Numerical Demands of Systems with High-Order Derivatives

Carl Sovinec *University of Wisconsin-Madison* Closures Workshop Oak Ridge National Laboratory March 22-24, 2006

Outline

- Introduction
	- Theoretical development
	- Computation: ideal situation
	- Computation: reality
- Spatial representation
	- Element-based approaches
	- Solution space considerations
	- Approaches for high-order derivatives
- Discussion

Introduction

Analytical work for extended-MHD can be summarized for the non-specialist as:

- Macroscopic dynamics involve changes in the magnetic field (and topology).
- Electromagnetics only cares about sums of the lowest-order velocity moments of the particle distributions.
- The most concise description of macroscopic dynamics is expected to be from moment-based evolution equations. (?)
	- Closure relations are needed to model the influence of distribution-function details on low-order moment evolution.
	- Large effective mean-free-path and gyro-orbit effects preclude simple relations; we will likely see research continuing for many years.

High-Order Derivatives

Even relatively simple models can lead to high-order derivatives:

• For collisional plasmas, the electron parallel stress, for example, is proportional to

$$
\hat{\mathbf{b}} \cdot \underline{\mathbf{W}}_e \cdot \hat{\mathbf{b}} \left(\hat{\mathbf{b}} \hat{\mathbf{b}} - \frac{1}{3} \mathbf{I} \right) , \quad \underline{\mathbf{W}}_e \equiv \nabla \mathbf{V}_e + (\nabla \mathbf{V}_e)^T - \frac{2}{3} \mathbf{I} (\nabla \cdot \mathbf{V}_e)
$$

• Using V_{COM} and **J** instead of V_i and V_e is advantageous for low frequency (no displacement current), but **W** *e* then contains terms

$$
\nabla \bigg(\mathbf{V} - \frac{1}{ne} \mathbf{J} \bigg) = \nabla \bigg(\mathbf{V} - \frac{1}{\mu_0 n e} \nabla \times \mathbf{B} \bigg)
$$

• With **E** proportional to the divergence of electron stress, the combined Faraday's/Ohm's evolution equation for **B** has four spatial derivatives on **B**.

• Even if we're not interested in collisional behavior, related collisional operators may be needed for semi-implicit advances or 'physics-based' preconditioning.

Computation: ideal situation

In a perfect computational world, the hard work would be done once we know the system of equations:

- We would be able to program any nonlinear PDE or integrodifferential system easily.
- The code would run efficiently on laptops, massively parallel architectures, and whatever performance machines will be like in the next 5-10 years.
- We would achieve qualitatively correct results at low spatial and temporal resolution.
- We would achieve quantitatively correct results at high resolution.
- Convergence from low resolution to high resolution would be rapid.

Computation: reality

In the real computational world, the hard work is not over once we know the system of equations:

- Even the simplest description of macroscopic dynamics, MHD, presents challenges for numerical computation.
	- Stiffness
	- Anisotropy
	- Nonlinearity
	- Geometry (device and equilibrium)
	- Divergence constraint
- Increasing the complexity of the model compounds the first three and makes verification increasingly difficult.
- Present-day temporal algorithms rely on specially tailored advances or preconditioners.
- The spatial mesh cannot be perfectly aligned with **B**.

Spatial Representation

Element-based methods are favored (M3D & NIMROD and don't forget eigenvalue codes ER/G-ATO, PEST, etc.):

- Modeling complicated geometries is relatively straightforward.
- Self-adjoint differential operators lead to symmetric or Hermitian matrices, by construction, in the discrete representation.
	- Eigenvalues of the respective operators remain real.
	- Maintaining this property with finite differences can be quite challenging.
- Boundary conditions are either built into the solution space or addressed by surface integrals.
	- There are no ghost points or 1-sided differences.
- High-order finite volume methods are related.
- There are spectral versions of the method.

Element Basis Functions

- Local representations must include the lowestorder polynomials to guarantee convergence (connection to Taylor expansion).
- Polynomial basis functions (uniform Lagrange, Gauss-Lobatto-Legendre, modal) may have degree>1:
	- **Control magnetic divergence error**
	- **Put curvature in mappings**
	- **Achieve high-order convergence without uniform meshing**

High-Order Bases: constraint relations

'Error diffusion' is added to Faraday's law:

$$
\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} + \kappa_{divb} \nabla \nabla \cdot \mathbf{B}
$$
\n
$$
\int d\mathbf{x} \left\{ \mathbf{c} * \Delta \mathbf{b} + g \Delta t \kappa_{divb} (\nabla \cdot \mathbf{c} *) (\nabla \cdot \Delta \mathbf{b}) \right\}
$$
\n
$$
= \Delta t \int d\mathbf{x} \left\{ \kappa_{divb} (\nabla \cdot \mathbf{c} *) (\nabla \cdot \mathbf{b}) - (\nabla \times \mathbf{c} *) \cdot \mathbf{E} \right\}
$$
\n
$$
- \Delta t \oint d\mathbf{s} \times \mathbf{E} \cdot \mathbf{c} *
$$

for all vector test functions **c***.

The ratio of DOF/constraints is 3 in the limit of large polynomial degree.

Magnetic divergence in a tearingmode calculation.

Scalings show convergence rates expected for first derivatives.

parallel and perpendicular processes.

825 (1995)].

Finite Element Solution Properties

Solution spaces are central to the finite element method, but the differential operators in the system influence which spaces are suitable.

- Analytically, $\hat{\mathbf{b}} \cdot \nabla$ in the MHD force perturbation, thermal conduction, and other operators leads to distinct modes.
- Numerically, we apply these operators to finite-dimensional spaces that do not have the same 'flexibility.'
	- Though local, polynomial bases do a poor job of representing delta functions at $\hat{\mathbf{b}} \cdot \nabla$ resonances (singular effects).
	- Standard polynomial-space *solutions* of weak-form equations do not separate precisely into longitudinal and solenoidal parts.
- Special low-order spaces and approximations were developed for ideal-MHD eigenvalue computations to avoid artificial coupling of shear & compression.

Requirements for the Method Standard methods and analyses rest on *conforming* approximations.

(conforming meaning that the finite-dimensional spaces belong to the same space as that of the analytical Galerkin problem)

• If the original PDE system $D(u) = f$ has derivatives of order 2*m* appearing explicitly, the weak form requires square-integrable derivatives of order *m*.

- Expansion of the space relies on completeness
- Necessary for identifying good solutions (weak form of the operator creates a norm, at least in symmetric problems)
- Examples:
	- m=1 for visco-resistive MHD with primitive variables
	- m=2 for same with a potential rep.
	- m=2 with electron viscosity and primitive variables.
- Implies C^{m-1} continuity is required.
- A *regular* (not uniform) discretization is also required.

Present Modeling

Present numerical models (speaking for NIMROD, at least) are not perfect.

• To allow for viscosity and diffusive thermal conduction, NIMROD presently uses *C* 0 for all fields.

• We have found that time-dependent problems are not as exacting on the spaces as the ideal-MHD eigenvalue computations, where marginal conditions are scanned.

• However, if resonances are inadequately resolved, the system acts as if it were ideal, where the C^0 space leads to unphysical couplings.

Future Modeling

We must reconsider the solution space when adding new closures.

Adding closures with high derivatives certainly requires change:

• Solution spaces either needs greater continuity (not trivial) …

$$
\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} \sim -\nabla \times \frac{1}{ne} \nabla \cdot \mu_e \nabla \left(\mathbf{V} - \frac{1}{\mu_0 n e} \nabla \times \mathbf{B} \right)
$$

FE & time-discrete with C¹ continuity requirements:

$$
\int dVol \left(\mathbf{C} \cdot \Delta \mathbf{B} - \frac{\Delta t \mu_e}{\mu_0} \nabla \left(\frac{1}{ne} \nabla \times \mathbf{C} \right)^T : \nabla \left(\frac{1}{ne} \nabla \times \Delta \mathbf{B} \right) \right)
$$

=
$$
\int dVol \frac{\Delta t \mu_e}{\mu_0} \nabla \left(\frac{1}{ne} \nabla \times \mathbf{C} \right)^T : \nabla \left(\mathbf{V} - \frac{1}{\mu_0 n e} \nabla \times \mathbf{B}^{old} \right)
$$

for all vector functions **C** in the same polynomial space as **B**.

Future Modeling: continued

• We have to add to the number of fields being solved simultaneously, the rate of strain tensor in this example:

$$
\int dVol \left(\mathbf{C} \cdot \Delta \mathbf{B} + \frac{\Delta t \mu_e}{ne} \nabla \times \mathbf{C} \cdot (\nabla \cdot \Delta \mathbf{W}_e) \right) = -\int dVol \frac{\Delta t \mu_e}{ne} \nabla \times \mathbf{C} \cdot (\nabla \cdot \mathbf{W}_e^{old})
$$

$$
\int dVol \left(\mathbf{X} \cdot \Delta \mathbf{W}_e + \frac{1}{ne} \nabla \times \Delta \mathbf{B} \cdot (\nabla \cdot \mathbf{X}) \right) = 0
$$

for all vector functions **C** in the same polynomial space as **B** and all $\underline{\mathbf{X}}$ in the same space as $\underline{\mathbf{W}}_e$.

This approach was used to test the Harned-Miki ć semi-implicit Hall advance in NIMROD. Solving the larger system (with just a 3-vector auxiliary field) of equations was slower.

Summary & Discussion

• Finite elements can work well (geometry, anisotropy, etc.) on relatively simple systems of equations if we understand the properties of the operators and use this knowledge when constructing the finite-dimensional spaces.

• What will be the spectral properties of our new systems of equations?

• If we're not sure, or the answer is subject to frequent change, we may need to adapt a more robust representation. Possibilities include:

• Spectral elements (very high order polynomials but presently low order continuity at macro-element interfaces)

• Discontinuous Galerkin (high-order finite volume--keep interelement surface integrals--mostly used for shock-capturing)

Can we close this gap?

Analytic theorist thinks, "Why are you solving an irrelevant system of equations?"

Computationalist thinks, "Why are you developing equations that will never be solved?"

Resolution of extreme anisotropies (Lorentz force and diffusion)

Simple 2D test:

- Homogeneous Dirichlet boundary conditions on *T*
- Heat and perpendicular current have sources. $2\pi^2 \cos(\pi x) \cos(\pi y)$
- Analytically, the solution is independent of χ_{\parallel} ,

 $T(x, y) = \chi_1^{-1} \cos(\pi x) \cos(\pi y)$

• The resulting $T^{-1}(0,0)$ measures the effective \mathcal{X}_{\perp} , including the numerical truncation error.

