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Motivation
• Existing studies of drift wave turbulence have demonstrated strong non-

local interactions with large scale structures

• The evolution of the large scale structure is dictated by both stresses ex-
erted on the large scales by drift wave turbulence, as well as shearing of
turbulence via large scale flows

• Description necessitates treating evolution of both large scales and small
scales on equal footing

• Here we seek a minimal self-consistent description of the coupled evolu-
tion of a tearing mode with drift wave turbulence



Outline
• Brief Overview

• Formulation:

– Wave kinetics and adiabatic theory

– Mean field equations for large scales

• Linear Theory:

– Tearing mode in presence of background of drift waves

• Summary



Drift Wave Zonal Flow Interaction
• Zonal flows are a secondary instability driven via a nonlocal cascade of

energy from small scale drift wave turbulence

• Zonal flow generation can be understood via modulational instability

t

• Drift waves enhance initial seed shear flow leading to instability



Tearing Mode Interaction w/ Drift Waves (I)
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• Velocity shear from low-m mode similar to drift wave-zonal flow inter-
action

• Expect drift waves to enhance shear flow induced by tearing, i.e. mod-
ulational instability.
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Tearing Mode Interaction w/ Drift Waves
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Model
• Seek minimal description of coupled evolution of tearing mode-drift wave

dynamics within cylinder

Small Scales⇒Wave Kinetics

• Self-consistent evolution of intensity of drift wave turbulence

• Nonlocal interaction with large scales via shearing and advection

Large Scales⇒RMHD

• Provides simple model for large scale evolution and coupling to small
scales via stresses



Wave Kinetics (I)
• We describe drift waves via the Hasegawa-Mima equation
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Tools to simplify analytic calculation:

• Spatial separation between drift wave turbulence and tearing mode fields.
Built in expansion parameter

• Slow temporal evolution of mean fields versus drift waves. Facilitates
use of adiabatic theory.

Thus, seek description of drift wave turbulence via adiabatic varying quan-
tity.



Wave Kinetics (II)
• Here we are interested in the evolution of the spatially modulated in-

tensity of drift wave turbulence |φ>k |
2 (x, t)

• Thus, useful to write Hasegawa-Mima equation in terms of Wigner func-
tions defined by:
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• After expanding in |q| / |k| � 1, a conservation law for the drift wave

enstrophy density can be derived (?)
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• Thus, drift wave population advected and refracted by mean flows.



Wave Kinetics (III)
Interesting to consider effects of radial eigenmode structure on wave
kinetic formalism

• Presence of magnetic shear at resonant surfaces introduces radial mode
structure

• Thus, necessary to consider φ (x, t) of the form

φ (x, t) =
∑
ky,kz

aky,kz (t) e−iωkt−ikyy−ikzzφ>ky,kz
(x)

• Where φ>ky,kz
(x) corresponds to a linear eigenmode located on the rky,kz

resonant surface

• Here aky,kz (t) represents the slowly varying amplitude of the linear eigen-
modes



Wave Kinetics (IV)
• Again useful to formulate problem in terms of Wigner functions defined

for the inhomogeneous case by:

Iky,kz (y, t) =
∑
qy

eiqyy
〈
ak+q (t) e−iωk+qta−k (t) e−iω−kt

〉
• Where Iky,kz (y, t) represents the local intensity of turbulence at a resonant

surface rky,kz

• Following a similar procedure as in the homogenous case (?; ?), a W.K.E.
can be derived, describing the evolution of the wave action in the pres-
ence of large scale flows



Mean Flows (I)
• Here we consider mean flow equations, interacting with electrostatic

micro turbulence

• Note that for electrostatic turbulence, coupling to micro turbulence is
primarily through the polarization nonlinearity
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Coupling to Micro Turbulence

• Where the average 〈...〉 is over fast spatial and temporal scales.

• Absence of turbulent resistivity in mean field equations results from
drift waves decoupling from Alfven modes in low β plasma.



Mean Flows (II)
Integrating by parts and Fourier transforming the stress term:〈
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• Right hand side goes to zero in absence of anisotropy of micro turbu-
lence

• To understand response of micro turbulence we calculate response of
micro turbulence to “seed” asymmetry, symbolically:〈
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Closure of Drift Wave-Tearing Mode
Equations
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Magnitude of Anomalous Viscosity
• We estimate the magnitude of νT via a mixing length argument

• For drift waves we estimate `m ∼ ρs, roughly the peak of the linear
growth rate, yielding:

|νT | ≈
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• Comparing strength of inertial term within tearing mode equations with
viscous piece
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• Thus, for practical purposes turbulent negative viscosity nearly always
dominates inertia



Tearing Mode Equations
• Considering the limit where ∂/∂x � ∂/∂y, the linearized tearing mode

equations are given by:
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Useful simplification:

• for γTτ
(T )
η < 1, magnetic field is able to diffuse into visco-resistive layer.

Thus can approximate ψ< → ψ0 = const



Tearing Mode (I)
• Leads to following set of interior equations (in dimensionless units)
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• Further simplification:

– for |α| � 1, eigenmode equation reduces to
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Useful to examine asymptotic behavior of eigenmode equation



Tearing Mode (II)
• Structure of equation can easily be seen to lead to formation of strongly

oscillating solutions.

• Motivates looking for solutions of the form:
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Tearing Mode (III)
Solving:

Φ (σ) = sgn (σ)
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• Thus, oscillating portion of solution dies off slower than −1/σ, hence
will not be able to effect match with exterior

• Can formulate problem more conveniently in Fourier space
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Tearing Mode (IV)
• Convenient to introduce solution of the form (?)

Φ (qx) = iπsgn (qx)
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• Leads to simplified eigenvalue and eigenmode equations:
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Tearing Mode (V)
• In real space the solutions have the form
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Note that oscillations are π/2 out of phase. Hence, setting amplitudes A
and B corresponds to setting the phase of oscillations of solution. Can’t be
set by exterior solution



Tearing Mode (VI)
• The dispersion relation can now be written
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• In order to control the oscillations induced by the negative viscosity, it

is necessary to impose a condition on the wave energy flux

• The only physically plausible condition is outgoing wave boundary con-
ditions

• Matching the solution to the asymptotic solutions leads to A/B being
pure imaginary

• Thus, a real frequency is self-consistently induced, allowing for wave
absorption in the exterior region



Tearing Mode (VII)
• In order to calculate the ratio A/B, necessary to match the exact solution

the outgoing
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Tearing Mode (VIII)
The dispersion relation is then given by:
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• Requires ∆′ > 0 for instability

• Modes are not strongly localized to visco-resistive layer



Summary
• Self-consistent formulation of interaction of a tearing mode with drift

wave turbulence

• Identification of the negative turbulent viscosity as the dominant effect
on low-m tearing mode

• Calculation of linear growth rate of tearing mode in the presence of neg-
ative viscosity


