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Summary 
•  Most of our progress since the TSD workshop in July 

has been in meshing external regions. 

•  We have also started running VDE computations with a 
realistic H-mode profile (conducting wall case, so far). 

•  Development for interfacing computational regions is 
also described. 



Numerical modeling:  A configuration is 
divided into separate computational regions. 
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•  The inner region is an 
Eulerian representation 
of the plasma and 
internal vacuum. 

•  An arbitrary number of 
outer regions represent 
vacuum (curl-free) 
magnetic field only. 

•  Regions are separated 
by resistive surfaces 
using the thin-wall 
approximation. 
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An implicit thin-wall implementation couples the 
magnetic evolution of different regions. 

•  In NIMROD’s weak form, the PDE from Faraday’s law for the interior of 
each region is 

A∗ ⋅ ∂B
∂t
dVolR∫ = − E ⋅∇×A∗ dVolR∫ + A∗ ×E ⋅ n̂dS∂R∫

for all vector test functions 

Ak,n,ν R,Z,φ( ) =αk ξ R,Z( ),η R,Z( )!" #$e
inφ êν φ( )

B R,Z,φ, t( ) = Bk,n,ν t( )Ak,n,ν R,Z,φ( )
k,n,ν
∑

used in the expansion for magnetic field. Here,               is a 
2D nodal spectral element,                                            , and 
 

ê1 = R̂ φ( ), ê2 =Z, ê3 = φ̂ φ( )
αk ξ,η( )

The resistive-wall                     is used in the surface integral. E = vwn̂×δB vw ≡
ηw
µ0δx



Evolution of the normal component is imposed as an 
integral constraint with the same test functions. 

•  Applying Faraday’s law along an interface between regions, 

A∗ ⋅ n̂n̂ ⋅ ∂B
∂t
dS∂R∫ = − A∗ ⋅ n̂n̂ ⋅∇×EdS∂R∫

= n̂ ⋅∇ A∗ ⋅ n̂( )×EdS∂R∫ − A∗ ⋅ n̂E ⋅d l∂Rj∫j∑
with path integrals defined by curves swept by the corners of the 2D 
elements. 
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•  Adding the constraint equation with a Lagrange multiplier λ provides an 
un-split relation, and E has implicit                  terms. 

A∗ ⋅ΔBdVolR∫ +Δt E ⋅∇×A∗ dVolR∫ −Δt A∗ ×E ⋅ n̂dS∂R∫
+λ A∗ ⋅ n̂n̂ ⋅ ΔBdS∂R∫ −Δt n̂ ⋅∇ A∗ ⋅ n̂( )×EdS∂R∫ +Δt A∗ ⋅ n̂E ⋅d l∂Rj∫j∑
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Implicit resistive-wall E leads to an algebraic system 
that couples all regions during each B-advance. 
•  The resistive wall contributions are not symmetric. 
•  Preconditioned GMRES is used to solve asymmetric algebraic systems. 
•  The following approach entails minimal modification: 

o  For the purpose of the algebraic solve, define separate degrees of 
freedom for each component of B along each interface. 
o  Physically, the normal component is continuous across a thin wall. 
o  Duplication for distinct degrees of freedom does not affect 

solvability. 
o  Apply matrix-based preconditioning region-by-region. 

o  Create preconditioners without the contributions to                      
from a neighboring region. 

o   Rely on GMRES iteration to provide neighbor contributions. 

vwn̂×ΔδB

•  Computing the neighbor contributions as matrix-free additions to 
matrix-vector products simplifies the implementation. 

•  On a resistive-wall mode test, we find: 

vwτA/rpl 0.1 1.0 10. 100. 
iterations 3 6 12 20 



Tests of vertical stability consider large R/a 
for comparison with the decay-index criterion. 
•  The analysis of Mukhovatov and Shafranov [NF 11, 605 (1971)] 

treats the tokamak as a loop of current that preserves poloidal flux as 
it moves and expands or contracts. 

•  We use coils that are outside 
the domain to vary the decay 
index of the vacuum field. 

•  The vertical dimension of the 
domain is also varied. 

•  Equilibria are computed with 
NIMEQ [Howell, CPC 185, 
1415 (2014)]. 

•  Unstable, up-down symmetric 
equilibria are computed over 
half of the domain with a 
symmetry condition at Z = 0. 

Example of equilibrium poloidal flux with 
locations of external coils indicated. 



Computed linear results show a clear stability 
threshold when the decay index is varied. 

Vertical instability growth rates computed 
from the linear MHD model with N varied 
in three sets of computations.  [Rates are 
normalized by (Rmax-Rmin)/vA .] 

•  The decay index N is computed 
from the vacuum field. 

•  These tests have n0 varying by 10 
and P0 varying by 200 from 
outside the tokamak to the 
magnetic axis. 

•  Resistivity varies as              . 
•  The Mukovatov-Shafranov 

threshold for the wire-loop 
tokamak is N = 0. 

•  Our results are consistent with the 
analysis when the vertical extent 
of the domain is sufficiently large. 

N ≡ −d ln Bz d lnR

η ~ T −3/2



Linear VDE computations with different external 
regions demonstrate resistive-wall scalings. 

Growth rates for N = 
−0.72 increase with wall 
resistivity and with the 
extent of the external 
region/resistive wall. 

External regions above (left), inboard (center), and surrounding (right) the 
inner region are illustrated. 



A nonlinear result with conducting walls shows 
the expected large displacement. 

Temperature (color) and poloidal flux (lines) from a 
nonlinear computation (a) the initial unstable state and 
at (b) maximum displacement. 

•  Parameters are similar to those used for the linear N = −1.0 
computation, except Pm = 1 instead of 0.1 at the magnetic axis. 

•  The initial condition is small-amplitude vertical flow. 

Kinetic energy history 
shows a linear growth 
phase and nonlinear 
evolution with bouncing. 



A similar nonlinear computation has an 
external region above the plasma region. 

The displaced plasma remains 
closer to the top surface, and some 
distortion of poloidal flux, relative to 
the conducting-wall case, is evident. 

•  The two regions are linked by a thin wall with vw = 10−3. 

Growth is faster with the resistive 
wall, and the maximum kinetic 
energy is larger. 



We have used an old DIII-D equilibrium to 
start on modeling realistic cases. 

Poloidal flux and pressure 
contours are aligned in the 
equilibrium. 

•  The computations provide an exercise for importing equilibria as 
initial conditions. 

•  The profile is destabilized by imposing external-coil field. 

Field from a coil at R=1.2, 
Z=-1.5 with I = -0.15 Ip 
negates some divertor field. 

The tokamak drifts upward 
slowly (t = 480 τA). 



Discussion and Conclusions 
•  An un-split implicit formulation of resistive-wall coupling between 

plasma and vacuum regions has been implemented in NIMROD. 
•  Bnorm evolution along resistive-wall surfaces is applied as a 

constraint in the advance of magnetic field at each time-step. 
•  Matrix-free computations of coupling across resistive walls 

facilitates iterative solves. 
•  Verification of linear vertical stability uses large R/a.	



•  Results are consistent with the decay-index criterion for sufficiently 
distant conducting surfaces. 

•  Tests with resistive walls and external regions show the expected 
increase in growth rate with vw and with the extent of the resistive 
wall. 

•  Our first nonlinear VDE results without and with a resistive surface 
demonstrate Eulerian free-surface evolution.  



Discussion (continued) 

•  Our next development steps are: 
•  Add communication calls to the coding for region interfaces to 

permit parallel computation. 
•  Modify boundary conditions for nonzero normal flow. 

•  Tracking a distorting plasma surface with an Eulerian representation 
has its challenges. 

•  NIMROD has streamline diffusion and thermal conduction for this 
purpose, but other methods can be applied if needed. 

•  Nonlinear external kink has been demonstrated previously. 
•  Plasma-material interaction effects will be considered. 

•  Also see Bunkers and Sovinec, BP8.00016. 





Computations in the outer vacuum regions 
approximate magnetostatic responses. 
•  The standard approach uses a magnetic potential. 
B =∇χ , ∇2χ = 0 in Rout , n̂ ⋅∇χ = Bnout  on ∂Rout
where χ may be multi-valued in regions that are not topologically 
spherical. 

•  The problem may be cast directly in terms of B by minimizing  
I = ∇×B( )2 + ∇⋅B( )2$

%
&
'dVol

Rout
∫

over a space of vector functions that satisfy                                . n̂ ⋅B = Bnout  on ∂Rout

•  This is convenient in NIMROD, which solves the plasma response in 
terms of B. 

•  Induction from changes in Ip appear through surface-Etang. 
•  Outer-region computations are fast relative to the plasma update. 

•  A given static solution can also be found as the long-time response 
to a diffusion problem.  
∂
∂t
B =ηout∇

2B n̂ ⋅B = Bnout  on ∂Routsubject to                                 . 


