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Summary

* Most of our progress since the TSD workshop in July
has been in meshing external regions.

 We have also started running VDE computations with a
realistic H-mode profile (conducting wall case, so far).

« Development for interfacing computational regions is
also described.



Numerical modeling: A configuration is
divided into separate computational regions.

* The inner region is an
Eulerian representation
of the plasma and
internal vacuum.

* An arbitrary number of
outer regions represent
vacuum (curl-free)
magnetic field only.

* Regions are separated
by resistive surfaces
using the thin-wall
approximation.
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An implicit thin-wall implementation couples the
magnetic evolution of different regions.

* In NIMROD'’s weak form, the PDE from Faraday’s law for the interior of
each region is

fRA* -Z—l:dVol = —fRE-VxA* dVol+§ﬁaRA* xE°ﬁdS

for all vector test functions
Ak,n,v (R’Z’ ¢) = Uy [g(RaZ)’n(R,Z)]emgbév (¢)

used in the expansion for magnetic field. Here, a,ﬁ(g,n) IS a
2D nodal spectral element, ¢, =R(¢),e,=Z,&;=0¢(¢) , and

B(R.Z,p,t)= Y Biny(t)Arnv(R.Z,0)
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The resistive-wall E =v,,n x 0B is used in the surface integral. v,, =




Evolution of the normal component is imposed as an
integral constraint with the same test functions.

* Applying Faraday’s law along an interface between regions,
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[opA" BR-2dS =,
=faRﬁ-V(A*-ﬁ)xEdS—EjgﬁaRjA*-ﬁE-dl
with path integrals defined by curves swept by the corners of the 2D
elements.
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« Adding the constraint equation with a Lagrange multiplier A provides an
un-split relation, and E has implicit v,,ix ASB terms. [Af = f(1+At)- f(1)]

JpA"-ABdVol + At [ ,E-V x A" dVol - At§, . A" xE-hdS
# 2| fop AT B ABAS - At [ - V(A -n)xEdS+AtEjgﬁaRjA -nE-dl]=O



Implicit resistive-wall E leads to an algebraic system

that couples all regions during each B-advance.

* The resistive wall contributions are not symmetric.
* Preconditioned GMRES is used to solve asymmetric algebraic systems.
« The following approach entails minimal modification:

o For the purpose of the algebraic solve, define separate degrees of
freedom for each component of B along each interface.
o Physically, the normal component is continuous across a thin wall.
o Duplication for distinct degrees of freedom does not affect
solvability.
o Apply matrix-based preconditioning region-by-region.
o Create preconditioners without the contributions to v, ,n x A6B
from a neighboring region.
o Rely on GMRES iteration to provide neighbor contributions.

« Computing the neighbor contributions as matrix-free additions to
matrix-vector products simplifies the implementation.

 On a resistive-wall mode test, we find:
Vi Tally) 0.1 1.0 10. 100.
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Tests of vertical stability consider large R/a

for comparison with the decay-index criterion.

« The analysis of Mukhovatov and Shafranov [NF 11, 605 (1971)]
treats the tokamak as a loop of current that preserves poloidal flux as
it moves and expands or contracts.

« We use coils that are outside 1 i

the domain to vary the decay 0.75 -

index of the vacuum field.
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« Equilibria are computed with -
NIMEQ [Howell, CPC 185, 025
1415 (2014)]. :
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Computed linear results show a clear stability
threshold when the decay index is varied.

The decay index N is computed
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Our results are consistent with the Vertical instability growth rates computed
analysis when the vertical extent from the linear MHD model with N varied

of the domain is sufficientlv larqe in three sets of computations. [Rates are
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Linear VDE computations with different external
regions demonstrate resistive-wall scalings.
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External regions above (left), inboard (center), and surrounding (right) the
inner region are illustrated.
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A nonlinear result with conducting walls shows
the expected large displacement.

» Parameters are similar to those used for the linear N =-1.0
computation, except Pm = 1 instead of 0.1 at the magnetic axis.

» The initial condition is small-amplitude vertical flow.
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nonlinear computation (a) the initial unstable state and
at (b) maximum displacement.



A similar nonlinear computation has an
external region above the plasma region.

« The two regions are linked by a thin wall with v, = 1073,
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The displaced plasma remains

closer to the top surface, and some
distortion of poloidal flux, relative to
the conducting-wall case, is evident.



We have used an old DIII-D equilibrium to
start on modeling realistic cases.

« The computations provide an exercise for importing equilibria as
initial conditions.

» The profile is destabilized by imposing external-coil field.
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contours are aligned in the  Z=-1.5 with [ =-0.15 /, slowly (t = 480 t,).

equilibrium. negates some divertor field.



Discussion and Conclusions

* An un-split implicit formulation of resistive-wall coupling between
plasma and vacuum regions has been implemented in NIMROD.

B...m evolution along resistive-wall surfaces is applied as a
constraint in the advance of magnetic field at each time-step.

» Matrix-free computations of coupling across resistive walls
facilitates iterative solves.

 Verification of linear vertical stability uses large R/a.

» Results are consistent with the decay-index criterion for sufficiently
distant conducting surfaces.

« Tests with resistive walls and external regions show the expected
increase in growth rate with v,, and with the extent of the resistive
wall.

 Qur first nonlinear VDE results without and with a resistive surface
demonstrate Eulerian free-surface evolution.



Discussion (continued)

Our next development steps are:

« Add communication calls to the coding for region interfaces to
permit parallel computation.

* Modify boundary conditions for nonzero normal flow.

Tracking a distorting plasma surface with an Eulerian representation
has its challenges.

« NIMROD has streamline diffusion and thermal conduction for this
purpose, but other methods can be applied if needed.

* Nonlinear external kink has been demonstrated previously.
Plasma-material interaction effects will be considered.

Also see Bunkers and Sovinec, BP8.00016.






Computations in the outer vacuum regions

approximate magnetostatic responses.
* The standard approach uses a magnetic potential.

B=Vy, V’x=0inR

out » n- Vx = Bnou on R,

t

where y may be multi-valued in regions that are not topologically
spherical.

« The problem may be cast directly in terms of B by minimizing
I= [ |(VxB)'+(V-B)’|avol

R
over a space of vector functions that satisfy n-B=5,
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« A given static solution can also be found as the long-time response
to a diffusion problem.

0

_B = noutV2B SUbJeCt tO ﬁ ) B = Bnom on aIeout .

ot

» This is convenient in NIMROD, which solves the plasma response in
terms of B.

* Induction from changes in /, appear through surface-E,,.
» Quter-region computations are fast relative to the plasma update.



