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Motivation

e Existing studies of drift wave turbulence have demonstrated strong non-

local interactions with large scale structures

e The evolution of the large scale structure is dictated by both stresses ex-
erted on the large scales by drift wave turbulence, as well as shearing of

turbulence via large scale flows

e Description necessitates treating evolution of both large scales and small

scales on equal footing

e Here we seek a minimal self-consistent description of the coupled evolu-
tion of a tearing mode with drift wave turbulence



Outline

e Brief Overview

e Formulation:

— Wave kinetics and adiabatic theory

— Mean field equations for large scales
e Linear Theory:
— Tearing mode in presence of background of drift waves

e Summary



Drift Wave Zonal Flow Interaction

e Zonal flows are a secondary instability driven via a nonlocal cascade of
energy from small scale drift wave turbulence

e Zonal flow generation can be understood via modulational instability
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e Drift waves enhance initial seed shear flow leading to instability
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Tearing Mode Flow Shearing

e Velocity shear from low-m mode similar to drift wave-zonal flow inter-

action

e Expect drift waves to enhance shear flow induced by tearing, i.e. mod-

ulational instability.
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Model

o Seek minimal description of coupled evolution of tearing mode-drift wave
dynamics within cylinder

Small Scales=Wave Kinetics

e Self-consistent evolution of intensity of drift wave turbulence
e Nonlocal interaction with large scales via shearing and advection

Large Scales=RMHD

e Provides simple model for large scale evolution and coupling to small
scales via stresses



Wave Kinetics (I)

e We describe drift waves via the Hasegawa-Mima equation
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Tools to simplify analytic calculation:

e Spatial separation between drift wave turbulence and tearing mode fields.
Built in expansion parameter

e Slow temporal evolution of mean fields versus drift waves. Facilitates
use of adiabatic theory.

Thus, seek description of drift wave turbulence via adiabatic varying quan-
tity.



Wave Kinetics (II)

e Here we are interested in the evolution of the spatially modulated in-
tensity of drift wave turbulence |¢” | (x, t)

e Thus, useful to write Hasegawa-Mima equation in terms of Wigner func-
tions defined by:
I (x,t) = Z V(D7)

q
o After expanding in |q| / |k| < 1, a conservation law for the drift wave

enstrophy density can be derived (?)
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e Thus, drift wave population advected and refracted by mean flows.



Wave Kinetics (II1)

Interesting to consider effects of radial eigenmode structure on wave
kinetic formalism

e Presence of magnetic shear at resonant surfaces introduces radial mode
structure

e Thus, necessary to consider ¢ (x, t) of the form
¢ (x,t) = Z Qg k. (1) eI REGr (1)
ky k.

e Where ¢, , (z) corresponds to a linear eigenmode located on the 7y, ;.
resonant surface

e Here a;, ;. () represents the slowly varying amplitude of the linear eigen-

modes



Wave Kinetics (IV)

e Again useful to formulate problem in terms of Wigner functions defined
for the inhomogeneous case by:

Ly e, (Y, 1) = Z e (aprq (t) e ay, (1) e )

dy
e Where I, ;. (y,t) represents the local intensity of turbulence at a resonant
surface ry, ;.

e Following a similar procedure as in the homogenous case (?; ?), a W.K.E.
can be derived, describing the evolution of the wave action in the pres-
ence of large scale flows



Mean Flows (1)

e Here we consider mean flow equations, interacting with electrostatic
micro turbulence

e Note that for electrostatic turbulence, coupling to micro turbulence is
primarily through the polarization nonlinearity
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Coupling to Micro Turbulence
e Where the average (...) is over fast spatial and temporal scales.

e Absence of turbulent resistivity in mean field equations results from
drift waves decoupling from Alfven modes in low 5 plasma.



Mean Flows (I1)

Integrating by parts and Fourier transforming the stress term:
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e Right hand side goes to zero in absence of anisotropy of micro turbu-
lence

e To understand response of micro turbulence we calculate response of
micro turbulence to “seed” asymmetry, symbolically:
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Closure of Drift Wave-Tearing Mode

Equations
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e Shearing term dominates for ¢* > ¢,/L;. w, and ~, correspond to large
scale inverse time scales. Hence, can be dropped in comparison to the
fast (small) scales
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Magnitude of Anomalous Viscosity

e We estimate the magnitude of vr via a mixing length argument

e For drift waves we estimate ¢,, ~ p,, roughly the peak of the linear
growth rate, yielding:

‘VT‘ ~ %wcmi = Dgp
n

e Comparing strength of inertial term within tearing mode equations with
viscous piece

vr| VAVi¢ ~ DepVivVie > rVi¢
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e Thus, for practical purposes turbulent negative viscosity nearly always
dominates inertia



Tearing Mode Equations

e Considering the limit where 0/0z > 0/0y, the linearized tearing mode
equations are given by:

Vorticity Equation
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Usetul simplification:

e for Wf) < 1, magnetic field is able to diffuse into visco-resistive layer.

Thus can approximate ¢~ — 1y = const



Tearing Mode (I)

e Leads to following set of interior equations (in dimensionless units)
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e Further simplification:

— for |a| > 1, eigenmode equation reduces to
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Usetul to examine asymptotic behavior of eigenmode equation



Tearing Mode (II)

e Structure of equation can easily be seen to lead to formation of strongly
oscillating solutions.

e Motivates looking for solutions of the form:

slowly varying Tapidly varying  algebraic decay
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e Plugging in and taking derivatives, gives for the real and imaginary
pieces:
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Tearing Mode (III)

Solving:
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e Thus, oscillating portion of solution dies off slower than —1/0, hence
will not be able to effect match with exterior

e Can formulate problem more conveniently in Fourier space
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Tearing Mode (IV)

e Convenient to introduce solution of the form (?)
(I)hom <‘qu7:|>
(I)hom (O>
e Leads to simplified eigenvalue and eigenmode equations:
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e Solution to homogeneous equation:
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Tearing Mode (V)

e In real space the solutions have the form

FT.d2,

Note that oscillations are 7/2 out of phase. Hence, setting amplitudes A
and B corresponds to setting the phase of oscillations of solution. Can’t be

set by exterior solution



Tearing Mode (VI)

e The dispersion relation can now be written
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e In order to control the oscillations induced by the negative viscosity, it
is necessary to impose a condition on the wave energy flux

e The only physically plausible condition is outgoing wave boundary con-
ditions

e Matching the solution to the asymptotic solutions leads to A/B being
pure imaginary

e Thus, a real frequency is self-consistently induced, allowing for wave
absorption in the exterior region



Tearing Mode (VII)

e In order to calculate the ratio A/ B, necessary to match the exact solution
the outgoing

E
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e where £k, is defined as k, = (2/3) \/|:1:|/:1:3/2.

e L, can be related to the frequency through the dispersion relation Re (w,) ~
(neAN') /z,, which yields k, ~ /[z]w)*/ (n.A")2.

e Thus, the sign of v, can be determined from v,,' = 9k, /0w,.
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Tearing Mode (VIII)

The dispersion relation is then given by:
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e Requires A’ > 0 for instability

e Modes are not strongly localized to visco-resistive layer



Summary

e Self-consistent formulation of interaction of a tearing mode with drift

wave turbulence

e Identification of the negative turbulent viscosity as the dominant effect

on low-m tearing mode

e Calculation of linear growth rate of tearing mode in the presence of neg-
ative viscosity



