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Capsule History of M3D
• Original MH3D (W.P., early 1980s) was a serial Fortran code in a single source file solving resistive 

MHD using finite differences on a radial mesh with spectral treatment of θ and φ.

• Over more than a decade, gradual refinements and enhancements of the physical model (hybrid [W.P.] 
and two-fluid [L.S.] models) and numerical scheme (finite elements [H.S.]) were accreted onto this 
program, forming the Multilevel 3D Code (M3D). This was eventually parallelized using OpenMP.

• Around 1999, X.T. set out to create an MPI version of the code. Doing a complete rewrite, he created a 
C code distributed over many files within two layers of directories, using linear triangular finite elements 
on a domain decomposed both poloidally and toroidally to solve MHD only, using the PETSc software 
library to handle communications and linear solves. This was ParM3D.

• In order to retain much of the physics and flexibility of the original version, H.S. undertook to couple the 
two codes together, using ParM3D for mesh generation, I/O, and linear solvers with the original Fortran 
“m1.F” as the physics driver. Data would be passed between the C and Fortran parts of the new code 
using a new set of Fortran and C interface routines. Much of the now-unused part of ParM3D was left 
in the distribution in vestigial form. This is M3DP (still referred to as M3D).

• A CVS repository for the modern M3D was started in 2001. Changes made since then are archived in 
/p/m3d/README on the PPPL Unix cluster. Highlights include refinement of the two-fluid options;
improvement and parallelization of the hot particle treatment; addition of 2nd- and 3rd-order element 
options; and addition of vacuum region/resistive wall capability. The current version number is 3.5.12.



Platforms

OpenMP MPI
IBM SP (Seaborg) Y Y

Opteron cluster (Jacquard) Y

IBM Power 5 (Bassi) ? Y
Cray X1E (Phoenix) Y*

Cray XT3, XT4 (Jaguar) Y

SGI Origin 2000 (Hecate) Y

SGI Altix (MHD) Y Y
BlueGene/L, Argonne Y*

M3D has been ported to the following computers at NERSC, NCCS, 
Princeton, and ANL:

*Not used for production runs.



Statistics
• Source code is divided into four directories (m3d, mhd, mesh, utility) with 34 

subdirectories.

• There are approximately 264 C source files, 216 C header files, 33 Fortran 
source files, 16 Fortran header files, and 35 Makefiles.

• There are approximately 52,000 lines of C and 97,000 lines of Fortran 
source code.

• This includes a lot of code that is no longer executed (or, in many cases, 
compiled), but excludes standalone post-processing utilities and many trial 
routines that have not yet been committed to the repository.

• Libraries required include PETSc, parallel HDF5, and sometimes FFTW.

• Three standard input files (plus batch script), others optional; recently 
consolidated to a single Python script.

• Performance record: 240 Gflops on 10,240 XT3 cores (VN mode) during a 
1D weak scaling test.
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Extended MHD Equations
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M3D Scalar Variables
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M3D Form of the Resistive MHD Equations

Continuity:
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Evolution of the Compressible Velocity
From the definition of the velocity, it is clear that
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Evolution of the Toroidal Velocity

Dot the momentum equation with     to find ˆ
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Electrostatic Potential
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Evolution of the Poloidal Field
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Evolution of the Toroidal Field
The magnetic field is completely specified by two scalar functions; the auxiliary 
variable F is related to the non-vacuum toroidal field Ĩ/R by the elliptic equation 
given earlier.  The evolution of Ĩ can be found from the toroidal component of the 
field equation:
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The Energy Equation
The energy equation in the resistive MHD version M3D is normally solved in terms 
of the plasma pressure; simple substitution of the code variables into the pressure 
equation gives
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The M3D Mesh
• Uses linear basis functions on 

unstructured triangular finite element 
mesh in each constant-φ plane.

• 3 parameters control mesh resolution: # of 
planes, # of radial grids, # of theta sections.

• Mesh has same topology in all planes. In 
the tokamak case, it has the same geometry 
in all planes as well.

• Mesh is aligned with equilibrium flux 
surfaces (from VMEC-generated input files) 
but does not follow field lines.

• Uses either 4th-order finite differences or 
pseudo-spectral derivatives between 
planes.



Packing the Mesh at a Flux Surface
In order to resolve fine structures at a particular surface, the option exists to concentrate
zones of the M3D mesh about a given minor radius (1D packing).

Command line options:
-packingFactor <pf> Ratio of packed to unpacked mesh density.
-packingRadius <x0> Relative position of packing surface (from 0 to 1).
-packingWidth  <w> Relative width of peak packing area (on 0 to 1 scale).

Example: pf=4.0; x0=0.5; w=0.12:
Before packing After packing



Linear Finite Elements
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Boundary Conditions

• All calculations use a fixed boundary.

• Standard cases use perfectly conducting wall, 
with or without a “slot”.

• Slip or no-slip conditions may be imposed.

• Most of these are realized as Dirichlet b.c.s in 
linear solves.  Exceptions: F, χ use Neumann.



Domain Decomposition

Poloidal
(cross-section view)

Toroidal
(overhead view)

or

D = 1
F = 5

D = 3
F = 3

B = 16
Linear solves are independent on each processor Linear solves are parallel over processors

3 parameters control domain decomposition: # of toroidal PEs, # of radial PEs, # of theta PEs.
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Time Discretization, Overview
• Equations (1-6) are advanced explicitly, except for 

parabolic and fast wave terms.

• Time discretization is typically 1st order, forward-in-time. 
2nd-order predictor-corrector is also an option.

• Artifical sound term, if selected, is advanced in subcycles 
of the main time step.

• Code execution time is dominated by ~13 linear solves 
per time step, each of size N, where N is the number of 
vertices in a single plane.
– Elliptic solves are more expensive than Helmholtz.
– Neumann b.c.s are more expensive than Dirichlet.



Schematic of Equation Solve
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1. Recompute dt based on CFL condition for shear Alfvén wave.
2. Adjust resistivity profile to track temperature.
3. Compute 
4. Advance particles if hybrid option is on.
5. Solve (2a) for vorticity            ; ideal terms explicitly, followed by implicit solve 

for viscous term and elliptic solve for U.
6. Simultaneously solve (5) for toroidal field, (2b-c) for ∇⊥χ, and ideal part of (6) 

for pressure or temperature implicitly (in-plane) to step over fast wave time 
scale. Integrate to solve for χ.  Many terms are still explicit; resistivity, viscosity 
and heat diffusion are still implicit, perpendicular to ∇ϕ.

7. Apply perpendicular (or isothermal) heat conduction.
8. Advance (1) for density ρ.
9. Advance artificial sound wave.
10. Advance (2d) for toroidal velocity.
11. Solve elliptic equation (3) for electrostatic potential.
12. Solve (4) for ψ or Δ*(4) for Ca followed by an elliptic solve for ψ.
13. Solve elliptic equation for F.
14. Diagnostics, output, checkpointing.

Order of Operations in Main Loop
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Artificial Sound Wave Substep
T us
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Repeat napmax times:
• Solve T equation with reduced time step rdtdp

explicitly.

• Solve hyperbolic part of u equation explicitly.

• Solve parabolic part of u equation implicitly.

• Check stability.



Linear vs. Nonlinear
By default, the time advance is fully nonlinear. However an option exists 
to search for linear toroidal eigenmodes.

• Begin by adding a perturbation with toroidal mode #n to velocity 
variable U in equilibrium.

• With pseudospectral method, only three planes are needed to resolve 
the mode. (Use number of field periods = n).

• After each nonlinear advance of a variable, find the mode n
component, add to the n=0 component from the original equilibrium to 
get advanced-time value.

• Fastest-growing mode will eventually dominate over others; growth 
rate determined from rate of change of total kinetic energy.

• Rescale perturbed quantities periodically to keep total kinetic energy 
below nonlinear level but above noise.
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PETSc
• Portable, Extensible Toolkit for Scientific Computation.

• MPI-based suite of data structures & routines for parallel solution 
of PDEs.

• Maintained by PETSc group, Mathematics and Computer 
Science Division, Argonne National Lab.

• Latest version is 2.3.2.

• The MPI version of M3D is highly dependent on PETSc.
• Uses versions 2.1.6, 2.3.0. 
• Parallel data structures, ghost exchanges

• Vectors (variable fields)
• Matrices (linear operators)

• Linear solves – great flexibility in solver choices
• Asymmetric operators: GMRES
• Symmetric operators: CG
• Direct solves (SuperLU), Multigrid

• Most of M3D computation occurs in PETSc solves, so we rely on 
PETSc optimization for performance, scalability.



HDF5
• Hierarchical Data Format

– Widely adopted and supported portable binary format
– Allows self-describing data organized in file-system-

like hierarchies.
– Random access

• M3D uses HDF5 as its primary output option.
– A subset of the fields in the checkpoint (12 scalar, 1 

vector) is written every several time steps, in single 
precision.

• Mesh is described as a set of triangular prisms.
• Data values are given at vertices.

– Checkpoint files can also be converted between native 
binary and HDF5 for intersystem portability.

– UCD (text) output is another option; the OpenMP 
version can also produce NCAR graphics.
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Stellarator
(H. Strauss)

ϕ = π/6 ϕ = π/3ϕ = 0

• By generating a mesh from a 3D equilibrium 
file, M3D can run stellarator cases.

• Planes can be made to span just one field 
period.

• Toroidal derivatives require extra terms for 
toroidal mesh variation, impacting speed 
and accuracy. Ballooning mode in NCSX



Two Fluid
(L. Sugiyama)

• A hierarchy of extended MHD models exists in M3D.

• The simplest uses the drift ordering to approximate the 
ion gyroviscous stress tensor term in the momentum 
equation (-∇·Πi

gv) using the diamagnetic drift velocity:

• The Hall term can also be added to Ohm’s law, 
introducing the dispersive whistler wave, which is very 
difficult to stabilize.
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Hybrid (Kinetic Hot Ions)
(G. Fu)

• Gyrokinetic particle push based on GTC group’s formulation.

• Large ensemble of ions substepped through interpolated M3D B field.

• Hot ions couple back to fluid model through pressure tensor:

• MPI Parallelization follows domain decomposition of M3D mesh; particles 
can move between processors.

• Typical particle push time is comparable to fluid advance time.

• Fully kinetic ion model (with fluid electrons) also exists.

( )*
i ih

d P
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where

based on moments taken over the particle distribution function



Higher-Order Elements
(H. Strauss, J. Chen)

2nd-order Lagrange 2nd-order lumped

3rd-order Lagrange 3rd-order lumped

• 2nd and 3rd-order polynomial elements are available.
• Formed by adding nodes to existing mesh triangles.
• In “lumped” elements, nodes are placed at quadrature points of integral, resulting 

in a diagonal mass matrix for much faster evaluation, at a cost of more vertices.



Resistive Wall
(H. Strauss, J. Breslau)

• OpenMP code uses external package to generate 
vacuum-region mesh extending M3D mesh out to 
wall.

• Mesh may exclude axis region (not shown) with 
internal boundary condition.

• MPI version can initialize from mesh+data file 
generated by OMP version.

• Vacuum region treated as low density, low 
temperature (high η) plasma.

• Boundary conditions on fields at wall are applied 
using Green’s functions precomputed by GRIN for 
each toroidal mode based on boundary geometry.

VDE in ASDEX (early time).
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Concluding Thoughts
• The proliferation of new physics modules, options, and numerical

techniques has made M3D very versatile and flexible but also very 
complex and challenging to maintain.

• A set of thorough standard tests for validation is badly needed.

• The code has been very productive on present machines, 
producing results few other MHD codes are capable of.

• But it could be a lot more efficient, and scaling up usefully to
petascale runs remains a formidable hurdle.

• Need more implicitness.
• Need higher order elements.
• Need efficient, scalable solvers.
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