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Introduction
Analytical work for extended-MHD can be summarized 
for the non-specialist as:
• Macroscopic dynamics involve changes in the magnetic field 
(and topology).
• Electromagnetics only cares about sums of the lowest-order 
velocity moments of the particle distributions.
• The most concise description of macroscopic dynamics is 
expected to be from moment-based evolution equations. (?)

• Closure relations are needed to model the influence of 
distribution-function details on low-order moment evolution.
• Large effective mean-free-path and gyro-orbit effects 
preclude simple relations; we will likely see research 
continuing for many years. 



High-Order Derivatives
Even relatively simple models can lead to high-order 
derivatives:
• For collisional plasmas, the electron parallel stress, for example, 
is proportional to 
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• Using VCOM and J instead of Vi and Ve is advantageous for low 
frequency (no displacement current), but We then contains terms
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• With E proportional to the divergence of electron stress, the 
combined Faraday’s/Ohm’s evolution equation for B has four 
spatial derivatives on B.
• Even if we’re not interested in collisional behavior, related 
collisional operators may be needed for semi-implicit advances or 
‘physics-based’ preconditioning.



Computation: ideal situation
In a perfect computational world, the hard work would 
be done once we know the system of equations:
• We would be able to program any nonlinear PDE or integro-
differential system easily. 
• The code would run efficiently on laptops, massively parallel 
architectures, and whatever performance machines will be like in
the next 5-10 years.
• We would achieve qualitatively correct results at low spatial and 
temporal resolution.
• We would achieve quantitatively correct results at high 
resolution.
• Convergence from low resolution to high resolution would be 
rapid.



Computation: reality
In the real computational world, the hard work is not 
over once we know the system of equations:
• Even the simplest description of macroscopic dynamics, MHD, 
presents challenges for numerical computation.

• Stiffness
• Anisotropy
• Nonlinearity
• Geometry (device and equilibrium)
• Divergence constraint

• Increasing the complexity of the model compounds the first 
three and makes verification increasingly difficult.
• Present-day temporal algorithms rely on specially tailored 
advances or preconditioners.
• The spatial mesh cannot be perfectly aligned with B.



Spatial Representation
Element-based methods are favored (M3D & NIMROD 
and don’t forget eigenvalue codes ER/G-ATO, PEST, etc.): 
• Modeling complicated geometries is relatively straightforward.
• Self-adjoint differential operators lead to symmetric or Hermitian 
matrices, by construction, in the discrete representation.

• Eigenvalues of the respective operators remain real.
• Maintaining this property with finite differences can be quite 
challenging.

• Boundary conditions are either built into the solution space or
addressed by surface integrals.

• There are no ghost points or 1-sided differences.
• High-order finite volume methods are related.
• There are spectral versions of the method.



Element Basis Functions
• Local representations must include the lowest-
order polynomials to guarantee convergence 
(connection to Taylor expansion).
• Polynomial basis functions (uniform Lagrange, 
Gauss-Lobatto-Legendre, modal) may have 
degree>1:

• Control magnetic divergence error
• Put curvature in mappings
• Achieve high-order convergence without 
uniform meshing
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High-Order Bases: constraint relations
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Magnetic divergence in a tearing-
mode calculation.

Scalings show convergence rates 
expected for first derivatives.
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‘Error diffusion’ is added to Faraday’s law:

for all vector test functions c*.

The ratio of DOF/constraints is 3 in the 
limit of large polynomial degree.



High-Order Bases: resolution of extreme anisotropy
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Critical island width vs. χ||/χperp
Numerical results are from bicubic 
polynomials.  Wc shows where diffusion 
time-scales match [Fitzpatrick, PoP 2, 
825 (1995)].
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With anisotropy, heat transport across 
magnetic islands is a competition between 
parallel and perpendicular processes.
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Finite Element Solution Properties
Solution spaces are central to the finite element method, 
but the differential operators in the system influence which 
spaces are suitable.
• Analytically,        in the MHD force perturbation, thermal 
conduction, and other operators leads to distinct modes.
• Numerically, we apply these operators to finite-dimensional spaces 
that do not have the same ‘flexibility.’

• Though local, polynomial bases do a poor job of representing 
delta functions at         resonances (singular effects).
• Standard polynomial-space solutions of weak-form equations 
do not separate precisely into longitudinal and solenoidal parts.

• Special low-order spaces and approximations were developed for 
ideal-MHD eigenvalue computations to avoid artificial coupling of 
shear & compression.
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Requirements for the Method
Standard methods and analyses rest on conforming
approximations.
(conforming meaning that the finite-dimensional spaces belong to the 
same space as that of the analytical Galerkin problem)
• If the original PDE system               has derivatives of order 2m
appearing explicitly, the weak form requires square-integrable 
derivatives of order m.

• Expansion of the space relies on completeness
• Necessary for identifying good solutions (weak form of the 
operator creates a norm, at least in symmetric problems)
• Examples:

• m=1 for visco-resistive MHD with primitive variables
• m=2 for same with a potential rep.
• m=2 with electron viscosity and primitive variables.

• Implies Cm-1 continuity is required.
• A regular (not uniform) discretization is also required.
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Present Modeling
Present numerical models (speaking for NIMROD, at least) 
are not perfect.
• To allow for viscosity and diffusive thermal conduction, NIMROD
presently uses C0 for all fields.
• We have found that time-dependent problems are not as exacting on 
the spaces as the ideal-MHD eigenvalue computations, where 
marginal conditions are scanned.
• However, if resonances are inadequately resolved, the system acts 
as if it were ideal, where the C0 space leads to unphysical couplings.



Future Modeling
We must reconsider the solution space when adding new 
closures. 
Adding closures with high derivatives certainly requires change:
• Solution spaces either needs greater continuity (not trivial) …
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FE & time-discrete with C1 continuity requirements:
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for all vector functions C in the same polynomial space as B.

… or …



Future Modeling: continued
• We have to add to the number of fields being solved 
simultaneously, the rate of strain tensor in this example:
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This approach was used to test the Harned-Mikić semi-implicit 
Hall advance in NIMROD.  Solving the larger system (with just a 
3-vector auxiliary field) of equations was slower.

for all vector functions C in the same polynomial space as B and 
all      in the same space as        .X eW



Summary & Discussion
• Finite elements can work well (geometry, anisotropy, etc.) on 
relatively simple systems of equations if we understand the 
properties of the operators and use this knowledge when constructing 
the finite-dimensional spaces.

• What will be the spectral properties of our new systems of 
equations?

• If we’re not sure, or the answer is subject to frequent change, we 
may need to adapt a more robust representation.  Possibilities 
include:

• Spectral elements (very high order polynomials but presently 
low order continuity at macro-element interfaces)

• Discontinuous Galerkin (high-order finite volume--keep inter-
element surface integrals--mostly used for shock-capturing)



Can we close this gap?

Analytic theorist thinks, “Why are you solving an irrelevant 
system of equations?”

Computationalist thinks, “Why are you developing equations 
that will never be solved?”





Resolution of extreme anisotropies 
(Lorentz force and diffusion)
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Simple 2D test:

• Homogeneous Dirichlet boundary 
conditions on T

• Heat and perpendicular current have 
sources.

• Analytically, the solution is 
independent of χ||, 

• The resulting measures the 
effective      , including the numerical 
truncation error.
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