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Important Target Problems

• Non-linear ELM evolution
• Neo-classical tearing modes/island dynamics
• Giant sawteeth
• RF/MHD coupling
• Plasma relaxation: characteristic fields and flows
All are extremely complicated and require “extended 

MHD”
How do we know we’re getting the “right” answer?



Extensions to Resistive MHD

• Anisotropic heat flux
• 2-fluid Ohm’s law
• Anisotropic parallel viscosity
• Ion gyro-viscosity*
• Neo-classical stress tensor for ions* and 

electrons*
• Energetic ion species

*There is no general agreement on the form of 
several of these terms

How do we know we’re getting the “right” answer?



Algorithms are Complicated
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How do we know we’re getting the “right” answer?



Need Simple Problems with Known 
Solutions

• Simple geometry, but capture essential 
physics

• Analytic solution preferred, but independent
numerical results useful

• Start simple => add complications
• Linear is good, non-linear better (but 

attainable?)
• Need help from theory



Extended MHD Validation Problems
• g-mode interchange in a slab (Rayleigh-
Taylor-Parker-Roberts-Taylor)

• MHD
• 2-fluid stabilization
• Gyro-viscous stabilization

• Collisional drift waves in a slab (Coppi, et al.) • 2-fluid terms (Hall)
• Collisional effects
• Stability thresholds

• GEM reconnection problem (slab) • 2-fluid reconnection
• Comparison with MHD
• Well documented numerical results
• Non-linear

• Critical island width for temperature 
flattening (Fitzpatrick)

• Anisotropic thermal conduction

• Destabilization of neo-classical tearing mode 
(Gianakon, Kruger, Hegna)

• Models for neo-classical closures
• Linear

• Kink stabilization by energetic particles 
(Cheng, Fu, Kim)

• Energetic particle ion closures schemes
• Linear
• Numerical results



Example: g-mode Stability
(Roberts and Taylor, 1963)
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2-fluid/Gyro-viscous Equations
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Simplifying Assumptions

Only variations in pT = p + B2 / 2µ0 affect dynamics
    ⇒  Ignore perturbations to B
    ⇒  ∇ × E = 0  (low β, electrostatic)
Assume ions are barotropic, pi = pi (ρ)
    ⇒  Simplifies Ohm’s law
Variation in x much weaker than variation in y
    ⇒ η2 << k2

    ⇒  Can ignore explicit x-dependence of equilibrium
Assume exp(iωt + iky) dependence
    ⇒  Linearized equations are algebraic



Final g-mode Equations
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Plus definition of  Π
4 equations in 4 unknowns: ρ, V, pT

Last equation serves as "equation of state", or closure



Stability Results
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2-fluid g-mode in NIMROD

• Validation of NIMROD on 
g-mode problem

• 2-fluid only
• Fully compressible
• Walls placed far away
• Get good agreement with 

theory on both 2-fluid 
stability threshold and 
MHD growth rate

• Found heuristic time step 
CFL limit:

• Still working on GV 
validation

ω*MAX ∆t < 1 / 4



Problem can be “Extended”

• Add transverse component of 
magnetic field (By)

• k|| effects
• Stabilization
• Whistlers and KAWs

• Add sheared transverse field 
(By(x))

• Mode localization

• Move walls closer • Boundary conditions (not 
trivial for 2-fluid model)

• Scaling with resistivity • 2-fluid effects on resistive g-
modes

Need analytic solutions of these problems



Nonlinear ELM Evolution
(Where we’d like accurate 2-fluid models)

• Resistive MHD
• Anisotropic thermal conduction
• ELM interaction with wall

• 70 kJ lost in 60 µsec



Two-fluid Reconnection
GEM Problem

• 2-D slab
• η = 0.005
• Good agreement with many other calculations
• Computed with same code used for tokamaks, spheromaks, 

RFPs



The NIMROD Hall-MHD computation shows important 
characteristics of two-fluid reconnection.
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The characteristic results from t=23 Ω−1 are the open geometry of the 
reconnecting magnetic flux (left) and the quadrupole out-of-plane 
magnetic field (right).



Test of “Heuristic Closure” for 
Neoclassical Physics

   

∇⋅ Πα = ρα µα B2

(Gianakon et.al., Phys. Plasmas 9, 536 (2002)

Vα ⋅ eθ

Bα ⋅ eθ( )2
eθ

Neo-classical theory gives flux surface 
average

Local form for stress tensor forces:

• Valid for both ion and electrons

• Energy conserving and entropy producing

• Gives:

• bootstrap current 

• neoclassical resistivity

• polarization current enhancement



Testing Anisotropic Heat Conduction 
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• Critical island width for 
temperature flattening
• Dealing with extreme 
anisotropy
• Agreement on scaling 
(Fitzpatrick)



Beyond Extended MHD: Parallel 
Kinetic closures

• Parallel closures for q|| and Π|| derived using 
Chapman-Enskog-like approach.

•Non-local; requires integration along 
perturbed field lines.

• General closures map continuously from 
collisional to nearly collisionless regime.

• General q|| closure predicts collisional 
response for heat flow inside magnetic island.  
As plasma becomes moderately collisional (T
> 50 eV), general closure predicts correct flux 
limited response. 

•Incorporated into global extended MHD 
algorithms.
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Beyond Extended MHD: Kinetic 
Minority Species

• Minority ions species affects 
bulk evolution:

    nh << n0    ,        βh ~ β0
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Bulk Plasma
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      δΠh = M (v − Vh )∫ (v − Vh )δf (x, v)d 3v

• δf determined by kinetic 
particle simulation in 
evolving fields

• Demonstrated transition 
from internal kink to 
fishbone

• Benchmark of three codes



Form of the Gyro-viscous Stress
(Hooke’s Law for a Magnetized Plasma)
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• Suggested modifications for consistency (Mikhailovskii and 
Tsypin, Hazeltine and Meiss, Simakov and Catto, Ramos) 
involve adding term proportional to the ion heat rate of strain:
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• Implicit numerical treatment difficult (new coupling between 
momentum and energy equations)

• What is the effect of this term on dispersion and stability?
– Does it introduce new normal modes?
– Does it alter stability properties?



Effect of Ion Heat Stress on Important 
Dynamics
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• Dispersive effect on compressional waves, but……
• Negligible effect on g-mode stability
• Prioritization: ignore these terms (for now!)
• Open to counter arguments



Theory and Computation

• Theory and computation are synergistic
– Just different tools for solving problems

• Theory needs guidance from the needs of large 
scale computations

• Computations need guidance for relevant 
equations and expectations from theory

• Closer collaboration between theory and 
computation required for the success of either 
program

• Attempts to promote one at the expense of the 
other are unwise



Summary

• Extended MHD problems are extremely difficult 
and complex

• Must be studied with equally complex algorithms
• Basic processes often masked (and also 

influenced) by geometry
• How do we learn to trust the computational 

models?
– Define program of simple problems with known 

solutions to test aspects of the models
• Hierarchy of problems from simple to more complex
• Require all codes to run these problems
• Urge theorists to propose relevant test problems

– Cross your fingers when studying non-linear tokamaks!
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