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Questions to be addressed:

1) Forced magnetic reconnection (FMR) issues for tokamaks?

2) Why are they important at present and in ITER?, and

3) What could CEMM do to resolve these issues?

Outline:

• Forced magnetic reconnection status, issues for tokamaks

• Resonant 3-D effects—reconnection, penetration, islands, transport

• Examples of resonant 3-D effects in DIII-D:

FE — penetration of δ ~B
3D

, spontaneous island forms, locked mode grows;

NTMs — require seed island, then island grows on resistive time scale;

RMPs — penetrate, transport increases at pedestal top without large islands.

• Suggested paradigm problems (FEs, RMPs), issues for CEMM
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Present Theory Of Forced Magnetic Reconnection (FMR)

• The forced magnetic reconnection problem involves study of the
response of a magnetized plasma to an externally-imposed resonant field,

reconnection of magnetic field lines at the resonant surface, and

resultant possible bifurcation into a magnetic island topology, mode locking.

• Original theory1 of dynamics of “Taylor problem” of forced mag-
netic reconnection was developed for sheared slab magnetic field:

current sheet forms at resonant surface on shear Alfvén time scale τA,

resistive reconnection forms magnetic island on τ
2/3
A τ

1/3
R = τA S

1/3 time scale,

magnetic island grows to width determined by fully penetrated resonant field.

• Determining effect of forced magnetic reconnection by a 2/1 field
error (FE) on an ohmic tokamak plasma uses a cylindrical model:2

flow-screening prevents reconnection at rational surface,2

strong field error bifurcates solution to magnetic island topology,

diamagnetic flow effects influence error field required for bifurcation,3

critical flow in tokamaks is the electron flow in ⊥ (bi-normal) direction.4,5

1T.S. Hahm and R.M. Kulsrud, “Forced magnetic reconnection,” Phys. Fluids 28, 2412 (1985).
2R. Fitpatrick, “Interaction of tearing modes with external structures in cylindrical geometry,” Nucl. Fusion 33, 1049 (1993).
3A.J. Cole and R. Fitzpatrick, “Drift-magnetohyrodynamical model of error-field penetration in tokamak plasmas,” Phys. Plasmas 13, 032503 (2006).
4E. Nardon, P. Tamain, M. Bécoulet, G. Huysmans and F.L. Waelbroeck, “Quasi-linear MHD modelling of H-mode plasma response to resonant

magnetic perturbations,” Nucl. Fusion 50, 034002 (2010).
5F.L. Waelbroeck, I. Joseph, E. Nardon, M. Bècoulet and R. Fitzpatrick, “Role of singular layers in the plasma response to resonant magnetic

perturbations,” Nucl. Fusion 52, 074004 (2012).
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FMR Studies Are More Complicated In Tokamak Plasmas

ANALYTIC THEORY:

• Dynamical theory is needed to address temporal development and
dynamical accessibility — not just time-asymptotic states.2,5

• Both electron and ion diamagnetic equilibrium flows are needed.

• Full tokamak geometry is needed, particularly in edge pedestal re-
gion where resonant magnetic perturbations (RMPs) are applied.

• Singular resistive reconnection layer widths δη are much smaller.

• Toroidal torques competing with resonant field induced torques are
different at edge — ion orbit and c-x losses, different transport.

EXTENDED MHD CODE MODELING:

•M3D-C1 and NIMROD mainly calculate linear response δBρ
n now.

• FMR needs toroidal and poloidal flows, nonlinear evolution.
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Logic Of FMR Theory Involves Some Key Elements

• Equilibrium axisymmetric magnetic field is basis of geometry.

• Local helical field geometry is useful near rational surface.

• Faraday’s law with two-fluid Ohm’s law for ~E yields equation for
radial magnetic field perturbation induced by a single RMP.

•Magnetostatic two-fluid momentum equation that takes account
of compressional Alfvén wave constraints is useful.

• Linear and nonlinear (island) responses to RMPs are important.

• Comprehensive plasma toroidal torque balance is needed.
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Faraday’s Law Yields Equation For Radial Field
Induced By Single 3-D Resonant Perturbation

• A two-fluid Ohm’s law will be used for electric field ~E = ~E0 +δ ~E:

~E0 = −~V 0× ~B0 +
[
~Re0 + ~J0× ~B0 − ~∇pe0 − ~∇·↔πe0

]
/ne0e = −~∇Φ0(ψp), (1)

δ ~E = − ~V 0×δ ~B − δ~V× ~B0 + δ(~Re/nee) +
[
δ ~J× ~B0 + ~J0×δ ~B − ~∇δpe − ~∇· δ↔πe

]
/ne0e

− (δne/ne0)
[
~J0× ~B0 − ~∇pe0 − ~∇·↔πe0

]
/ne0e. (2)

• Neglecting O{|xq′/q|} corrections, helical component of δ ~E is

~Bhel · δ ~E = −Ωα
e ψ
′
p(~∇ρ · δ ~B)+(q−m/n)

I

qR2
ψ′p(~∇ρ · δ~V e)+η B0 δJ‖−

~B0 · [~∇δpe + ~∇· δ↔πe]
ne0e

. (3)

• The cross helical electron flow rotation frequency here is
[α ≡ ζ − (m/n) θ is helical angle coordinate and dψp/dρ = RBp]

Ωα
e ≡ ~∇α·~V e0 = −

(
dΦ0

dψp

−
1

ne0e

dpe0

dψp

−
0.71

e

dTe0

dψp

)
=

1

RBp

(
Eρ +

1

ne0e

dpe0

dρ
+

0.71

e

dTe0

dρ

)
, (4)

which is more complete than the electron ⊥ flow frequency ω⊥e that is usually

cited5 and used in forced magnetic reconnection studies, because this Ωα
e

includes the effects of the electron thermal force induced by the usually

neglected radial electron temperature gradient in ~Re ≡ neeη ~J − 0.71ne~∇‖Te.
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Faraday’s Law Yields Equation For Radial Field
Induced By Single Resonant 3-D Perturbation (cont’d)

• Final evolution equation for radial field perturbation δB̂ρ(ρ, t) is

∂

∂t

∣∣∣∣
ψp

δB̂ρ − inΩα
e δB̂

ρ −
η

µ0

∇2
δB̂ρ ' ik‖(x)Bt0 δV̂

ρ
e , δB̂ρ ≡ −

i kθ δψ̂

R0

, (5)

which is an inhomogeneous parabolic (diffusive) partial differential equation

in ρ, t for either the FSA radial magnetic field δB̂ρ or associated flux δψ̂.

• The magnetic field diffusion is caused by the plasma resistivity:

ηBt0 δJ‖ ≡
〈
einα

B0 η δJ‖

ψ′p

〉
'

η

µ0

B2
t0

Iψ′p

[
1

ε

∂

∂ρ

(
ε gρρ

∂ δψ̂

∂ρ

)
−m2 gθθ δψ̂

]
≡

η

µ0

q∇2
δψ̂

ρR0

. (6)

• Right side of Eq. (5) represents advection of δ ~B with flow δ~V :

i k‖(x)Bt0 δV̂
ρ
e ≡

〈
einα ( ~B0 ·~∇) (~∇ρ · δ ~̂Ve)

〉
. (7)

• Solutions of Eq. (5) for δB̂ρ(ρ, t) have the following properties:

1) away from the rational surface, advection of δB̂ρ with δV̂ ρ to lowest order;

2) when Ωα
e is small, magnetic reconnection occurs in singular layer of width δη;

3) some radial diffusion of δB̂ρ is induced at all ρ =⇒ δJ‖, flutter transport.
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Magnetostatic Two-fluid Momentum Equation Is Useful

•Magnetostatic quasi-equilibrium of tokamak plasma is governed by

MHD force balance after compressional Alfvén waves have been eliminated;

the appropriate annihilator is ~B·~∇× which yields a vorticity equation.

• General magnetostatic MHD quasi-static force balance equation is

− ~∇ ·
[
~B×

ρm

B2

(
∂~V

∂t
+ (~V ·~∇)~V +

~∇·
↔
Π

ρm

)]
= ~B · ~∇

(
J‖

B

)
+ ~∇ ·

(
~B×~∇P
B2

)
. (8)

• Using δ~V ≡ (1/B2) ~B×~∇δφ and the gyroviscous cancellation due

to ~∇·
↔
Π∧ , the lowest order linearized vorticity equation is6

~∇ ·
[
ρm

B2
0

(
∂

∂t
+ Ωα

E

∂

∂α

)
~∇⊥δφ

]
= ~B0 · ~∇

(
δJ‖

B0

)
+ δ ~B · ~∇

(
J‖0

B0

)
+ ~∇ ·

(
~B0×~∇δP
B2

0

)
, (9)

Ωα
E ≡ ~∇α ·~E0× ~B0/B

2
0 ' − dΦ0/dψp = Eρ/RBp is ~E0× ~B0 ⊥ rotation frequency.

• Eq. (9) can be used to determine usual7,8 ∆′, plus δ~V
ρ
, ∆′layer, ∆′ext.

6See Eq. (19) in S.E. Kruger, C.C. Hegna, and J.D. Callen, “Generalized reduced magnetohydrodynamic equations,” Phys. Plasmas 5, 4169 (1998).
7H.P. Furth, J. Killeen and M.N. Rosenbluth, “Finite-Resistivity Instabilities of a Sheet Pinch,” Phys. Fluids 6, 459 (1963).
8C.C. Hegna and J.D. Callen, “Stability of tearing modes in tokamak plasmas,” Phys. Plasmas 1, 2308 (1994).
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Response To Imposed Resonant δB̂ρ→ δBρ Is Dynamic

• 3-D magnetic perturbation near
a rational surface is governed by
∂δBρ

∂t
− iΩα

e δBρ +
η

µ0

∇2
δBρ = ( ~B0·~∇)δVρe ;

in τAp∼10−6s sheet current forms at ρm/n,

with minimal reconnection if Ωα
e is large,

but if |Ωα
e | <∼ 104/s, at t∼10−4 – 10−3 s

δBρ “penetrates” in a resistive layer δη.

• When w ≡ 4(δBρLS/kθB0)
1/2>δη,

the island width w is governed by
modified Rutherford eq. (MRE):

dw

dt
'

η

µ0

[
∆′ +

√
ε βp

w

LS

LP
+ ∆′ext −

p δJ‖

w3

]
;

“drives” are ∼ βp/LP for NTMs or
∆′ext∝ 2/LδB > 0 from applied RMPs,

but damped by ∆′ ' −2m and FLR,

FBW ion polarization currents (p δJ‖).
Figure 1: Schematic of δBplasma

ρm/n and field

lines in vicinity of rational surface.
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3-D Fields δ ~B
3D

Introduce Toroidal Torques On Plasma

• Toroidally symmetric magnetic fields in tokamaks =⇒ no torques:

NBI etc. torques are balanced by Reynolds stress torque from fluctuations.9

• 3-D fields break symmetry and introduce toroidal torques:9

toroidal variation of | ~B| produces ion neoclassical toroidal viscosity (NTV)10,11

=⇒ counter-current torque 〈R~̂eζ ·~∇·
↔
π‖i〉 due to ripple, field errors, RMPs;

3-D fields resonant on q = m/n rational surfaces induce Maxwell stress
=⇒ co-current torque 〈R~̂eζ · δJ‖×δBρ〉 due to 3-D electron collision effects;12

changes in fluctuation-induced Reynolds stress torques due to 3-D fields
are usually most influenced by changes in ~E× ~B shear flow on zonal flows.13

• Approximate toroidal torque balance in pedestal is thus9.11

IΩ

∂ Ωt

∂t
= − 〈R~̂eζ ·~∇·

↔
π‖i〉︸ ︷︷ ︸

NTV

+ 〈R~̂eζ · δJ‖×δBρ〉︸ ︷︷ ︸
Maxwell stress

−
1

V ′
∂

∂ρ
(V ′Πiρζ)︸ ︷︷ ︸

Reynolds stress

+ 〈R~̂eζ · ~Sp〉︸ ︷︷ ︸
mom. sources

,

IΩ ≡ mini〈R2〉 is moment of inertia and Ωt is rotation frequency of plasma.

9J.D. Callen, A.J. Cole, & C.C. Hegna, “Toroidal flow and radial particle flux in tok. plasmas,” Phys. Pl. 16, 082504 (2009); Errat. 20, 069901 (2013).
10K.C. Shaing, “Magnetohydrodynamic-activity-induced toroidal momentum dissipation,” Phys. Plasmas 10, 1443 (2005).
11J.D. Callen, topical review paper on “Effects of 3D Magnetic Perturbations on Toroidal Plasmas,” Nucl. Fusion 51, 094026 (2011).
12J.D. Callen, A.J. Cole & C.C. Hegna, “Resonant-magnetic-perturbation-induced plasma transport in H-mode pedestals,” Phys. Pl. 19, 112505 (2012).
13M. Leconte et al., “Drive of a mesocale Vortex-Flow pattern by coupling to Zonal-Flows in presence of RMPs,” H-mode 2015 workshop, Garching.
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Plasma Toroidal Rotation Frequency Ωt Depends On Eρ

• Radial force balance of tokamak plasma yields definition of Ωt:

0 = ~∇ρ · [ni0qi(~V i× ~B0−~∇Φ0)−~∇pi0] =⇒ Ωt ≡ R~̂eζ ·~V i '
1

RBp

[
Eρ −

1

(ni0e)

dpi0

dρ

]
+ qVi ·~∇θ.

• Since Ωt depends on the radial electric field Eρ ≡ − dΦ0/dρ, the
torque balance is equivalently an equation for Eρ and net torques

Tsζ ≡ R~̂eζ · ~Force s = −RBpnsqsVsρ are due to non-ambipolar fluxes:

IΩ

∂ Ωt

∂t
=
∑

sTsζ(Ωt) = − RBp

∑
sqsΓ

na
s (Eρ) =⇒ 0 yields ambipolar Eρ .

• The primary non-ambipolar (na) fluxes in the pedestal are9,11

ion due to NTV TNTV
iζ ≡ −〈R~̂eζ ·~∇·

↔
π‖i〉 ' − IΩ µi‖(δB‖/B0)

2(Ωt − Ω∗i),

electrons, TMaxwell
eζ ≡〈R~̂eζ · δJ‖×δBρ 〉 '− IΩ µeζ(δBρ/B0)

2ω⊥e, ω⊥e ≡ ~Ve0 ·~∇α,

ion flux due to fluctuation-induced Reynolds stress =⇒ radial diffusion of Ωt,

ion flux due to ion orbit losses near separatrix 〈R~̂eζ · ~Sp〉 ' −RBpJ
orbit loss
r .

• Ion na fluxes decrease Ωt, Eρ, while electron fluxes increase them.

• Net ambipolar density flux is9 Γ ≡ Γamb
e +Γna

e (Eρ) = Γamb
i +Γna

i (Eρ).
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Non-ambipolar Ion & Electron Fluxes Are Equal At Eamb
ρ

• Eρ needed14,15 for ambipolar density flux depends on κ ∝ 〈δB̂ρ〉2:
κ� 1 → ion root, κ ∼ 1 → ambipolar root, κ� 1 → electron root.

14J.D. Callen, C.C. Hegna and A.J. Cole, “Magnetic-flutter-induced pedestal plasma transport,” Nucl. Fusion 53, 113015 (2013).
15J.D. Callen, “Pedestal Structure without and with 3D Fields,” Contrib. Plasma Phys. 54, 484 (2014).

Γ

EρEρ EρEρ
sym amb flutt

. ..Γe
flutt (Eρ

amb)

Γe
flutt Γiκ=1

κ=1/3

κ=3

ion
root

electron
root

ambipolar
root

symna

0
.

.
κ=1

Figure 2: Dependence of electron and ion non-ambipolar density fluxes on the radial

electric field. The dotted lines indicate the radial electric field and ambipolar

density flux Γflutt
e (Eamb

ρ ) at ambipolar root Eamb
ρ for14 κ ≡ (Ti/Te)D

flutt
et /D

na
i = 1.
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Torque Balance Yields Bifurcation To 3-D δ ~B Penetration

• Toroidal torques are exerted on the plasma by all non-ambipolar
(Γna

s ) density fluxes,9 including inertial ones (ψ′p ≡ dψp/dρ = RBp):

mini〈R2〉
∂Ωt

∂t
= eψ′p

[
Γna
e (Eρ)− Γna

i (Eρ)
]

+ · · · , Γ3D
e (Eρ) ∝ ω⊥e |δBplasma

ρm/n |
2 ∼

ω⊥e |δBvac
ρm/n|2

∆′ 2 + (ω⊥eτδ)2
.

• Torque balance is in equilibrium when non-ambipolar fluxes of
electrons Γna

e (Eρ) and ions Γna
i (Eρ) are equal =⇒ ambipolar Eρ.

• Time scale for Ωt(Eρ) to reach equilibrium is estimated by taking
account of the radial force balance equation, Ωt = Eρ/RBp + · · · :
mini〈R2〉

∂Ωt

∂t
= eΓ3D

e (Eρ)ψ
′
p + · · · = −mini µ

3D
eζ 〈R

2〉ω⊥e + · · · , in which (flutter model12)

µ3D
eζ ≡ D3D

et /%
2
Sp ∼ |δB

plasma
ρm/n |

2, %Sp ≡ cS/ωcip is the ion sound gyroradius in poloidal field Bp,

ω⊥e ≡ [Eρ+(dpe/dρ+0.71ne dTe/dρ)/nee]/RBp is perpendicular electron flow frequency.5

For 3-D RMP effects12 D3D
et
>∼ 0.2 m2/s, %Sp ∼ 0.02 m =⇒ τ 3D

eζ ∼ 1/µ3D
eζ
<∼ 2 ms.

• Thus, requirements and time scale for 3-D field penetration are:

for penetration of 3-D field at rational surface |Γna
e (Eρ)| > |Γna

i (Eρ)|, and

time scale for bifurcation to small |ω⊥e| state may be τ 3D
eζ ∼ 1/µ3D

eζ
<∼ ms.
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Theory: What Can Happen After 3-D Field Penetration?

• Reconnection: Penetrated magnetic field lines in thin resistive
layer12 δη ' ctLS/kθλe (' 2 mm, ct ' 3, RMPs) form a nascent
magnetic island of width w ∼ δη around the rational surface.

• Does this island grow? There are two possibilities (next viewgraph):

if δη or initial “seed island” of width winit ' 4
√
δBplasma

ρm/n (ρm/n)LS/kθBt0 is larger

than the ion banana width parameter wib ≡
√
ε %θi, an island can grow, BUT,

if δη < wib, island width is limited to ∼ δη (∆′<0, ion polarization currents

damp), and δBplasma
ρm/n perturbation decays unless it is driven continuously.

• Evolution and transport: Then, m/n magnetic field perturbation

δBplasma
ρm/n expands radially away from the initial ∼ δη or winit width:

growing island (max{δη,winit} > wcrit) — width grows on resistive time scale,

and radial transport within expanding island region is effectively infinite,

which causes the Te profile to be flat within the island;

limited island (w∼δη<wcrit) — driven δBplasma
ρm/n remains constant at q=m/n,

but may spread radially from δη region, and induce additional transport.
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Island Growth Requires Layer Width δη OR Initial

Island Width winit>banana width parameter wib
16,17

16R.J. La Haye, R.J. G.L. Jackson, T.C. Luce, K.E.J. Olofsson, W.M. Solomon and F. Turco, “Insights Into m/n=2/1 Tearing Mode Stability Based
on Initial Island Growth Rate in DIII-D ITER Baseline Scenario Discharges,” paper O5.134 at 41st EPS Conference Berlin 2014.

17R.J. La Haye, review paper on “Neoclassical tearing modes and their control,” Phys. Plasmas 13, 055501 (2006).

• Island growth rate dw/dt

is governed by the Modified

Rutherford Equation (MRE)

dw/dt = · · · , which is

negative (damping) if island

width w<wcrit ' 1.3 wib due

to ∆′< 0 and FLR, FBW po-

larization current effects,

but can be positive (growing)

for ∆′ > 0 tearing modes or

NTMs if w>wcrit ' 1.3 wib.

• Growth of w occurs if

layer width δη >∼ wcrit OR

initial width winit
>∼ wcrit.

growth

damping

NTM

RMP

FE

dW
 dt

δη/3wib

Figure 3: MRE dw/dt indicates island growth

for14 w >∼ wcrit ' 0.43×3 wib ' 1.3 wib, oth-

erwise damping. Red bars are normalized

layer widths δη/3 wib for DIII-D 3-D effects.
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Resonant Field Error (FE)18 Can Grow Out Of Noise

• Low ne threshold for δBρ 2/1 penetration, |Γ3D
e (Eρ)| > |Γequil

i (Eρ)|.
• 2/1 mode “grows out of noise” because δη'3.3 cm > wcrit' 1 cm.

• 2/1 locked mode δBρ 2/1 grows on the resistive time scale.

18R.J. La Haye, C. Paz-Soldan and E.J. Strait, “Lack of dependence on resonant error field of locked mode island size in ohmic plasmas in DIII-D,”
Nucl. Fusion 55, 023011 (2015).
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Figure 4: Locked mode (III: detected by edge saddle loops, ESL) is induced by

decreasing ne, then grows out of noise spontaneously on resistive time scale.
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Neoclassical Tearing Mode (NTM)19,17 Needs Big Seed

• Plasma is metastable; a seed island is required17,19 to excite NTM.

• If seed is too small, it decays because δη∼0.5 cm < wcrit∼1.4 cm;
but if large enough (i.e., winit > wcrit), it induces a growing island.

• NTM-island-induced δB2/1 grows on the resistive time scale.19

19Z. Chang , J.D. Callen, E.D. Fredrickson, R.V. Budny, C.C. Hegna, K.M. McGuire, M.C. Zarnstorff, and TFTR group, “Observation of Nonlinear
Pressure-Gradient-Driven Tearing Modes,” Phys. Rev. Lett. 74, 4663 (1995).

1549648
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(8.5     11 kHz �ltered to 2/1 frequency)

Figure 5: First two ELM seeds are too small, last one causes growing NTM.
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RMPs Bifurcate Pedestal Into ELM-Suppressed State20,21

20C. Paz-Soldan et al., ”Observation of a Multimode Plasma Response and its Relationship to Density Pumpout and Edge-Localized Mode Suppression,”
Phys. Rev. Lett. 114, 105001 (2015).

21R. Nazikian et al., “Pedestal Bifurcation and Resonant Field Penetration at the Threshold of Edge-Localized Mode Suppression in the DIII-D
Tokamak,” Phys. Rev. Lett. 114, 105002 (2015).

• At >∼ 4707 ms

inner wall magnetic reso-

nant field δ ~B
3D

pol jumps up,

and “simultaneously” the
CER-inferred (∆t ' 5 ms)
edge rotation increases,

because electric field Eρ
increases in response to
non-ambipolar electron flux

caused by increased δ ~B
3D

pol.

• From 4730–4810 ms

rotation, δ ~B
3D

pol and Te gra-

dient are about constant,

but no magnetic islands
form with widths >0.5 cm.

      

15

      

0

20

40

4650 4700 4750 4800 4850 4900
-1

3

Time [ms]

B_pol (G)

Edge carbon (km/s)

D-alpha
158115

Figure 6: Edge rotation and resonant n=2 RMP-

induced δ ~B
3D

pol bifurcate into ELM-suppressed

state at >∼ 4707 ms for Fig. 2 case in Ref. 21.
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Possible Interpretation Of 3-D Resonant Field Effects

• Field lines reconnect in thin δη layers at rational surfaces, and

lead to density pump-out throughout pedestal ∝ (δBplasma
ρm/n )2.

• Strong penetration occurs for large δBvac
ρm/n, small ω⊥e at q=m/n.

• Bifurcation to penetrated state can occur in τ 3D
eζ ∼1/µ3D

eζ
<∼ ms.

• Induced nascent magnetic island can be unstable and grow if

δη >∼ wcrit ' 1.3 wib — large enough resistive layer width, or

winit
>∼ wcrit ' 1.3 wib — large enough seed island,

BUT, if winit ∼ δη < wcrit, RMPs just continuously drive stable w ∼ δη islands.

• Region affected can expand radially away from δη,winit at q=m/n

with growing δBplasma
ρm/n ∝ w(t)2 if island is growing, but

with ∼ constant δBplasma
ρm/n on rational surface if driven max{w} ∼ δη.

• Radial plasma transport in possibly radially expanding region is

effectively infinite within growing island region which causes flat Te profile, but

may be caused by flutter, 3-D or ωExB affected transport if max{w} ∼ δη.
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FMR Is Important Process For Tokamak Plasmas

•Major programmatic thrust is disruption control, which requires

understanding forced magnetic reconnection (FMR) processes that lead to

locked modes via field errors (FEs), NTMs, and ELM suppression via RMPs.

• Analytic-based theory is being developed; it needs to be tested
and work with M3D-C1 and NIMROD studies of FMR processes.

• FMR studies are logical next steps for extended MHD codes:

study evolution from linear δBρ studies into nonlinear island states,

begin coping with poloidal and toroidal flow evolution,

figure out how to couple extended MHD, kinetic, transport for 3-D effects,

provide a target case for unified extended MHD, kinetic, transport models.
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Field Errors And RMPs Are Good Paradigm Problems

•m/n = 2/1 field errors (FEs) are good focus for initial FMR studies:

low Te (∼ 250 eV) ohmic (OH) plasmas where S <∼ 107 where causes δη to be

larger than FLR, FBW effects and modes can grow out of noise, and

since 2/1 modes are resonant at about the half radius,

the mode coupling effects are likely to be small,

plasma pressure is small for OH plasmas so finite β effects are likely small and

plasma response to slowly increasing δBρ (or decreasing ne) is good test.

• Ultimate tests will be provided by pedestal responses to RMPs:

due to significant geometry effects in pedestal near separatrix,

finite mode coupling and β′p effects,

significant FLR and FBW effects,

multiple m resonant modes present simultaneously,

toroidal plasma rotation that varies strongly in radius, and

challenge of predicting δBρ and q95 needed for ELM suppression

and why no significant magnetic islands are produced.
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Some Developments Are Needed For Extended MHD

• General:

identify good cylindrical code case for benchmarking M3D-C1 and NIMROD,

identify experiment-based test case and compare to FE experimental results,

begin exploring developments needed for modeling RMP effects.

• Theory:

finish developing theory for single resonant magnetic perturbation,

begin developing theory of mode coupling and finite β effects on δBρ.

•M3D-C1 and NIMROD:

begin cylindrical benchmarking case,

begin including poloidal and toroidal flow effects,

explore how to couple extended MHD, kinetic and transport effects.
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