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Important Target Problems

Non-linear ELM evolution

Neo-classical tearing modes/island dynamics

e Gilant sawteeth

« RF/MHD coupling

e Plasma relaxation: characteristic fields and flows

All are extremely complicated and require ““extended
MHD”’

How do we know we’re getting the ““right” answer?
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Extensions to Resistive MHD

Anisotropic heat flux

2-fluid Ohm’s law
Anisotropic parallel viscosity
lon gyro-viscosity™

Neo-classical stress tensor for ions* and
electrons™

Energetic 1on species

*There Is no general agreement on the form of
several of these terms

How do we know we’re getting the ““right” answer?




Algorithms are Complicated
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Need Simple Problems with Known
Solutions

o Simple geometry, but capture essential
physics

 Analytic solution preferred, but independent
numerical results useful

o Start simple => add complications

 Linear iIs good, non-linear better (but
attainable?)

* Need help from theory
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Extended MHD Validation Problems

 g-mode interchange in a slab (Rayleigh- * MHD
Taylor-Parker-Roberts-Taylor) e 2-fluid stabilization

» Gyro-viscous stabilization

» Collisional drift waves in a slab (Coppi, et al.) | « 2-fluid terms (Hall)
* Collisional effects
» Stability thresholds

* GEM reconnection problem (slab) o 2-fluid reconnection

e Comparison with MHD

» Well documented numerical results
* Non-linear

* Critical island width for temperature  Anisotropic thermal conduction
flattening (Fitzpatrick)

» Destabilization of neo-classical tearing mode | « Models for neo-classical closures

(Gianakon, Kruger, Hegna) e Linear
« Kink stabilization by energetic particles * Energetic particle ion closures schemes

(Cheng, Fu, Kim) e Linear

e Numerical results ﬁ':(/ E—- -E
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Example: g-mode Stability
(Roberts and Taylor, 1963)
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2-fluid/Gyro-viscous Equations
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Simplifying Assumptions

Only variations in p; = p + B* / 2, affect dynamics
= Ignore perturbations to B
= VxE=0 (low g, electrostatic)

Assume 1ons are barotropic, p. = p.(p)
= Simplifies Ohm’s law

Variation in X much weaker than variation in 'y

=n° <<k’

= Can ignore explicit x-dependence of equilibrium
Assume exp(iwt + Iky) dependence




Final g-mode Equations
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Plus definition of Il
4 equations in 4 unknowns: p, V, p;
Last equation serves as "equation of state", or closure
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Stability Results
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2-fluid g-mode in NIMROD

Validation of NIMROD on
g-mode problem

2-fluid only
Fully compressible
Walls placed far away

Get good agreement with
theory on both 2-fluid
stability threshold and
MHD growth rate

Found heuristic time step

CFL limit:
Oyax At <1/ 4

Still working on GV
validation
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Problem can be “Extended”

» Add transverse component of . k|| effects
magnetic field (B,) » Stabilization
* Whistlers and KAWSs
* Mode localization

» Add sheared transverse field

(By(x))
* Move walls closer * Boundary conditions (not
trivial for 2-fluid model)
» Scaling with resistivity o 2-fluid effects on resistive g-
modes

Need analytic solutions of these problems
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Internal Energy vs. time

(Where we’d like accurate 2-fluid models)

Nonlinear ELM Evolution
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Resistive MHD
Anisotropic thermal conduction
ELM interaction with wall




Two-fluid Reconnection
GEM Problem

4t  Full Particle

o :-.-'.'
% :- - Two Fluid
5 E . MHD
IMRCD 26, Pm=3

F
ENIMROD 2fl, Pm=1—

. 2D slab = =

e 71=0.005

» Good agreement with many other calculations

e Computed with same code used for tokamaks, spheromaks,
RFPs
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The NIMROD Hall-MHD computation shows important
characteristics of two-fluid reconnection.

Y (periodic)
Y (periodic)

The characteristic results from t=23 Q! are the open geometry of the

reconnecting magnetic flux (left) and the quadrupole out-of-plane
magnetic field (right).
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Island Width (m)

Test of “Heuristic Closure” for

Neoclassical Physics

A

Vv

| — — — - Analytic NTM stability boundary with D]

I ' 1 1 ' 1 U 1
Analytic NTM stability boundary

Unstable
Stable

Neo-classical theory gives flux surface
average

Local form for stress tensor forces:

V..
V-1l = pa/ua<82> “ 992 €0

« Valid for both ion and electrons
 Energy conserving and entropy producing
 Gives:

* bootstrap current

* neoclassical resistivity

* polarization current enhancement
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Testing Anisotropic Heat Conduction

e Critical island width for
temperature flattening
 Dealing with extreme
anisotropy

» Agreement on scaling
(Fitzpatrick)
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Beyond Extended MHD: Parallel
Kinetic closures

Parallel closures for q, and IT, derived using 10°F general x g
Chapman-Enskog-like approaﬁh. et Braginskiix, ,7
10°F
*Non-local; requires integration along i
perturbed field lines. 10°E
¥= n

. 6]
« General closures map continuously from  10°f
collisional to nearly collisionless regime. -

* General g, closure predicts collisional J
response for heat flow inside magnetic island. 10°F
As plasma becomes moderately collisional (T (=~~~
> 50 eV), general closure predicts correct flux 0 T 7
limited response. 10 100 7 10

Thermal diffusivity as function of T showing

*Incorporated into global extended MHD 1512 regn0nse of Braginskii and general closure.

algorithms.
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Beyond Extended MHD: Kinetic
Minority Species

e Minority ions species affects S RV
bulk evolution: Rttt
Q.04 -

n,<<np , B~ B £ _

dV CI.IIIE_— HIHHDDH-U:#-D.JF’_

Mn—=JxB- V. II I '

dt e 0.0a 1 L 1 L
Bulk Plasma 0.0 0.2 DI#ph‘.-’pmu.E 0.8 1.4

— V- 11y «  Sfdetermined by Kinetic

particle simulation in
evolving fields
Demonstrated transition
from internal kink to
fishbone

Benchmark of three codes

%/__J
Hot Minority lon Species

ST = [ M(V=Vp)(v=V,)d (x,v)d3v
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(bxW)-(1 +3bb)+transpose]

Ma=11% =P
40

Form of the Gyro-viscous Stress
(Hooke’s Law for a Magnetized Plasma)

W=VV+VV/! —%IV-V

Braginskii:
Suggested modifications for consistency (Mikhailovskii and
Tsypin, Hazeltine and Meiss, Simakov and Catto, Ramos)

Irg = i) [b xWg - (1+3bb)+ transpose]
2

Involve adding term proportional to the ion heat rate of strain:

5
Wy = Vg + V] 21V -qj
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Implicit numerical treatment difficult (new coupling between

momentum and energy equations)
What is the effect of this term on dispersion and stability?




Effect of lon Heat Stress on Important
Dynamics

IMAq :i[bqu -(I +3bb)+transpose|
q=—K||V”T—KJ_VJ_T—K‘AbXVJ_T

Wq =Va;+Vaj - 1V-q;

02 :C§k2L1+ f (6’)(pik)2J F(0)=0 f(x/2)=1

Dispersive effect on compressional waves, but

Negligible effect on g-mode stability
Prioritization: ignore these terms (for now!)
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Theory and Computation

* Theory and computation are synergistic
— Just different tools for solving problems

e Theory needs guidance from the needs of large
scale computations

e Computations need guidance for relevant
equations and expectations from theory

* Closer collaboration between theory and
computation required for the success of either
program

« Attempts to promote one at the expense of the
other are unwise
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Summary

e Extended MHD problems are extremely difficult
and complex

e Must be studied with equally complex algorithms

» Basic processes often masked (and also
Influenced) by geometry

e How do we learn to trust the computational
models?
— Define program of simple problems with known
solutions to test aspects of the models
 Hierarchy of problems from simple to more complex

* Require all codes to run these problems
» Urge theorists to propose relevant test problems

(Zw, — Crossyour fingers when studying non-lingaﬁrggkamak;.%:
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