cubic splines, computes
resonant power series to arbitrarily high order. Recent work extends this to the
degenerate zero-f3 limit.

» Convergence requires that the large solution be computed to at least
n= 2\/(—DI) terms. PEST 3 is limited to n = 1. Higher n required for small
shear and high .
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Adjustable Grid Packing Between Singular Surfaces
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Better Basis Functions:
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Layout of Basis Functions
Lu = - (Fu'+Ku)+(K'@'+Gi)=r

Variational Principle

W=%(1_1,Lﬁ)—(ﬁ,r)

oW =(6u,Lu)-(ou,r)

0

Resonant-Galerkin Expansion
4 . .. D i(s i
u(w)=Yua @) ¥ wl@)a,  ouly)-Fa P 3 o),

Hermite cubic Small solution

S\

N N E R R E N N
Pr

Extension element (E) connecting Resonant element (R) and Normal element (N)

allows the resonant small solution smoothly vanishes.

P, Adjustable grid packing is applied to
the interval between each two adjacent resonant surfaces. £
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Inner Region: Coordinates

Straight Fieldline Coordinates

B = \'[V¢ —q(¥)V6) x Vb, T = (Vi x V6-V()™
JB-Vy =0, JB-VO=y, JB-V{=qX
JIB-Vf(%,8,¢) = X (af + 90 f)

Singular Surface Taylor Expansion

q¥)=q@+@r+--, =V
. m ’ e
do=0a(%o) = —, o =q (%) #0

Inner Region Coordinates

r=v—ty, y=0, 2=(—qb
(¥,0,¢) = (z,y,2), (VzxVy-V2)'=7
JB-Vzr=0, JB-Vy=y, JB-Vz= (g
JIB-Vf(z,y,2) = X'(0yf + qz0:f)
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Inner Region: Equations and Ordering

Fields

E=-0A—-Vyp, b=VxA
V.j=V-A=0, j=-V?A

Density and Pressure
dp+V-(pv)=0

op+v-Vp+9pV -v=10

Momentum Conservation and Ohm’s Law

d(pv)=jxB+I xb-Vp
E+vxB=rj

Ordering Assumptions

T~e&l, Op~el, Oy ~0;: ~1, 0O ~¢, 17~€3
vep~A~1 v-Vz~V. v~ A.-Vz2xVr~A.-VrxVy~p~ce¢
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Inner and Outer Region Solutions

Outer Region Basis Functions and Linear Combination

n R
Wik(V) = Y D [Fis0kGa () + Al 5y (v)]
=1 I=L
n R
u(y) = Z Z CikWik(V)

i=1 k=L
Inner Region Basis Functions and Linear Combination
vit(Tr) = V?,i(f) + Az:t(Q)Vf:l:(I) =+v; 1 (—2)
vi(x) = di vy (2) + di v _(2)

Inner region solutions computed with DELTAR.
Glasser, Jardin & Tesauro, Phys. Fluids 27, 1225 (1984).
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Matching Conditions

Matching Conditions

Z Z ikl jr = 44084+ (Q) — dj A _(Q)

i=1 k=L

DD crinir = a4 (Q) + ¢85 (Q)

i=1 k=L
Matrix Form and Dispersion Relation

c = (cin,dry,di_, c1R, Cop, doy, do_, o, -+ )T
M(Q)-c=0, detM(Q)=0

Outer region solved once in < 10 seconds.

Inner region solved many times, 20,000 per second.
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Chease Equilibrium, 1 Singular Surface, f = 0.774

X107

Flux Surfaces Safety Factor
0.5 1.0 1.5 20 25 3.0 - 0.0 0.2 04 0.6 0.8 1.0
R Y
Pressure Newcomb Criterion
© 0 02 04 0.6 0.8 1.0 0.0 02 04 " 0.6 0.8 1.0

’ psifac '

Glasser, Resistive DCON, CEMM/APS/DPP 2014 Slide 13



Plag,

PSI-Cente!

Comparison with MARS Code, 1 Singular Surface

Normalized b
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Eigenvalue Benchmark with MARS Code
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ey, Greatly improved agreement due to bug fix:
Missing factor of dV/dy
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Chease Equilibrium, 2 Singular Surfaces, 5 = 0.240
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Comparison with MARS Code, 2 Singular Surfaces

Eigenfunction Growth Rate
10 . . .

—_
(@]

Normalized b
growth rate (1/s)

2 3 4 5 6 7
Lundquist number x 10

Leaves something to be desired. Another missing factor?
Careful re-derivation in progress.
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Multiple Complex Roots:
Generalized Nyquist Analysis and Deflation

Contours in the Images in the Zoom to the Neighborhood

Complex s Plane Complex det M Plane of the Origin
§ = 2 - |
§ Unstable half = % ““J‘J

s plane po] a [
: | i
é < § -é 8 ﬂé o= } @_

- | I
| -200 -100 O IO(r)e S200 300 400 500 -1.0 05 Cr(; N 05 )1:1014 15 -1.5 -10 e -O.SXIO13 00

Complex Analysis:
The Principle of the Argument

1(
[ G |
— dz = Zeroes — Poles
2ri | f(2)
The number of times the image contour encircles the origin
is the number of unstable roots.
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Newton Iteration with Deflation

f(z)

——————— 2z = roots already found
H?:l(: - :i)

f(z) =
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A Future Role for Matched Asymptotic Expansions

» The method of matched asymptotic expansions was introduced by Furth, Killeen, and
Rosenbluth in order to obtain analytical results.

» Most recent work uses straight-through methods, such as M3D and NIMROD, using packed
grids to resolve singular layers.

» Thermonuclear plasmas are in a regime where conditions for the validity of matched
asymptotic expansion are very well satisfied.

» Resistive DCON and DELTAR provide numerical methods to do the full matching problem
numerically and very efficiently.

» Inner region dynamics can be extended to include full fluid and kinetic treatments.

» Nonlinear effects are localized to the neighborhood of the singular layers and can be solved
with the 2D HiFi code, exploiting helical symmetry, matched through ideal outer regions.

» Asymptotic matching and straight-through methods can complement and verify each other.
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Future Work

» Improved benchmarks vs. MARS for multiple singular surfaces.
Discrepancy may be due to missing factors in the matching conditions.

» Reconstruction of inner region eigenfunction by Fourier transformation.

» More complete fluid regime model of linear inner region; Braginskii.
Facilitated by new derivation of GGJ equations in terms of A, ¢, and p.

» Neoclassical inner region model, drift kinetic equation; Ramos.

» Nonlinear model, NTM, with nonlinear effects localized to inner regions,
coupled through ideal linear outer region. 2D HiFi code, helical
symmeftry.

» Nonlinear verification with straight-through nonlinear codes: NIMROD,
M3D-CI1.
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