Forced Magnetic Reconnection In Tokamak Plasmas – a new CEMM paradigm problem?

J.D. Callen, University of Wisconsin, Madison, WI 53706-1609 USA Talk at CEMM meeting, Savannah, GA, November 15, 2015

Questions to be addressed:

- 1) Forced magnetic reconnection (FMR) issues for tokamaks?
- 2) Why are they important at present and in ITER?, and
- 3) What could CEMM do to resolve these issues? Outline:
- Forced magnetic reconnection status, issues for tokamaks
- Resonant 3-D effects—reconnection, penetration, islands, transport
- Examples of resonant 3-D effects in DIII-D: FE — penetration of δB^{3D}, spontaneous island forms, locked mode grows; NTMs — require seed island, then island grows on resistive time scale; RMPs — penetrate, transport increases at pedestal top without large islands.
- Suggested paradigm problems (FEs, RMPs), issues for CEMM

Present Theory Of Forced Magnetic Reconnection (FMR)

- The forced magnetic reconnection problem involves study of the response of a magnetized plasma to an externally-imposed resonant field, reconnection of magnetic field lines at the resonant surface, and resultant possible bifurcation into a magnetic island topology, mode locking.
- Original theory¹ of dynamics of "Taylor problem" of forced magnetic reconnection was developed for sheared slab magnetic field: current sheet forms at resonant surface on shear Alfvén time scale τ_A , resistive reconnection forms magnetic island on $\tau_A^{2/3} \tau_R^{1/3} = \tau_A S^{1/3}$ time scale, magnetic island grows to width determined by fully penetrated resonant field.
- Determining effect of forced magnetic reconnection by a 2/1 field error (FE) on an ohmic tokamak plasma uses a cylindrical model:² flow-screening prevents reconnection at rational surface,² strong field error bifurcates solution to magnetic island topology, diamagnetic flow effects influence error field required for bifurcation,³ critical flow in tokamaks is the electron flow in ⊥ (bi-normal) direction.^{4,5}

¹T.S. Hahm and R.M. Kulsrud, "Forced magnetic reconnection," Phys. Fluids **28**, 2412 (1985).

²R. Fitpatrick, "Interaction of tearing modes with external structures in cylindrical geometry," Nucl. Fusion **33**, 1049 (1993).

³A.J. Cole and R. Fitzpatrick, "Drift-magnetohyrodynamical model of error-field penetration in tokamak plasmas," Phys. Plasmas 13, 032503 (2006).

⁴E. Nardon, P. Tamain, M. Bécoulet, G. Huysmans and F.L. Waelbroeck, "Quasi-linear MHD modelling of H-mode plasma response to resonant magnetic perturbations," Nucl. Fusion **50**, 034002 (2010).

⁵F.L. Waelbroeck, I. Joseph, E. Nardon, M. Bècoulet and R. Fitzpatrick, "Role of singular layers in the plasma response to resonant magnetic perturbations," Nucl. Fusion **52**, 074004 (2012).

FMR Studies Are More Complicated In Tokamak Plasmas

ANALYTIC THEORY:

- Dynamical theory is needed to address temporal development and dynamical accessibility not just time-asymptotic states.^{2,5}
- Both electron and ion diamagnetic equilibrium flows are needed.
- Full tokamak geometry is needed, particularly in edge pedestal region where resonant magnetic perturbations (RMPs) are applied.
- Singular resistive reconnection layer widths δ_{η} are much smaller.
- Toroidal torques competing with resonant field induced torques are different at edge ion orbit and c-x losses, different transport.

EXTENDED MHD CODE MODELING:

- M3D-C1 and NIMROD mainly calculate linear response $\delta B_{\rm n}^{
 ho}$ now.
- FMR needs toroidal and poloidal flows, nonlinear evolution.

Logic Of FMR Theory Involves Some Key Elements

- Equilibrium axisymmetric magnetic field is basis of geometry.
- Local helical field geometry is useful near rational surface.
- Faraday's law with two-fluid Ohm's law for \vec{E} yields equation for radial magnetic field perturbation induced by a single RMP.
- Magnetostatic two-fluid momentum equation that takes account of compressional Alfvén wave constraints is useful.
- Linear and nonlinear (island) responses to RMPs are important.
- Comprehensive plasma toroidal torque balance is needed.

Faraday's Law Yields Equation For Radial Field Induced By Single 3-D Resonant Perturbation

- A two-fluid Ohm's law will be used for electric field $\vec{E} = \vec{E}_0 + \delta \vec{E}$: $\vec{E}_0 = -\vec{V}_0 \times \vec{B}_0 + \left[\vec{R}_{e0} + \vec{J}_0 \times \vec{B}_0 - \vec{\nabla} p_{e0} - \vec{\nabla} \cdot \overleftrightarrow{\pi}_{e0}\right] / n_{e0} e = -\vec{\nabla} \Phi_0(\psi_{\rm p}),$ (1) $\delta \vec{E} = -\vec{V}_0 \times \delta \vec{B} - \delta \vec{V} \times \vec{B}_0 + \delta(\vec{R}_e/n_e e) + \left[\delta \vec{J} \times \vec{B}_0 + \vec{J}_0 \times \delta \vec{B} - \vec{\nabla} \delta p_e - \vec{\nabla} \cdot \delta \overleftrightarrow{\pi}_e\right] / n_{e0} e$ $- \left(\delta n_e/n_{e0}\right) \left[\vec{J}_0 \times \vec{B}_0 - \vec{\nabla} p_{e0} - \vec{\nabla} \cdot \overleftrightarrow{\pi}_{e0}\right] / n_{e0} e.$ (2)
- Neglecting $\mathcal{O}\{|xq'/q|\}$ corrections, helical component of $\delta \vec{E}$ is $\vec{B}_{\text{hel}} \cdot \delta \vec{E} = -\Omega_e^{\alpha} \psi_p'(\vec{\nabla} \rho \cdot \delta \vec{B}) + (q - m/n) \frac{I}{qR^2} \psi_p'(\vec{\nabla} \rho \cdot \delta \vec{V}_e) + \eta B_0 \delta J_{\parallel} - \frac{\vec{B}_0 \cdot [\vec{\nabla} \delta p_e + \vec{\nabla} \cdot \delta \vec{\pi}_e]}{n_{e0}e}.$ (3)
- The cross helical electron flow rotation frequency here is $[\alpha \equiv \zeta (m/n) \,\theta$ is helical angle coordinate and $d\psi_{\rm p}/d\rho = RB_{\rm p}]$

$$\Omega_{e}^{\alpha} \equiv \vec{\nabla} \alpha \cdot \vec{V}_{e0} = -\left(\frac{d\Phi_{0}}{d\psi_{p}} - \frac{1}{n_{e0}e} \frac{dp_{e0}}{d\psi_{p}} - \frac{0.71}{e} \frac{dT_{e0}}{d\psi_{p}}\right) = \frac{1}{RB_{p}} \left(E_{\rho} + \frac{1}{n_{e0}e} \frac{dp_{e0}}{d\rho} + \frac{0.71}{e} \frac{dT_{e0}}{d\rho}\right), \quad (4)$$

which is more complete than the electron \perp flow frequency $\omega_{\perp e}$ that is usually cited⁵ and used in forced magnetic reconnection studies, because this Ω_e^{α} includes the effects of the electron thermal force induced by the usually neglected radial electron temperature gradient in $\vec{R}_e \equiv n_e e \eta \vec{J} - 0.71 n_e \vec{\nabla}_{\parallel} T_e$.

Faraday's Law Yields Equation For Radial Field Induced By Single Resonant 3-D Perturbation (cont'd)

• Final evolution equation for radial field perturbation $\delta \hat{B}^{
ho}(
ho,t)$ is

$$\frac{\partial}{\partial t}\Big|_{\psi_{\mathrm{p}}}^{\delta\hat{B}^{\rho}} - in\,\Omega_{e}^{\alpha}\,\delta\hat{B}^{\rho} - \frac{\eta}{\mu_{0}}\,\overline{\nabla}^{2}\delta\hat{B}^{\rho} \simeq \,ik_{\parallel}(x)\,B_{\mathrm{t}0}\,\delta\hat{V}_{e}^{\rho}, \qquad \delta\hat{B}^{\rho} \equiv -\frac{i\,k_{\theta}\,\delta\hat{\psi}}{R_{0}}, \quad (5)$$

which is an inhomogeneous parabolic (diffusive) partial differential equation in ρ, t for either the FSA radial magnetic field $\delta \hat{B}^{\rho}$ or associated flux $\delta \hat{\psi}$.

- The magnetic field diffusion is caused by the plasma resistivity: $\eta B_{t0} \,\overline{\delta J}_{\parallel} \equiv \left\langle e^{in\alpha} \frac{B_0 \,\eta \,\delta J_{\parallel}}{\psi_{\rm p}'} \right\rangle \simeq \frac{\eta}{\mu_0} \frac{B_{t0}^2}{I\psi_{\rm p}'} \left[\frac{1}{\varepsilon} \frac{\partial}{\partial \rho} \left(\varepsilon \,\overline{g}^{\rho\rho} \frac{\partial \,\delta \hat{\psi}}{\partial \rho} \right) - m^2 \,\overline{g}^{\theta\theta} \,\delta \hat{\psi} \right] \equiv \frac{\eta}{\mu_0} \frac{q \,\overline{\nabla}^2 \delta \hat{\psi}}{\rho R_0}. \quad (6)$
- Right side of Eq. (5) represents advection of $\delta \vec{B}$ with flow $\delta \vec{V}$: $i k_{\parallel}(x) B_{t0} \delta \hat{V}_{e}^{\rho} \equiv \left\langle e^{in\alpha} \left(\vec{B}_{0} \cdot \vec{\nabla} \right) \left(\vec{\nabla} \rho \cdot \delta \hat{\vec{V}_{e}} \right) \right\rangle.$ (7)
- Solutions of Eq. (5) for $\delta \hat{B}^{\rho}(\rho, t)$ have the following properties:
 - 1) away from the rational surface, advection of $\delta \hat{B}^{\rho}$ with $\delta \hat{V}^{\rho}$ to lowest order; 2) when Ω_{e}^{α} is small, magnetic reconnection occurs in singular layer of width δ_{η} ; 3) some radial diffusion of $\delta \hat{B}^{\rho}$ is induced at all $\rho \Longrightarrow \overline{\delta J}_{\parallel}$, flutter transport.

Magnetostatic Two-fluid Momentum Equation Is Useful

- Magnetostatic quasi-equilibrium of tokamak plasma is governed by MHD force balance after compressional Alfvén waves have been eliminated; the appropriate annihilator is $\vec{B} \cdot \vec{\nabla} \times$ which yields a vorticity equation.
- General magnetostatic MHD quasi-static force balance equation is

$$-\vec{\nabla}\cdot\left[\vec{B}\times\frac{\rho_m}{B^2}\left(\frac{\partial\vec{V}}{\partial t}+(\vec{V}\cdot\vec{\nabla})\vec{V}+\frac{\vec{\nabla}\cdot\stackrel{\leftrightarrow}{\Pi}}{\rho_m}\right)\right] = \vec{B}\cdot\vec{\nabla}\left(\frac{J_{\parallel}}{B}\right) + \vec{\nabla}\cdot\left(\frac{\vec{B}\times\vec{\nabla}P}{B^2}\right).$$
(8)

- Using $\begin{vmatrix} \delta \vec{V} \equiv (1/B^2) \vec{B} \times \vec{\nabla} \delta \phi \end{vmatrix}$ and the gyroviscous cancellation due to $\vec{\nabla} \cdot \stackrel{\leftrightarrow}{\Pi}_{\wedge}$, the lowest order linearized vorticity equation is⁶ $\vec{\nabla} \cdot \left[\frac{\rho_m}{B_0^2} \left(\frac{\partial}{\partial t} + \Omega_E^{\alpha} \frac{\partial}{\partial \alpha} \right) \vec{\nabla}_{\perp} \delta \phi \right] = \vec{B}_0 \cdot \vec{\nabla} \left(\frac{\delta J_{\parallel}}{B_0} \right) + \delta \vec{B} \cdot \vec{\nabla} \left(\frac{J_{\parallel 0}}{B_0} \right) + \vec{\nabla} \cdot \left(\frac{\vec{B}_0 \times \vec{\nabla} \delta P}{B_0^2} \right),$ (9) $\Omega_E^{\alpha} \equiv \vec{\nabla} \alpha \cdot \vec{E}_0 \times \vec{B}_0 / B_0^2 \simeq - d\Phi_0 / d\psi_{\rm p} = E_{\rho} / RB_{\rm p} \text{ is } \vec{E}_0 \times \vec{B}_0 \perp \text{ rotation frequency.}$ • Eq. (9) can be used to determine usual^{7,8} Δ' , plus $\delta \vec{V}^{\rho}$, $\Delta'_{\rm laver}$, $\Delta'_{\rm ext}$.

⁶See Eq. (19) in S.E. Kruger, C.C. Hegna, and J.D. Callen, "Generalized reduced magnetohydrodynamic equations," Phys. Plasmas 5, 4169 (1998). ⁷H.P. Furth, J. Killeen and M.N. Rosenbluth, "Finite-Resistivity Instabilities of a Sheet Pinch," Phys. Fluids 6, 459 (1963).

⁸C.C. Hegna and J.D. Callen, "Stability of tearing modes in tokamak plasmas," Phys. Plasmas 1, 2308 (1994).

Response To Imposed Resonant $\delta \hat{B}^{\rho} \rightarrow \delta B_{\rho}$ Is Dynamic

- 3-D magnetic perturbation near a rational surface is governed by $\frac{\partial \delta B_{\rho}}{\partial t} - i \,\Omega_e^{\alpha} \delta B_{\rho} + \frac{\eta}{\mu_0} \overline{\nabla}^2 \delta B_{\rho} = (\vec{B}_0 \cdot \vec{\nabla}) \delta V_e^{\rho};$ in $\tau_{\rm Ap} \sim 10^{-6}$ s sheet current forms at $\rho_{m/n}$, with minimal reconnection if Ω_e^{α} is large, but if $|\Omega_e^{\alpha}| \lesssim 10^4$ /s, at $t \sim 10^{-4} - 10^{-3}$ s δB_{ρ} "penetrates" in a resistive layer δ_{η} .
- When $w \equiv 4(\delta B_{\rho}L_S/k_{\theta}B_0)^{1/2} > \delta_{\eta}$, the island width w is governed by modified Rutherford eq. (MRE):

$$egin{split} rac{d\mathrm{w}}{dt}&\simeqrac{\eta}{\mu_0}iggl[\Delta'+rac{\sqrt{\epsilon}\,eta_\mathrm{p}}{\mathrm{w}}rac{L_S}{L_P}+\Delta'_\mathrm{ext}-rac{\mathrm{p}\,\delta J_\parallel}{\mathrm{w}^3}iggr]\ ``\mathrm{drives''} ext{ are }&\simeta_\mathrm{p}/L_P ext{ for NTMs or}\ \Delta'_\mathrm{ext}&\simeq 2/L_{\delta B}>0 ext{ from applied RMPs,} \end{split}$$

but damped by $\Delta' \simeq -2m$ and FLR, Figure 1: Schematic of $\delta B_{\rho m/n}^{\text{plasma}}$ and field FBW ion polarization currents $(p \, \delta J_{\parallel})$. lines in vicinity of rational surface.

3-D Fields $\delta \vec{B}^{3D}$ Introduce Toroidal Torques On Plasma

- Toroidally symmetric magnetic fields in tokamaks \implies no torques: NBI etc. torques are balanced by Reynolds stress torque from fluctuations.⁹
- 3-D fields break symmetry and introduce toroidal torques:⁹ toroidal variation of |*B*| produces ion neoclassical toroidal viscosity (NTV)^{10,11} ⇒ counter-current torque ⟨*R ê*_ζ · *∇* · *π*_{||*i*}⟩ due to ripple, field errors, RMPs;
 3-D fields resonant on *q* = *m/n* rational surfaces induce Maxwell stress ⇒ co-current torque ⟨*R ê*_ζ · *δJ*_{||}×*δB*_ρ⟩ due to 3-D electron collision effects;¹² changes in fluctuation-induced Reynolds stress torques due to 3-D fields are usually most influenced by changes in *E*×*B* shear flow on zonal flows.¹³
- Approximate toroidal torque balance in pedestal is thus^{9.11} $I_{\Omega} \frac{\partial \Omega_{t}}{\partial t} = -\underbrace{\langle R \, \hat{\vec{e}}_{\zeta} \cdot \vec{\nabla} \cdot \stackrel{\leftrightarrow}{\pi}_{\parallel i} \rangle}_{\text{NTV}} + \underbrace{\langle R \, \hat{\vec{e}}_{\zeta} \cdot \overline{\delta J_{\parallel} \times \delta B_{\rho}} \rangle}_{\text{Maxwell stress}} - \underbrace{\frac{1}{V'} \frac{\partial}{\partial \rho} (V' \Pi_{i\rho\zeta})}_{\text{Reynolds stress}} + \underbrace{\langle R \, \hat{\vec{e}}_{\zeta} \cdot \vec{S}_{p} \rangle}_{\text{mom. sources}},$

 $I_{\Omega} \equiv m_i n_i \langle R^2 \rangle$ is moment of inertia and $\Omega_{\rm t}$ is rotation frequency of plasma.

⁹J.D. Callen, A.J. Cole, & C.C. Hegna, "Toroidal flow and radial particle flux in tok. plasmas," Phys. Pl. **16**, 082504 (2009); Errat. **20**, 069901 (2013). ¹⁰K.C. Shaing, "Magnetohydrodynamic-activity-induced toroidal momentum dissipation," Phys. Plasmas **10**, 1443 (2005).

¹¹J.D. Callen, topical review paper on "Effects of 3D Magnetic Perturbations on Toroidal Plasmas," Nucl. Fusion **51**, 094026 (2011).

¹²J.D. Callen, A.J. Cole & C.C. Hegna, "Resonant-magnetic-perturbation-induced plasma transport in H-mode pedestals," Phys. Pl. 19, 112505 (2012).

¹³M. Leconte et al., "Drive of a mesocale Vortex-Flow pattern by coupling to Zonal-Flows in presence of RMPs," H-mode 2015 workshop, Garching.

Plasma Toroidal Rotation Frequency Ω_t Depends On E_{ρ}

• Radial force balance of tokamak plasma yields definition of Ω_t :

$$0 = ec{
abla}
ho \cdot [n_{i0}q_i(ec{V}_i imes ec{B}_0 - ec{
abla} \Phi_0) - ec{
abla} p_{i0}] \implies \left| \Omega_{ ext{t}} \equiv R\, \hat{ec{e}}_{\zeta} \cdot ec{V}_i \simeq rac{1}{RB_{ ext{p}}} \left[E_
ho - rac{1}{(n_{i0}e)} rac{dp_{i0}}{d
ho}
ight] + qV_i \cdot ec{
abla} heta.$$

- Since $\Omega_{\rm t}$ depends on the radial electric field $E_{
 ho} \equiv d\Phi_0/d\rho$, the torque balance is equivalently an equation for $E_{
 ho}$ and net torques $T_{s\zeta} \equiv R \,\hat{\vec{e}}_{\zeta} \cdot \vec{F}_{
 m orce\,s} = R B_{
 m p} n_s q_s V_{s\rho}$ are due to non-ambipolar fluxes: $I_{\Omega} \,\frac{\partial \,\Omega_{\rm t}}{\partial t} = \sum_s T_{s\zeta}(\Omega_{\rm t}) = - R B_{
 m p} \sum_s q_s \Gamma_s^{
 m na}(E_{
 ho}) \implies 0$ yields ambipolar $E_{
 ho}$.
- The primary non-ambipolar (na) fluxes in the pedestal are^{9,11} ion due to NTV $T_{i\zeta}^{\text{NTV}} \equiv -\langle R\hat{\vec{e}}_{\zeta} \cdot \vec{\nabla} \cdot \stackrel{\leftrightarrow}{\pi}_{\parallel i} \rangle \simeq -I_{\Omega} \mu_{i\parallel} (\delta B_{\parallel}/B_0)^2 (\Omega_{\text{t}} - \Omega_{*i}),$ electrons, $T_{e\zeta}^{\text{Maxwell}} \equiv \langle R\hat{\vec{e}}_{\zeta} \cdot \overline{\delta J_{\parallel} \times \delta B_{\rho}} \rangle \simeq -I_{\Omega} \mu_{e\zeta} (\delta B_{\rho}/B_0)^2 \omega_{\perp e}, \quad \omega_{\perp e} \equiv \vec{V}_{e0} \cdot \vec{\nabla} \alpha,$ ion flux due to fluctuation-induced Reynolds stress \Longrightarrow radial diffusion of Ω_{t} , ion flux due to ion orbit losses near separatrix $\langle R\hat{\vec{e}}_{\zeta} \cdot \vec{S}_{\text{p}} \rangle \simeq -RB_{\text{p}}J_{r}^{\text{orbit loss}}.$
- Ion na fluxes decrease Ω_t, E_{ρ} , while electron fluxes increase them.
- Net ambipolar density flux is⁹ $\Gamma \equiv \Gamma_e^{\mathrm{amb}} + \Gamma_e^{\mathrm{na}}(E_{\rho}) = \Gamma_i^{\mathrm{amb}} + \Gamma_i^{\mathrm{na}}(E_{\rho}).$

Non-ambipolar Ion & Electron Fluxes Are Equal At E_o^{amb}

- $E_{
 ho}$ needed^{14,15} for ambipolar density flux depends on $\kappa \propto \langle \delta \hat{B}_{
 ho} \rangle^2$:
 - $\kappa \ll 1 \rightarrow \text{ ion root}, \quad \kappa \sim 1 \rightarrow \text{ ambipolar root}, \quad \kappa \gg 1 \rightarrow \text{ electron root}.$

¹⁴J.D. Callen, C.C. Hegna and A.J. Cole, "Magnetic-flutter-induced pedestal plasma transport," Nucl. Fusion 53, 113015 (2013).

¹⁵J.D. Callen, "Pedestal Structure without and with 3D Fields," Contrib. Plasma Phys. 54, 484 (2014).

Figure 2: Dependence of electron and ion non-ambipolar density fluxes on the radial electric field. The dotted lines indicate the radial electric field and ambipolar density flux $\Gamma_e^{\text{flutt}}(E_{\rho}^{\text{amb}})$ at ambipolar root E_{ρ}^{amb} for¹⁴ $\kappa \equiv (T_i/T_e)D_{et}^{\text{flutt}}/D_i^{\text{na}} = 1$.

Torque Balance Yields Bifurcation To 3-D $\delta \vec{B}$ Penetration

• Toroidal torques are exerted on the plasma by all non-ambipolar (Γ_s^{na}) density fluxes,⁹ including inertial ones $(\psi'_p \equiv \overline{d\psi_p/d\rho} = RB_p)$:

$$m_i n_i \langle R^2
angle rac{\partial \Omega_{ ext{t}}}{\partial t} = e \psi_{ ext{p}}' ig[\Gamma_e^{ ext{na}}(E_
ho) - \Gamma_i^{ ext{na}}(E_
ho) ig] + \cdots, \quad \Gamma_e^{ ext{3D}}(E_
ho) \propto \omega_{ot e} \, |\delta B_{
ho \, m/n}^{ ext{plasma}}|^2 \sim rac{\omega_{ot e} \, |\delta B_{
ho \, m/n}^{ ext{vac}}|^2}{\Delta'^2 + (\omega_{ot e} au_\delta)^2}.$$

- Torque balance is in equilibrium when non-ambipolar fluxes of electrons $\Gamma_e^{na}(E_{\rho})$ and ions $\Gamma_i^{na}(E_{\rho})$ are equal \Longrightarrow ambipolar E_{ρ} .
- Time scale for $\Omega_{\rm t}(E_{
 ho})$ to reach equilibrium is estimated by taking account of the radial force balance equation, $\Omega_{\rm t} = E_{
 ho}/RB_{
 m p} + \cdots$:

 $egin{aligned} m_i n_i \langle R^2
angle rac{\partial \Omega_{ ext{t}}}{\partial t} &= e \, \Gamma_e^{ ext{3D}}(E_
ho) \, \psi_{ ext{p}}' + \cdots = - \, m_i n_i \, \mu_{e\zeta}^{ ext{3D}} \langle R^2
angle \, \omega_{ot e} + \cdots, & ext{ in which (flutter model^{12})} \ \mu_{e\zeta}^{ ext{3D}} &\equiv D_{e ext{t}}^{ ext{3D}} / arrho_{S ext{p}}^2 &\sim |\delta B_{
ho\,m/n}^{ ext{plasma}}|^2, \, arrho_{S ext{p}} \equiv c_S / \omega_{ci ext{p}} & ext{ is the ion sound gyroradius in poloidal field } B_{ ext{p}}, \ \omega_{ot e} \equiv [E_
ho + (dp_e/d
ho + 0.71 \, n_e \, dT_e/d
ho) / n_e e] / RB_{ ext{p}} & ext{ is perpendicular electron flow frequency.}^5 \ ext{For 3-D RMP effects}^{ ext{12}} \, D_{e ext{t}}^{ ext{3D}} \gtrsim 0.2 \, \mathrm{m}^2 / \mathrm{s}, \, arrho_{S ext{p}} \sim 0.02 \, \mathrm{m} \Longrightarrow au_{e\zeta}^{ ext{3D}} \sim 1 / \mu_{e\zeta}^{ ext{3D}} \lesssim 2 \, \mathrm{ms.} \end{aligned}$

• Thus, requirements and time scale for 3-D field penetration are: for penetration of 3-D field at rational surface $|\Gamma_e^{na}(E_\rho)| > |\Gamma_i^{na}(E_\rho)|$, and time scale for bifurcation to small $|\omega_{\perp e}|$ state may be $\tau_{e\zeta}^{3D} \sim 1/\mu_{e\zeta}^{3D} \lesssim$ ms.

Theory: What Can Happen After 3-D Field Penetration?

- <u>Reconnection</u>: Penetrated magnetic field lines in thin resistive layer¹² $\delta_{\eta} \simeq c_{\rm t} L_S / k_{\theta} \lambda_e$ ($\simeq 2 \, {\rm mm}, \, c_{\rm t} \simeq 3, \, {\rm RMPs}$) form a nascent magnetic island of width w $\sim \delta_{\eta}$ around the rational surface.
- Does this island grow? There are two possibilities (next viewgraph):

if $\delta_{\eta} \underline{\text{or}}$ initial "seed island" of width $w_{\text{init}} \simeq 4\sqrt{\delta B_{\rho m/n}^{\text{plasma}}(\rho_{m/n})L_S/k_{\theta}B_{\text{t0}}}$ is larger than the ion banana width parameter $w_{\text{ib}} \equiv \sqrt{\epsilon} \varrho_{\theta i}$, an island can grow, <u>BUT</u>,

if $\delta_{\eta} < w_{ib}$, island width is limited to $\sim \delta_{\eta}$ ($\Delta' < 0$, ion polarization currents damp), and $\delta B_{\rho m/n}^{\text{plasma}}$ perturbation decays unless it is driven continuously.

• Evolution and transport: Then, m/n magnetic field perturbation $\overline{\delta B_{\rho m/n}^{\text{plasma}}}$ expands radially away from the initial $\sim \delta_{\eta}$ or w_{init} width: growing island (max{ $\delta_{\eta}, w_{\text{init}}$ } > w_{crit}) — width grows on resistive time scale, and radial transport within expanding island region is effectively infinite, which causes the T_e profile to be flat within the island;

<u>limited island</u> (w ~ δ_{η} < w_{crit}) — driven $\delta B_{\rho m/n}^{\text{plasma}}$ remains constant at q = m/n, but may spread radially from δ_{η} region, and induce additional transport.

Island Growth Requires Layer Width $\delta_{\eta} \underline{OR}$ Initial Island Width $w_{init} > banana width parameter w_{ib}^{16,17}$

¹⁶R.J. La Haye, R.J. G.L. Jackson, T.C. Luce, K.E.J. Olofsson, W.M. Solomon and F. Turco, "Insights Into m/n=2/1 Tearing Mode Stability Based on Initial Island Growth Rate in DIII-D ITER Baseline Scenario Discharges," paper O5.134 at 41st EPS Conference Berlin 2014. ¹⁷R.J. La Haye, review paper on "Neoclassical tearing modes and their control," Phys. Plasmas **13**, 055501 (2006).

• Island growth rate dw/dt

is governed by the Modified Rutherford Equation (MRE) $dw/dt = \cdots$, which is

negative (damping) if island width $w < w_{\rm crit} \simeq 1.3 w_{\rm ib}$ due to $\Delta' < 0$ and FLR, FBW polarization current effects,

but can be positive (growing) for $\Delta' > 0$ tearing modes or NTMs if $w > w_{crit} \simeq 1.3 w_{ib}$.

• Growth of w occurs if layer width $\delta_{\eta} \gtrsim w_{\text{crit}} \underline{OR}$ initial width $w_{\text{init}} \gtrsim w_{\text{crit}}$.

Figure 3: MRE dw/dt indicates island growth for¹⁴ w $\gtrsim w_{\rm crit} \simeq 0.43 \times 3 \, w_{\rm ib} \simeq 1.3 \, w_{\rm ib}$, otherwise damping. Red bars are normalized layer widths $\delta_{\eta}/3 \, w_{\rm ib}$ for DIII-D 3-D effects.

Resonant Field Error (FE)¹⁸ Can Grow Out Of Noise

- Low n_e threshold for $\delta B_{\rho \, 2/1}$ penetration, $|\Gamma_e^{\rm 3D}(E_\rho)| > |\Gamma_i^{\rm equil}(E_\rho)|$.
- 2/1 mode "grows out of noise" because $\delta_{\eta} \simeq 3.3 \text{ cm} > w_{\text{crit}} \simeq 1 \text{ cm}$.
- 2/1 locked mode $\delta B_{\rho 2/1}$ grows on the resistive time scale.

¹⁸R.J. La Haye, C. Paz-Soldan and E.J. Strait, "Lack of dependence on resonant error field of locked mode island size in ohmic plasmas in DIII-D," Nucl. Fusion **55**, 023011 (2015).

Figure 4: Locked mode (III: detected by edge saddle loops, ESL) is induced by decreasing n_e , then grows out of noise spontaneously on resistive time scale.

Neoclassical Tearing Mode (NTM)^{19,17} Needs Big Seed

- Plasma is metastable; a seed island is required 17,19 to excite NTM.
- If seed is too small, it decays because $\delta_{\eta} \sim 0.5 \text{ cm} < w_{\text{crit}} \sim 1.4 \text{ cm}$; but if large enough (i.e., $w_{\text{init}} > w_{\text{crit}}$), it induces a growing island.
- NTM-island-induced $\delta B_{2/1}$ grows on the resistive time scale.¹⁹

¹⁹Z. Chang , J.D. Callen, E.D. Fredrickson, R.V. Budny, C.C. Hegna, K.M. McGuire, M.C. Zarnstorff, and TFTR group, "Observation of Nonlinear Pressure-Gradient-Driven Tearing Modes," Phys. Rev. Lett. **74**, 4663 (1995).

Figure 5: First two ELM seeds are too small, last one causes growing NTM.

RMPs Bifurcate Pedestal Into ELM-Suppressed State^{20,21}

²⁰C. Paz-Soldan et al., "Observation of a Multimode Plasma Response and its Relationship to Density Pumpout and Edge-Localized Mode Suppression," Phys. Rev. Lett. **114**, 105001 (2015).

²¹R. Nazikian et al., "Pedestal Bifurcation and Resonant Field Penetration at the Threshold of Edge-Localized Mode Suppression in the DIII-D Tokamak," Phys. Rev. Lett. **114**, 105002 (2015).

• At \gtrsim 4707 ms

inner wall magnetic resonant field $\delta \vec{B}_{\rm pol}^{\rm 3D}$ jumps up, and "simultaneously" the CER-inferred ($\Delta t \simeq 5$ ms) edge rotation increases,

because electric field E_{ρ} increases in response to non-ambipolar electron flux caused by increased $\delta \vec{B}_{\rm pol}^{\rm 3D}$.

• From 4730–4810 ms

rotation, $\delta \vec{B}_{\rm pol}^{\rm 3D}$ and T_e gradient are about constant, but no magnetic islands form with widths >0.5 cm.

Figure 6: Edge rotation and resonant n = 2 RMPinduced $\delta \vec{B}_{pol}^{3D}$ bifurcate into ELM-suppressed state at $\gtrsim 4707$ ms for Fig. 2 case in Ref. 21.

Possible Interpretation Of 3-D Resonant Field Effects

- <u>Field lines reconnect</u> in thin δ_{η} layers at rational surfaces, and lead to density pump-out throughout pedestal $\propto (\delta B_{\rho m/n}^{\rm plasma})^2$.
- <u>Strong penetration</u> occurs for large $\delta B_{\rho m/n}^{
 m vac}$, small $\omega_{\perp e}$ at q = m/n.
- <u>Bifurcation</u> to penetrated state can occur in $\tau_{e\zeta}^{3D} \sim 1/\mu_{e\zeta}^{3D} \lesssim ms$.
- Induced nascent magnetic island can be unstable and grow if $\delta_{\eta} \gtrsim w_{\rm crit} \simeq 1.3 \, w_{\rm ib}$ — large enough resistive layer width, or $w_{\rm init} \gtrsim w_{\rm crit} \simeq 1.3 \, w_{\rm ib}$ — large enough seed island, <u>BUT</u>, if $w_{\rm init} \sim \delta_{\eta} < w_{\rm crit}$, RMPs just continuously drive stable $w \sim \delta_{\eta}$ islands.
- Region affected can expand radially away from δ_{η} , w_{init} at q = m/nwith growing $\delta B_{\rho m/n}^{\text{plasma}} \propto w(t)^2$ if island is growing, but with ~ constant $\delta B_{\rho m/n}^{\text{plasma}}$ on rational surface if driven max{w} ~ δ_{η} .
- Radial plasma transport in possibly radially expanding region is effectively infinite within growing island region which causes flat T_e profile, but may be caused by flutter, 3-D or ω_{ExB} affected transport if max{w} $\sim \delta_{\eta}$.

FMR Is Important Process For Tokamak Plasmas

- Major programmatic thrust is disruption control, which requires understanding forced magnetic reconnection (FMR) processes that lead to locked modes via field errors (FEs), NTMs, and ELM suppression via RMPs.
- Analytic-based theory is being developed; it needs to be tested and work with M3D-C1 and NIMROD studies of FMR processes.
- FMR studies are logical next steps for extended MHD codes: study evolution from linear δB^ρ studies into nonlinear island states, begin coping with poloidal and toroidal flow evolution, figure out how to couple extended MHD, kinetic, transport for 3-D effects, provide a target case for unified extended MHD, kinetic, transport models.

Field Errors And RMPs Are Good Paradigm Problems

- m/n = 2/1 field errors (FEs) are good focus for initial FMR studies: low T_e (~ 250 eV) ohmic (OH) plasmas where $S \leq 10^7$ where causes δ_η to be larger than FLR, FBW effects and modes can grow out of noise, and since 2/1 modes are resonant at about the half radius, the mode coupling effects are likely to be small, plasma pressure is small for OH plasmas so finite β effects are likely small and plasma response to slowly increasing δB^{ρ} (or decreasing n_e) is good test.
- Ultimate tests will be provided by pedestal responses to RMPs: due to significant geometry effects in pedestal near separatrix, finite mode coupling and β'_p effects, significant FLR and FBW effects,
 - multiple m resonant modes present simultaneously,
 - toroidal plasma rotation that varies strongly in radius, and
 - challenge of predicting δB_{ρ} and q_{95} needed for ELM suppression and why no significant magnetic islands are produced.

Some Developments Are Needed For Extended MHD

• General:

identify good cylindrical code case for benchmarking M3D-C1 and NIMROD, identify experiment-based test case and compare to FE experimental results, begin exploring developments needed for modeling RMP effects.

• Theory:

finish developing theory for single resonant magnetic perturbation, begin developing theory of mode coupling and finite β effects on δB^{ρ} .

• M3D-C1 and NIMROD:

begin cylindrical benchmarking case,

begin including poloidal and toroidal flow effects,

explore how to couple extended MHD, kinetic and transport effects.