Two-Fluid Modeling of the Sawtooth Instability

Josh Breslau Princeton Plasma Physics Laboratory

The M3D Group: J. Chen, G. Fu, W. Park, H. Strauss, L. Sugiyama

> Fluid Closures Workshop Oak Ridge, TN March 23, 2006

<u>Outline</u>

I. Motivation II. The CDX Device A. Machine parameters B. The $q_0 < 1$ equilibrium C. Benchmark parameters III. Resistive MHD Sawtooth Study A. Linear eigenmodes B. Nonlinear behavior IV.Two-Fluid Sawtooth Study A. Nonlinear behavior V. Conclusions

Motivation

- As a nonlinear code benchmark, model sawtooth events in a tokamak plasma with extended MHD models using realistic physical values to make quantitative predictions.
 - Large tokamaks have large disparities in spatial and temporal scales to be resolved.
 - Resistive MHD: Current sheet thickness ~ $S^{-1/2}$
 - Two-fluid MHD: ion skin depth ~ $n^{-1/2}$
 - Small tokamaks operate in regimes accessible to presentday codes.

<u>Characteristics of the Current Drive</u> <u>Experiment Upgrade (CDX-U)</u>

- Low aspect ratio tokamak $(R_0/a = 1.4 1.5)$
- Small ($R_0 = 33.5 \text{ cm}$)
- Elongation $\kappa \sim 1.6$
- $B_T \sim 2300$ gauss
- $I_p \sim 70 \text{ kA}$
- $n_e^P \sim 4 \times 10^{13} \text{ cm}^{-3}$
- $T_e \sim 100 \text{ eV} \rightarrow \text{S} \sim 10^4$
- Discharge time $\sim 12 \text{ ms}$
- Soft X-ray signals from typical discharges indicate two predominant types of low-*n* MHD activity:
 - sawteeth
 - "snakes"

Equilibrium: $q_0 < 1$

- Equilibrium taken from a TSC sequence (Jsolver file).
- $q_{\min} \approx 0.922$
- $q(a) \sim 9$

toroidal current density

Baseline Parameters for CDX

Lundquist Number S	~2×10 ⁴ on axis.
Resistivity <i>η</i>	Spitzer profile $\propto T_{eq}^{-3/2}$, cut off at 100× η_0
Prandtl Number Pr	10 on axis.
Viscosity <mark>µ</mark>	Constant in space and time.
Perpendicular thermal conduction $\kappa_{\!\scriptscriptstyle \perp}$	200 m ² /s (measured value at edge)
Parallel thermal conduction (sound wave)	$V_{\rm Te} = 6 V_{\rm A}$
Peak Plasma <mark>β</mark>	~ 3×10^{-2} (low-beta).
Density Evolution	Turned on for nonlinear phase.
Nonlinear initialization	Pure <i>n</i> =1 perturbation such that $\frac{\max(B_{pol}^1)}{\max(B_{\phi}^0)} = 10^{-4}$

<u>n=1 Eigenmode</u>

Incompressible velocity stream function U

 $\gamma \tau_{\rm A} = 8.61 \times 10^{-3} \rightarrow \text{growth time} = 116 \ \tau_{\rm A}$

Resistive MHD: Nonlinear History

Initial state: *t* = 1266.17

Poincaré plot

<u>Island growing: *t* = 1660.70</u>

Poincaré plot

Temperature profile

Nonlinear phase: *t* = 1795.61

Poincaré plot

<u>After 1st Crash: *t* = 1839.86</u>

Poincaré plot

Flux surfaces recovered: *t* = 2094.08

Poincaré plot

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}_{i}) = 0$$

$$\rho \left[\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} + (\mathbf{v}_{i}^{*} \cdot \nabla) \mathbf{v}_{\perp} \right] = -\nabla \mathbf{p} + \mathbf{J} \times \mathbf{B} + \mu \nabla^{2} \mathbf{v}$$

$$E + \mathbf{v} \times \mathbf{B} = \eta \mathbf{J} - \frac{\nabla_{\parallel} p_{e}}{ne}$$

$$\frac{\partial T}{\partial t} = s \frac{\mathbf{B} \cdot \nabla u}{\rho}$$

$$\frac{\partial u}{\partial t} = s \mathbf{B} \cdot \nabla T + \nu \nabla^{2} u$$

$$\frac{\partial B}{\partial t} = -\nabla \times \mathbf{E}$$

$$\mathbf{J} = \nabla \times \mathbf{B}$$

$$\frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla p = -\gamma p \nabla \cdot \mathbf{v} + \rho \nabla \cdot \kappa_{\perp} \nabla \left(\frac{p}{\rho}\right) - \mathbf{v}_{i}^{*} \cdot \nabla p - \gamma p \nabla \cdot \mathbf{v}_{i}^{*} + \frac{\mathbf{J} \cdot \nabla p_{e}}{ne} + \gamma p_{e} \mathbf{J} \cdot \nabla \left(\frac{1}{ne}\right)$$

$$\frac{\partial p_{e}}{\partial t} + \mathbf{v} \cdot \nabla p_{e} = -\gamma p_{e} \nabla \cdot \mathbf{v} + \rho \nabla \cdot \kappa_{\perp e} \nabla \left(\frac{p_{e}}{\rho}\right) + \frac{\mathbf{J}_{\parallel} \cdot \nabla p_{e}}{ne} - \gamma p_{e} \nabla \cdot \left(\mathbf{v}_{e}^{*} - \frac{\mathbf{J}_{\parallel}}{ne}\right)$$
where

$$\mathbf{v}_{i}^{*} \equiv \mathbf{v}_{e}^{*} + \frac{\mathbf{J}_{\perp}}{ne}, \quad \mathbf{v}_{i} \equiv \mathbf{v} + \mathbf{v}_{i}^{*},$$
$$\mathbf{v}_{e}^{*} \equiv -\frac{\mathbf{B} \times \nabla p_{e}}{neB^{2}}, \quad \mathbf{v}_{e} \equiv \mathbf{v} + \mathbf{v}_{e}^{*} - \frac{J_{\parallel}}{ne}$$

Two-Fluid Study

- Same parameters as single-fluid, but ω_i^* term on.
- Ion skin depth = 0.05 minor radii.
- Pressure divided evenly between electrons, ions.
- Modest increase in poloidal resolution relative to 1st single-fluid study (89 *vs*. 79 radial grids); same toroidal resolution (24 planes).
- Start nonlinear run with MHD n=1 (1,1) eigenmode, $\gamma \tau_A = 5.1 \times 10^{-3}$ as small initial perturbation.

Two-Fluid Sawooth Energy History By Mode Number 10-6 10⁻⁸ 10-10 Kinetic Energy 10-12, 10^{-14} n= 0 n =n = 110⁻¹⁶1 n= 4 n= 6 10-18 n= 7 n= 8 Sawtooth period \approx 406.7 $\tau_A \approx$ 104 μ s; n= 9 n= 10 Reference CDX sawtooth period \approx 125 μ s 10-20 600 800 1000 1400 1200 Time

Early state: *t* = 653.95

Temperature profile

<u>Nonlinear phase: *t* = 1008.38</u>

Temperature profile

<u>After 1st Crash: *t* = 1118.44</u>

<u>Between Crashes: *t* = 1316.83</u>

<u>Second Crash: *t* = 1502.53</u>

Summary of Observed Two-Fluid Effects

- Plasma rotation.
- Oscillations in energy of higher-*n* modes.
- Sawtooth period increases slightly.
- Magnetic field does not become stochastic over most of plasma cross-section.
- Reconnection is incomplete in second crash.

Conclusions

- Nonlinear MHD simulation with actual device parameters is capable of tracking evolution through repeated sawtooth reconnection cycles.
- Two-fluid simulation with ω_i^* term on can now also be applied to the problem.
 - Qualitatively similar to MHD predictions, <u>but</u>
 - Sheared rotation inhibits island growth, reducing stochasticity of field.
 - Incomplete reconnection in second cycle suggests possibility of saturated islands.