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•  External 3D magnetic perturbations are routinely used to 
mitigate or to suppress edge-localized modes (ELMs) 

•  Early theoretical work predicted that 
–  Vacuum fields would produce overlapping islands in edge 
–  Stochastic transport would inhibit pedestal growth 

•  Recent results inconsistent with formation of stochastic layer 
–  Electron temperature gradient not observed to decrease 
–  Electron rotation predicted to screen vacuum islands in edge 

•  Current theory requires on island opening only at pedestal top 
–  Observed that zero-crossing of electron rotation aligns with rational 

surface at top of pedestal during suppression 
–  Theory predicts 

•  Low rotation permits penetration of resonant field 
•  Island arrests growth of pedestal height and width 

Theory of ELM suppression by 3D fields still incomplete 
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•  Comprehensive model needed for pedestal evolution across 
ELM-suppression bifurcation 
–  Extended MHD 

•  Time-dependent (for evolution) 
•  Nonlinear (for island saturation) 
•  Two-fluid (for electron rotation physics) 

–  Appropriate transport model, particularly for the momentum 

•  Current research focuses on individual components of model 
•  Here, we explore how rotation profiles affect single-fluid  

M3D-C1 plasma response, including 
–  Resonant field 
–  Non-resonant field 
–  Observable quantities 
–  Quasilinear electromagnetic torque 

Extended-MHD analysis can inform this theory 
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•  Three-dimensional 
•  Includes resistivity, density diffusivity, viscosity, & thermal conductivity 
•  Two-fluid effects (optional) 
•  Linear and nonlinear modes 
•  High-order, C1 continuous finite element representation 
•  Mesh adapted to input equilibrium 

M3D-C1 [1] solves the extended MHD equations 

[1] S. C. Jardin, et al., Comput. Sci. Discovery 5, 014002 (2012).  
[2] N.M. Ferraro et al., Phys. Plasmas 23, 056114 (2016) 

A different set of equations is solved in each mesh
region. In the plasma region, the full two-fluid model is
implemented
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The implementation of the parallel and ion gyroviscosity, Pki
and P!

i , is described in more detail in Ref. 13, and these
terms are not included in the results presented here. Note
that the open field-line region between the last-closed flux

surface (LCFS) and the resistive wall, where the plasma has
low density and high resistivity, is also treated using these
equations.

The resistive wall region only includes the resistive
Faraday’s law
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In the external vacuum region, the only constraint is that the
field remains current-free

r& ~Bp ¼ 0 (12)

(M3D-C1 uses a vector potential formulation of the magnetic
field, so r " ~B ¼ 0 is satisfied manifestly.)

Two types of time-steps are implemented in M3D-C1: a
split, semi-implicit method, in which the fluid velocity and
magnetic field are advanced separately, and a h-implicit
method in which all variables are advanced together.13 In
both cases, the magnetic field in the wall and external vac-
uum region is advanced simultaneously with the magnetic
field in the plasma; in fact, there is no distinction between
these fields in the code.

Although the~v, p, pe, and ni fields extend into the resis-
tive wall and external vacuum region, their values in these
regions do not enter into the dynamical equations and there-
fore do not affect the solution. In M3D-C1, these fields are
set to a constant value in these regions, and boundary condi-
tions on these fields are set at the interface between the resis-
tive wall region and the plasma region. In the calculations
presented here, no-slip, no-normal-flow (~v ¼ 0) conditions
are enforced on the velocity, and uniform Dirichlet condi-
tions are set on ni, p, and pe. There is no boundary condition
on ~Bp

at this interface; rather, the boundary condition that ~Bp

is constant is enforced on the computational domain bound-
ary (the boundary enclosing the external vacuum region).

III. RESISTIVE WALL MODE

In this section, we validate the implementation of the
resistive wall model in M3D-C1 by comparing the calculated
linear growth rate of a resistive wall mode in a straight cylin-
der against an analytic solution derived by Liu et al.14 The
equilibrium is given by

JzðrÞ ¼
J0 r < r0

0 r > r0;

'
(13)

BzðrÞ ¼ B0; (14)

qðrÞ ¼ q0 r < r0

0 r > r0;

'
(15)

with no equilibrium rotation, where z is the axial coordinate.
The perturbed fields are taken to have the form

d~B ¼ rw& ẑ; (16)

d~v ¼ r/& ẑ; (17)

w ¼ ~wðrÞeiðmh'nz=R0Þþct; (18)

FIG. 1. A mesh in which the resistive wall region is an approximation of the
DIII-D first wall is shown. The magenta line shows the magnetic separatrix.
The simulation domain boundary, vacuum-wall boundary, and wall-plasma
boundary are shown in purple, green, and blue, respectively. Right: a smaller
area of the mesh near the lower divertor, showing the discretization of the
resistive wall region.
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d~v ¼ r/& ẑ; (17)
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field remains current-free
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(M3D-C1 uses a vector potential formulation of the magnetic
field, so r " ~B ¼ 0 is satisfied manifestly.)

Two types of time-steps are implemented in M3D-C1: a
split, semi-implicit method, in which the fluid velocity and
magnetic field are advanced separately, and a h-implicit
method in which all variables are advanced together.13 In
both cases, the magnetic field in the wall and external vac-
uum region is advanced simultaneously with the magnetic
field in the plasma; in fact, there is no distinction between
these fields in the code.

Although the~v, p, pe, and ni fields extend into the resis-
tive wall and external vacuum region, their values in these
regions do not enter into the dynamical equations and there-
fore do not affect the solution. In M3D-C1, these fields are
set to a constant value in these regions, and boundary condi-
tions on these fields are set at the interface between the resis-
tive wall region and the plasma region. In the calculations
presented here, no-slip, no-normal-flow (~v ¼ 0) conditions
are enforced on the velocity, and uniform Dirichlet condi-
tions are set on ni, p, and pe. There is no boundary condition
on ~Bp

at this interface; rather, the boundary condition that ~Bp

is constant is enforced on the computational domain bound-
ary (the boundary enclosing the external vacuum region).
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In this section, we validate the implementation of the
resistive wall model in M3D-C1 by comparing the calculated
linear growth rate of a resistive wall mode in a straight cylin-
der against an analytic solution derived by Liu et al.14 The
equilibrium is given by

JzðrÞ ¼
J0 r < r0

0 r > r0;

'
(13)

BzðrÞ ¼ B0; (14)

qðrÞ ¼ q0 r < r0

0 r > r0;

'
(15)

with no equilibrium rotation, where z is the axial coordinate.
The perturbed fields are taken to have the form
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FIG. 1. A mesh in which the resistive wall region is an approximation of the
DIII-D first wall is shown. The magenta line shows the magnetic separatrix.
The simulation domain boundary, vacuum-wall boundary, and wall-plasma
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(M3D-C1 uses a vector potential formulation of the magnetic
field, so r " ~B ¼ 0 is satisfied manifestly.)
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method in which all variables are advanced together.13 In
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field in the plasma; in fact, there is no distinction between
these fields in the code.
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M3D-C1 allows for extended MHD simulations of the 
plasma response to applied 3D fields 
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Fourier spectrum provides insight to plasma response 

•  Fourier field decomposition: 

•  These SURFMN-like diagrams show magnitude of Fourier components 
–  m -  Discrete poloidal harmonic on x-axis 

–  Ψ -  Continuous normalized poloidal flux on y-axis (radial variable) 
–  Resonant m=nq line 

m=nq 

4

Figure 2: Experimental E⇥B toroidal rotation profile for DIII-D shot 158103 at 3796 ms along with three
model rotation profiles using Eq. 1. All have !0 = 110 krad/s, !1 = �40 krad/s,  

c

=  
z

+ 0.01, and
� = 0.025, while  

z

is varied. The curve with  
z

= 0.915 is a good match to the experimental rotation
profile, while the other two are chosen to have  

z

coincide with a rational surface, namely q = 7/2 at
 = 0.888 and q = 8/2 at  = 0.933. The insert focuses on the edge region with dashed-dotted lines

highlighting these two rational surfaces and zero rotation.

while keeping  
c

=  
z

+ 0.01. Two such model
rotation profiles are shown in Figure 2, one pass-
ing through zero at the  = 0.888 ⇡  7/2 and the
other at  = 0.933 ⇡  8/2. Here, we’ve defined
 

m/n

as the normalized poloidal flux location of the
q = m/n surface, where q is the safety factor and
m is the poloidal mode number. Note that the rota-
tion profile is largely unchanged outside the vicinity
of the zero-crossing.

To examine the e↵ects of the rotation profile on
the plasma response, we’ll consider a Fourier decom-
position of �B, the perturbed magnetic field. In par-
ticular, the radial perturbed field can be decomposed
as

�B
mn

( ) =
(2⇡)2

A

ZZ
�B ·r 
B ·r✓ ei(m✓�n')d✓d', (4)

where A is the area of the flux surface and B is
the equilibrium, axisymmetric magnetic field. The
integral is taken in straight field line coordinates
( , ✓,'), where  is the poloidal flux over 2⇡, ✓ is
poloidal angle, and ' is the toroidal angle.

A. Resonant response

The magnitudes of the resonant magnetic field at
 7/2 and  8/2 as  

z

is varied are shown in Figure
3, where the resonant field is defined as

�Bres

mn

= �B
mn

�
 

m/n

�
. (5)

We include only these responses as the rotation
at any other rational surface is nearly constant
throughout the scan and the change in the reso-
nant response there is negligible. In addition, the
responses for upper and lower I-coil are shown sepa-
rately because the constructive or destructive inter-
ference of the IU and IL responses would introduce
the phasing as a complicating variable in this analy-
sis. As the zero-crossing passes through the rational
surface, the resonant response at that surface gen-
erally peaks. The upper and lower I-coil responses,
however, have two distinct peaks of di↵erent mag-
nitudes. At the q = 7/2 surface, the larger peak
lies where  

z

=  7/2 for both IU and IL. Each
curve, however, is weighted to either side of the ra-
tional surface, with the IU response skewed towards

m=nq 



9 

Plasma response alters perturbed magnetic spectrum 

•  Resonant response at rational surfaces (m=nq) 
–  Screening suppresses 
–  Tearing enhances 

•  Kink response amplifies non-resonant fields with m>nq 

kink 

tearing 

screening 

m=nq m=nq 
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Rotation scan 
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•  Rotation profile changes during 
ELM suppression 
–  Zero-crossing of ExB and/or 

electron rotation often aligns 
with rational surface during 
ELM suppression 

–  Generally leads to increased 
tearing drive 

•  Single-fluid rotation profile 
affects verification & validation 
with external magnetics 
–  M3D-C1 w/ ExB rotation agrees 

better with data 
–  M3D-C1 w/ carbon toroidal 

rotation agrees better with 
MARS-F results with same 
rotation 

q=7/2 q=8/2 

Past experiments & simulations motivate rotation scan 
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•  DIII-D ITER-similar shape (ISS) equilibrium  
–  Experimental shape and kinetic profiles 

•  Model rotation profile with convenient parameterization, including 
–  Zero-crossing: Ψz  
–  Width of tanh: ΔΨ (controls shear) 

•  Linear M3D-C1 used to assess effect of rotation on plasma response 

Effect of rotation zero-crossing can be tested with 
systematic variation of model rotation profile 
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Effect of zero-crossing on 
plasma response 
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•  Resonant field amplified when zero-crossing aligns with rational surface 
•  Resonant field peaks for |ω| < 10 krad/s at rational surface 
•  Response almost always screened below vacuum level 
•  Resonant response exhibits fine structure 

–  IU and IL response weighted to opposite sides of surface 
–  Multiple peaks clearly visible at q=8/2 

Low rotation increases resonant response 
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•  Coupling occurs regardless of whether zero-crossing is on 
resonant surface or in between 

•  Near-resonant Fourier components are amplified 
•  Far-off-resonant Fourier components decrease 
•  Appears as streak across m in SURFMN-like diagrams 

Zero-crossing induces broad coupling of Fourier 
components of perturbed magnetic field 

Ψz=0.888 
  q=7/2 δB

m
n
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Zero-crossing induces broad coupling of Fourier 
components of perturbed magnetic field 

Ψz=0.915 

•  Coupling occurs regardless of whether zero-crossing is on 
resonant surface or in between 

•  Near-resonant Fourier components are amplified 
•  Far-off-resonant Fourier components decrease 
•  Appears as streak across m in SURFMN-like diagrams 

δB
m

n
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Zero-crossing induces broad coupling of Fourier 
components of perturbed magnetic field 

Ψz=0.933 
  q=8/2 

•  Coupling occurs regardless of whether zero-crossing is on 
resonant surface or in between 

•  Near-resonant Fourier components are amplified 
•  Far-off-resonant Fourier components decrease 
•  Appears as streak across m in SURFMN-like diagrams 

δB
m

n
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Ψz=0.915 

δB
m
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•  Coupling occurs regardless of whether zero-crossing is on 
resonant surface or in between 

•  Near-resonant Fourier components are amplified 
•  Far-off-resonant Fourier components decrease 
•  Appears as streak across m in SURFMN-like diagrams 

Zero-crossing induces broad coupling of Fourier 
components of perturbed magnetic field 

Ψz=0.915 
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Fourier decomposition of 
parallel current shows near-

resonant nature of mode 

Significant rotation shear 
required to drive mode 

Coupling caused by current induced by mode driven 
at zero-crossing 
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Observability of plasma response 
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•  Magnetic sensors can measure 
poloidal field at low-field side 
(LFS) and high-field side (HFS) 
midplane 

•  HFS signals show 
–  Up to 50% magnitude change 
–  20o - 45o phase shift  

•  Localized around q=7/2 
•  “Permanent” across q=8/2 

•  LFS signals show much smaller 
degree of variation 

Changes to plasma response observable by high-field 
side magnetic probes 

δBZ: Even-parity plasma response 

LFS 
HFS 
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•  Divertor footprint structure 
calculated with coupled: 
–  TRIP3D (field line integration) 
–  MAFOT (invariant manifold) 

•  Simulations show little 
change as zero-crossing is 
varied 

•  Strike point splitting observed 
in experiments may be 
modified by plasma 
response closer to edge 

Divertor footprints are insensitive to these changes 

Ψz=0.931 

Ψz=0.915 
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Quasilinear electromagnetic torque 
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Quasilinear torque density from non-resonant response 
acts to flatten rotation profile 

•  Negative torque inside zero-
crossing decreases positive 
rotation  

•  Positive torque outside zero-
crossing increases negative 
rotation 

•  ELM-suppression hypothesis 
–  Reduced shear destabilizes 

turbulent modes 
–  Increased transport arrests 

growth of pedestal height 
and width 

8

Figure 7: The quasilinear electromagnetic torque
caused by the plasma response to IL with 1 kA of
current for rotation profiles used in the  

z

scan
versus both the zero-crossing location and  . The
dashed line denotes  =  

z

and the dotted lines
denote the q = 7/2 (lower) and q = 8/2 (upper)

rational surfaces.

rent density is shown for the various shear values in
Figure 6. From this, it is clear that increasing ro-
tation shear leads to an increased plasma response
in the vicinity of  

z

, indicating that shear has an
amplifying e↵ect on whatever non-resonant mode
or modes are being driven by the field here. The
response is not directly proportional to the shear,
however, and seems to require the crossing of a
threshold to appear, as suggested by the rapid five-
fold increase in the current from d!/d = �564
krad/s to �1058 krad/s. While the exact nature
of this response remains unclear from this analysis,
this current must be necessary for restoring force
balance in these nonaxisymmetric equilibria with
three-dimensionally perturbed pressures and mag-
netic fields.

C. Quasilinear torque

Thus far we’ve considered the e↵ect that the rota-
tion profile has on the plasma response. It is natural
to consider how this plasma response would then, in
turn, feed back on the rotation through the quasi-
linear electromagnetic torque density, defined as

⌧ ( ) =
⌦
R2r' · (�J⇥ �B)

↵
, (7)

where h· · · i denotes a flux surface average. In Figure
7, we’ve plotted this torque versus  and each  

z

of
the zero-crossing scan of Figure 3. For zero-crossings

Figure 8: The quasilinear electromagnetic torque at
the location of the zero-crossing for the rotation
profiles used in the  

z

scan. The torque induced
by the upper and lower I-coils are shown

separately. The dashed lines denote where  
z

is
coincident with a rational surfaces.

that are not in the vicinity of a rational surface, the
pronounced non-resonant response presented in Sec-
tion III B produces a large torque density localized
near  

z

. The significant negative torque for  <  
z

and positive torque for  >  
z

will act to flatten
the negative gradient of the rotation profile near the
zero-crossing. By reducing the shear, the quasilinear
torque will act to suppress the non-resonant mode
that is driving it. In addition, the reduced rotation
shear could destabilize turbulent modes in the vicin-
ity of the zero-crossing, providing a possible mech-
anism for the limitation of pedestal growth in the
presence applied 3D magnetic perturbation.

The torque profiles change significantly when the
zero-crossing is in the vicinity of a rational surface
(i.e., when there is a significant resonant response).
In particular, there appear to be regions of low
torque density with adjacent regions of particular
high torque density. This indicates that there may
exist rotation profiles with  

z

⇡  
m/2 that are rel-

atively stable compared to the rotation profiles with
zero-crossings between rational surfaces that the
quasilinear torque tends to flatten. As experiments
suggest that the zero-crossing of the (electron per-
pendicular) rotation tends to align with a rational
surface upon a bifurcation into ELM suppression13,
the e↵ect of the quaisilinear electromagnetic torque
on the location of the zero-crossing is of particular
interest. As negative torque will produce negative
rotation at that  location, driving the zero-crossing
inward, and vice versa for positive rotation, there
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Quasilinear torque density from non-resonant response 
drives zero-crossing toward rational surfaces 

•  Negative torque at Ψz 

–  Drives negative rotation 
–  Zero-crossing moves inward 

•  Positive torque at Ψz 

–  Drives positive rotation 
–  Zero-crossing moves outward 

•  “Stable points” exist in vicinity 
of rational surface 

•  ELM-suppression hypothesis 
–  Torque locks zero-crossing close 

to rational surface 
–  Low rotation permits increased 

resonant field 
–  Island penetration leads to 

ELM-suppression bifurcation 

Torque from IL response 

Ψz Ψz 
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Quasilinear torque density from non-resonant response 
drives zero-crossing toward rational surfaces 

•  Negative torque at Ψz 

–  Drives negative rotation 
–  Zero-crossing moves inward 

•  Positive torque at Ψz 

–  Drives positive rotation 
–  Zero-crossing moves outward 

•  “Stable points” exist in vicinity 
of rational surface 

•  ELM-suppression hypothesis 
–  Torque locks zero-crossing close 

to rational surface 
–  Low rotation permits increased 

resonant field 
–  Island penetration leads to 

ELM-suppression bifurcation 

Torque from IL response 

Stable Ψz  
locations   
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Quasilinear torque density from non-resonant response 
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•  Resonant and non-resonant plasma response sensitive to 
rotation zero-crossing 

•  Changes to resonant response should be observable by HFS 
magnetic sensors 

•  Quasilinear torque from near-resonant mode may play an 
important role in ELM-suppression 
–  Reduced shear causes increased turbulent transport 
–  Zero-crossing driven toward rational surface permits island 

penetration 

•  Future work 
–  Further investigation of hypothesized ELM-suppression mechanisms 
–  Scan of edge rotation profile 
–  Detailed study of two-fluid effects, including rotation scan 

Summary 
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