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TOPICS

• What are the most important parts of the ‘two-fluid’ model?

• Two-fluid plasma model extends MHD

– Independent electron and ion motion.

– Breaks MHD geometrical symmetries → important in nonaxisymmetric devices/processes.

• M3D: large amount of work with MHD and 2F+ models shows that even lower order moments

are not well understood, esp. NL

– MHD (simplest: ∂n/∂t ≡ 0, no thermal conductivity)

– Simplest 2F is drift ordered drift motions + MHD

– Anisotropic pressures/temperatures

• Important processes — parallel thermal equilibration and ∂n/∂t, even in MHD

• Particle effects (orbits, Landau Damping, etc)

• For physics, how high an order should “two-fluid” equations be?

Lower order equations (up to heat flux q, with anisotropic temperatures) + particle closures?



Large amount of work done with M3D “two-fluid” models: The view from
simulation — Don’t need all terms in complete ‘two-fluid’ expansion to get the
important physics for fusion plasmas. Other processes may be more important.

• ‘Two-fluid’ models break the MHD single fluid constraint.

• For toroidal plasmas, this also breaks the MHD geometrical symmetries. Thus even a few 2F

terms can have big effects.

The MHD equations in a toroidal plasma with

(i) density n uniform and fixed in time;

(ii) up-down symmetry;

(iii) no equilibrium rotation;

allow two possible parities in (θ, φ), f(r, θ, φ) = ±f(r, −θ, −φ), where the sign gives the

parity. If one MHD variable has only a single parity (+ or −), then the parities of all other

MHD variables are determined. An axisymmetric equilibrium has a single parity, eg, p is +.

Many common MHD instabilities tend to remain in same parity space (eg, tearing and ballooning

modes). Also, in many cases, breaking of the conditions above adds only small corrections.

The two-fluid additional terms mix the parities, as do other kinetic, etc terms.

(In stellarator, where equilibrium has both parities of equal size, the 2F steady states are very

different from MHD.)

• Keep M3D multilevel approach, limits are simpler physical or geometrical models

– Drift-ordered (but keeps full MHD velocity) (reference velocity = vmhd = vGC for fluid



(ion) guiding center), to get diamagnetic effects.

Mostly scalar pressure, some anisotropy trials.

– Full 2F (ref. velocity = vi ion fluid velocity). Has numerical problem with whistler wave,

but in practice there should be a scale-length cutoff L ' ρi at ion gyro-radius.

– Ion GK particles + electron fluid.







Relative sizes of two-fluid terms

• Anisotropic pressures (temperatures)

In tokamak, find that δTj/Tj is small (few ×10−4), and δTj is noisy, although flux-surface

averages are smoother.

• Two other fluid-based processes have strong effects, even in MHD.

– Parallel heat flux, expressed as a parallel thermal equilibration (along magnetic field lines).

– Plasma density evolution ∂n/∂t from continuity equation have strong effects. (∂n/∂t with

nonuniform no(x) breaks MHD symmetries, although effect is mostly small in axisymmetric

plasmas.)

– Little explored, especially in nonlinear MHD.

• What should parallel heat flux be? Want Landau damping and FLR, anomalous turbulent

effects.

• Easier to make and test physical models of heat fluxes than next order moment r’s.

Also, harder to maintain convergence of higher moment equations.

• In many other cases, non-fluid effects are strong: Need particles.

– NSTX (ie, tight aspect ratio plasma) with strong toroidal rotation

– Edge pedestals in H-mode (ion orbit losses)

– Sawtooth, fishbones with hot particles

– Landau damping in coll’less and semi-collisional tearing

• Need particle effects, not just as fluid closures.



Anisotropic temperature evolution equations
(P.B. Snyder et al, Phys. Plasmas 4 3974 (1997))
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• (νsδT ) represents the collision term (simplest form shown, using the BGK collision operator).

• The heat fluxes q‖, q⊥ from standard M3D models.

Momentum equations: stress tensor term ∇ · Π‖
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• The neoclassical parallel viscous stress and the perpendicular components appear naturally.



Parallel component of the electron collisional parallel viscous stress, X = (1/(enB2))B·∇·Πe‖,

for large (2,1) islands.

a b
Island calculated using the flux-surface-averaged

neoclassical expressions for b̂·∇·Πj‖ for the elec-

trons and ions, X ' (1/3enB)(nme/τe)µ0eUθe

where µ0e is the neoclassical coefficient for the

flow Uθe, with equilibrium ∇Tj = 0. a) Contours

and b) profile as a function of minor radius, left

side along θ = π/2 in (a) (upper vertical axis)

and right side along θ = 0 (right horizontal axis).

Helical symmetry.

c d
Island calculated by evolving δTj with MHD, with

∇Tj 6= 0, starting from initial MHD island in

torus. c) Contours and d) flux surface average,

based on the equilibrium field, as function of mi-

nor radius [0,a]. Axis and edge values are zero.

Top bars show location of islands.



• CYLINDRICAL 1/1 INTERNAL KINK shows the ω∗i-stabilizing effect is related to internal

rotation of the mode. The kink inside q < 1 rotates poloidally relative to the magnetic X-point

at q ' 1, most out of phase at maximum stabilization ω∗i/γMHD ' 2.

Growth rate Internal poloidal shift

o pe = pi, � pe ≡ 0 solid vir, open vr,GC
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• Radial perturbed diamagnetic flow ṽ∗ir = ˜(B × ∇pi/enB2)r ' −Bφo(imp̃i/r)/(enB2

o) is

always π/2 out of phase with p̃.

Total ion flow ṽir = ṽ∗ir + ṽr,GC (GC is guiding center flow perpendicular to B).

As ω∗i/γMHD increases, ṽ∗ir > ṽr,GC and the kink flow rotates poloidally (counterclockwise).

ṽr,GC also rotates in the same direction.



J̃z

ṽir

ω∗i/γT = 0
MHD

J̃z

ṽir

ω∗i/γT = 1.06

J̃z

ṽir

ω∗i/γT = 1.9





∇‖pe destabilization of tearing

• In a tokamak, ∇‖pe in Ohm’s law increases nonlinear magnetic reconnection rates and saturated

island sizes. Turning on the term from MHD increases the nonlinear reconnection rate and island

size. Turning off the term reduces the island to the original size.

• Time evolution of 2/1 island width in a TFTR supershot-like tokamak pe/p = 0.5 with MH3D-

T. (Steep pressure profiles → strong effect.)

blue MHD island (saturates)

red x ∇‖pe on at t = 440

red • ∇‖pe turned off at t = 980

red � ∇‖pe on, but fast ‖ equilibration.Island Width

0 1000 2000

time (τA)



a) ∇pe in Ohm’s

law, φ = 0

b) φ = π/2

c) MHD, φ = 0 d) φ = π/2

∇‖pe in Ohm’s law causes fast nonlinear

growth of the resistive island over MHD,

when the density evolves.

Two-fluid resembles MHD, except more

m = 4 component.



a) B · ∇Te → 0

accel.

b) B · ∇pe → 0

accel, at fixed n.

Parallel gradient B · ∇pe in Ohm’s law

drives island growth.

Acceleration of B ·∇Te → 0 leaves density

contribution to B · ∇pe.

Acceleration of B ·∇pe → 0 reduces island

growth to ∇pe ' 0 level.



Two-fluid magnetic reconnection may set the intrinsic limit on beta in stellara-
tors — a soft beta limit.

• Nonlinear magnetic reconnection rates at low-order rational surfaces are enhanced by increasing

electron pressure, due to ∇‖pe/en in Ohm’s law.

pe/p = 0.05 pe/p = 0.5 pe/p = 0.95

• Two-fluid reconnection rates increase strongly with beta at high beta.

β = 8%

pe/p = 0.5

t = 50.3



Parallel thermal equilibration and density evolution

• M3D parallel heat flux due to thermal equilibration, not diffusive temperature gradient κ‖∇‖T .

– Modeled by wave propagation (’artificial sound’ method) at given velocity (typical va =

vth).

– For T , preserves flux-tube-integrated pressure.

– Time-dependent, not instantaneous.

• Parallel thermal equilibration has very strong effect on typical tokamak macro-instabilities.

– Physically, decouples cross-field dependence in favor of along field line.

– But, to equilibrate temperature completely over a large island takes a very long time,

multiple 105 toroidal transits.

• Density evolution, ∂n/∂t by continuity equation, has opposing effect.

– Parallel thermal equilibration operates only on Tj, not n, and n is not well equilibrated

except for slow processes.

– Compressibility across field lines introduced, sim to non-reduced vs reduced MHD.

• Density evolution in MHD couples different-n modes (islands) more closely (NL).

• In 2F, parallel thermal equilibration effect reduced still further, since Te has fast (vthe) equili-

bration, while Ti slower.

Find that Te is often enough to simulate MHD.



Parallel thermal equilibration and density evolution have strong opposing

effects on linear MHD resistive ballooning mode with m > 1 in a torus

(m/n=3/2).

p u Parallel thermal equilibration on

T and ∂n/∂t, γ = 0.029.

Eigenfunctions similar to case

κ‖ ≡ 0, ñ ≡ 0, γ = 0.032.

p u Parallel thermal equilibration

(on p) with ñ ≡ 0 stabilizes

mode (γ < 0).

Radial structure breaks up.



MA=0.2
Sh=0.3
ρmax=1.1
ρmin=0.5
RelSh=1

MA=0.2
Sh=0.3
ρmax=1.2
ρmin=0.5
RelSh=0.8

MA=0.2
Sh=0.3
ρmax=1.8
ρmin=0.15
RelSh=1.9

Density profile dependence on Physics model

MA=0.2
Sh=0.3
ρmax=1.1
ρmin=0.5
RelSh=1

MHD Two-Fluids

Hybrid Hybrid: trapped
0.2h hP P ⊥P ;1.2h hP P ⊥P ;

NSTX ε=1.3 qo=0.8 qb=5



Neoclassical Parallel Viscous Stress

• Major parts of neoclassical parallel viscous stress effect can be modeled very simply.

Magnetic island driven by neoclassical MHD for ∇Tj = 0, equilibrium Ti = Te.

                       

o5b16

The m = 2, n = 1 island is stable

with resistive MHD, but becomes

unstable when the (‖ part of) neo-

classical MHD parallel viscous forces

are included. The saturated island,

shown here as contours of the he-

lical magnetic flux (top left) and

the electron pressure (top right), ro-

tates with ω ' 0.7ω∗i in the guiding

center frame (v⊥ shown at bottom

left) and with ω ' 0.3ω∗e in the

lab (plasma mass) frame (vi⊥, bot-

tom right). Without the neoclassi-

cal terms, a saturated island would

have ω = 0. The ion poloidal mo-

mentum damping due to B ·∇ ·Πi‖,

also makes vi⊥ ' 0 outside the is-

land (bottom right).



SUMMARY

• Two-fluid M3D code — extensive work with MHD and simple 2F and kinetic models shows

that important extended MHD terms are not just 2F.

• Two-fluid plasma processes are important — axisymetric MHD symmetry broken. 2F diamag-

netic terms important.

• Parallel thermal equilibration (conduction/Landau damping) with density evolution has strong

effects, related to 2F terms.

Need good model that can be related to physics. Better than going to next order.

• Particle effects important for fusion plasmas, not in fluid closures. Combine fluid and particle

models.


