
Present Status of M3D

Josh Breslau
and the M3D group

PPPL

FDM3D Workshop
Princeton

March 19, 2007

Outline
• Overview

– Version history
– Platforms
– Statistics

• Equations
– Standard form
– M3D form

• Spatial Discretization
– Meshing
– Linear elements
– Domain decomposition

• Time advance
– General form
– Detailed scheme
– Artificial sound wave
– Linear operation

• Libraries
– PETSc
– HDF5

• Other Options
– Stellarator
– Two-fluid
– Hybrid
– Higher-order elements
– Resistive wall

• Concluding thoughts

Capsule History of M3D
• Original MH3D (W.P., early 1980s) was a serial Fortran code in a single source file solving resistive

MHD using finite differences on a radial mesh with spectral treatment of θ and φ.

• Over more than a decade, gradual refinements and enhancements of the physical model (hybrid [W.P.]
and two-fluid [L.S.] models) and numerical scheme (finite elements [H.S.]) were accreted onto this
program, forming the Multilevel 3D Code (M3D). This was eventually parallelized using OpenMP.

• Around 1999, X.T. set out to create an MPI version of the code. Doing a complete rewrite, he created a
C code distributed over many files within two layers of directories, using linear triangular finite elements
on a domain decomposed both poloidally and toroidally to solve MHD only, using the PETSc software
library to handle communications and linear solves. This was ParM3D.

• In order to retain much of the physics and flexibility of the original version, H.S. undertook to couple the
two codes together, using ParM3D for mesh generation, I/O, and linear solvers with the original Fortran
“m1.F” as the physics driver. Data would be passed between the C and Fortran parts of the new code
using a new set of Fortran and C interface routines. Much of the now-unused part of ParM3D was left
in the distribution in vestigial form. This is M3DP (still referred to as M3D).

• A CVS repository for the modern M3D was started in 2001. Changes made since then are archived in
/p/m3d/README on the PPPL Unix cluster. Highlights include refinement of the two-fluid options;
improvement and parallelization of the hot particle treatment; addition of 2nd- and 3rd-order element
options; and addition of vacuum region/resistive wall capability. The current version number is 3.5.12.

Platforms

OpenMP MPI
IBM SP (Seaborg) Y Y

Opteron cluster (Jacquard) Y

IBM Power 5 (Bassi) ? Y
Cray X1E (Phoenix) Y*

Cray XT3, XT4 (Jaguar) Y

SGI Origin 2000 (Hecate) Y

SGI Altix (MHD) Y Y
BlueGene/L, Argonne Y*

M3D has been ported to the following computers at NERSC, NCCS,
Princeton, and ANL:

*Not used for production runs.

Statistics
• Source code is divided into four directories (m3d, mhd, mesh, utility) with 34

subdirectories.

• There are approximately 264 C source files, 216 C header files, 33 Fortran
source files, 16 Fortran header files, and 35 Makefiles.

• There are approximately 52,000 lines of C and 97,000 lines of Fortran
source code.

• This includes a lot of code that is no longer executed (or, in many cases,
compiled), but excludes standalone post-processing utilities and many trial
routines that have not yet been committed to the repository.

• Libraries required include PETSc, parallel HDF5, and sometimes FFTW.

• Three standard input files (plus batch script), others optional; recently
consolidated to a single Python script.

• Performance record: 240 Gflops on 10,240 XT3 cores (VN mode) during a
1D weak scaling test.

Outline
• Overview

– Version history
– Platforms
– Statistics

• Equations
– Standard form
– M3D form

• Spatial Discretization
– Meshing
– Linear elements
– Domain decomposition

• Time advance
– General form
– Detailed scheme
– Artificial sound wave
– Linear operation

• Libraries
– PETSc
– HDF5

• Other Options
– Stellarator
– Two-fluid
– Hybrid
– Higher-order elements
– Resistive wall

• Concluding thoughts

Extended MHD Equations

() 2
it

ρ μ∗
⊥

∂⎡ ⎤+ ⋅∇ + = −∇ + × + ∇⎢ ⎥⋅∇
∂⎣ ⎦
v v v p J Bv v v

t
∂

= −∇×
∂
B E

|| ep
ne

η
∇

−+ × =E v B J

= ∇×J B

() 0it
ρ ρ∂
+∇ ⋅ =

∂
v

where

1e
i i e

pp pp p n p p
ne net

pγγ χ
ρ

γ⊥
∗ ∗ ⋅∇ ⎛ ⎞− ⋅

⎛ ⎞∂
+ ⋅∇ = − ∇ ⋅ + ∇ −∇⋅ ∇⎜ ∇ ⋅ + + ⋅∇⎟∂ ⎝ ⎠

⎜ ⎟
⎝ ⎠

Jv v Jv v

|| ||ee e
e e e e e

pp pp p n p
t ne ne

γ χ γ
ρ

∗
⊥

⋅∇ ⎛ ⎞∂ ⎛ ⎞
+ ⋅∇ = − ∇⋅ +∇ ⋅ ∇ + − ∇⋅ −⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

J J
v v v

T us
t ρ

∂ ⋅∇
=

∂
B

2u s T u
t

ν∂
= ⋅∇ + ∇

∂
B

Artificial sound wave model for κ||:

,i e ne
∗ ∗ ⊥≡ +

Jv v

||* *
i i e e ne

≡ − = − +
J

v v v v v

2 ,e
e

p
neB

∗ ×∇
≡ −

Bv

M3D Scalar Variables

()0
1B RF I
R

φ φψ ⊥= ∇ ×∇ + ∇ + + ∇

2 1
R

IF
φ⊥

∂
∇ = −

∂

1RJ FC
R zφ ψ∗ ∂

≡ − = Δ +
∂

2

0

ˆUR
R

VV φφ φχ⊥= ∇ ×∇ +∇ +

Field Variables Velocity Variables
Write

where

so that

where primes denote derivatives with respect
to φ and

Write

2 2
2

2 2

1 1 ,
R R R R R z

ψ ψ ψ ψψ ψ∗
⊥

∂ ∂ ∂ ∂
Δ ≡ ∇ − = − +

∂ ∂ ∂ ∂

2 2
† 2

2 2

1 1 .
R R R R R z

ψ ψ ψ ψψ ψ⊥
∂ ∂ ∂ ∂

Δ ≡ ∇ + = + +
∂ ∂ ∂ ∂

Note that

and

2 2
2

2 2 ,
R z
ψ ψψ⊥

∂ ∂
∇ ≡ +

∂ ∂

Others
() (), ,, or e i e ip Tρ

2

1 1J
R

I F C
R

φ φψ⊥ ⊥
⎛ ⎞′ ′= ∇ − ∇ ×∇ + ∇ − ∇⎜ ⎟
⎝ ⎠

M3D Form of the Resistive MHD Equations

Continuity:

() [] ()†

0 0

2 1 , ,
V VU RV U

t R z R R
φ φ

R
ρ ρρ ρ χ ρ ρ χ

φ φ
∂⎛ ⎞∂ ∂ ∂

= −∇⋅ = − Δ + + − − −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
(1)

[] ˆ, A B A BA B A B
R z z R

φ⊥ ⊥

∂ ∂ ∂ ∂
≡ ∇ ×∇ ⋅ = −

∂ ∂ ∂ ∂
Define Poisson Bracket

(), A B A BA B A B
R R z z⊥ ⊥

∂ ∂ ∂ ∂
≡ ∇ ⋅∇ = +

∂ ∂ ∂ ∂
and

Operate on the momentum equation with to get an equation for the
evolution of (called “w” in the code):

0
ˆR φ− ⋅∇×

† 2 1 UU U
R R⊥

∂
Δ ≡ ∇ +

∂

()† † † † † †

0 0

0 0
0 0 2 2 2

2

02

2, , ,

1 / 22 ,

1 ,

V VR U UU U U U U U
t R R z R R

V V VR I RC pR R B J
R z R R R R R R z

VR p R
R

φ φ

φ φ φ

χ χ
φ φ

χ
φ ρ ρ ρ

μφ
ρ ρ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎡ ⎤Δ = Δ − Δ −Δ Δ + − Δ −⎜ ⎟ ⎜ ⎟⎣ ⎦∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
⎧ ⎫⎛ ⎞⎡ ⎤ ⎛ ⎞ +∂ ∂ ∂⎪ ⎪+ + + ⋅∇ + ⋅∇ +⎨ ⎬⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂⎪ ⎪⎝ ⎠⎣ ⎦ ⎝ ⎠⎩ ⎭

⎛ ⎞⎡ ⎤ ∇
+ − ∇ ⋅∇×⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠

(2a)

Evolution of the Compressible Velocity
From the definition of the velocity, it is clear that

0

ˆ R UR V
R R z
χ∂ ∂
= ⋅ −

∂ ∂

(2b)

0

ˆ R Uz V
z R R
χ∂ ∂
= ⋅ +

∂ ∂
and

so that, again using the momentum equation,

()

2

0 0 0

2
02 2

1

1 1 ˆ

V V VR U R U U pV
t R R z t R R z R z R R R R

F I C FR I R V
R R R z R R z R

φ φ φχ χ χ
ρ

ψ ψ μ
ρ ρ ρ

⊥ ⊥

⎛ ⎞ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − − ⋅∇ + − − + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
′ ′⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + − + − + ⋅∇⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

and

()
0 0 0

2
02 2

1

1 1 ˆ

V VR U R U U pV
t z R R t z R R R R R z z

F I C FR I z V
R R z R z R R z

φ φχ χ χ
ρ

ψ ψ μ
ρ ρ ρ

⊥ ⊥

⎛ ⎞ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − ⋅∇ − + − −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
′ ′⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + − − − + + ⋅∇⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

(2c)

Evolution of the Toroidal Velocity

Dot the momentum equation with to find ˆ

(2d)

φ

()

() [] ()
0 0

2 2
2 2 3 3

2
2 2

0

1, ,

1 1 1 1, , ,
2

2

V V VR U pU V V V
t R R R R z R

I I F F F
R R R R

V R UV
R R R z R

φ φ φ
φ φ φ

φ
φ

χχ
ρ φ

ψ ψ ψ
ρ ρ ρ φ ρ φ

μ χ
ρ φ

⊥ ⊥

∂ ∂ ∂ ∂⎛ ⎞′⎡ ⎤= − − + − −⎜ ⎟⎣ ⎦∂ ∂ ∂ ∂⎝ ⎠
∂ ∂⎡ ⎤+ + + − ∇ + ∇⎣ ⎦ ∂ ∂

⎡ ⎤⎛ ⎞∂ ∂ ∂
+ ∇ − + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

Electrostatic Potential

If

(3)

B A= ∇×
B E
t

∂
= −∇×

∂
and then A E

t
∂

= − +∇Φ
∂

where, if we choose the gauge

0,A⊥∇ ⋅ = 2 .E⊥ ⊥∇ Φ = ∇ ⋅we find

For the resistive MHD Ohm’s law, that means

() ()

[] ()

2 2 0
2

0 0

2 2 2

1 1, 1 , , ,

1 1 1 1, , ,

V VRI II U U F V
R R R R z R R R

F I C I F
R R z R z R R R

φ φ
φ

χψ χ ψ

η ψ η η η ψ
φ

∗
⊥ ⊥

⎛ ⎞ ⎡ ⎤ ⎡ ⎤∂
∇ Φ = + + ∇ − Δ + + − −⎜ ⎟ ⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦⎣ ⎦⎝ ⎠

′ ′⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ′ ′⎡ ⎤+ − − + + − +⎜ ⎟⎢ ⎥ ⎣ ⎦∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

Evolution of the Poloidal Field
ˆ ,AR

t
φ ∂
⋅
∂

The time derivative of ψ (called “a” in the code) is simply

but for numerical stability, the quantity we generally choose to evolve is instead
:aC ψ∗≡ Δ

[] () () []
0 0

, , , , .R RU U F F C
t R R
ψ ψ χ ψ χ η

φ
∂ ∂Φ

= + − + + +
∂ ∂ (4)

[]

() ()

() ()

†

0 0 0

2 †

0 0 0

2

2 2, , 2 , 2 , ,

1 1, , 2 , 2 , ,

, , 2 ,

a
a

a

C R U U UU C U U
t R R R z z R R R R z R

R U F U F F F UU F U F U
R R R z z R R R R z z

C
R R

ψ ψ ψ ψψ

ψ χψ χ χ

⊥

⊥

∂ ⎧ ∂ ∂ ∂ ∂ ⎫ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= + Δ + + + +⎨ ⎬⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭
⎧ ∂ ∂ ∂ ∂ ⎫ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ ∇ + Δ + + + −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

∂ ∂
− ∇ + +

∂ ∂

()

2

2 2

2
2

1 12 , ,

1, , 2 , 2 , , ,

1

z z R R R R R

F F FF F F
R R z z R R R

R R

ψ χ χ ψ χψ

χ χ χχ χ χ

φ φ

⊥ ⊥

⊥

⎧ ∂ ∂ ⎫ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ∂ ∂ ∂ ∂ ⎫ ⎧ ∂ ∂ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ ∇ + ∇ + + − +⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭
∂ ∂ Φ

+ ∇ Φ −
∂ ∂ ∂

(4′)

Evolution of the Toroidal Field
The magnetic field is completely specified by two scalar functions; the auxiliary
variable F is related to the non-vacuum toroidal field Ĩ/R by the elliptic equation
given earlier. The evolution of Ĩ can be found from the toroidal component of the
field equation:

() ()

[] () ()

0
0

2
2

, , , ,

1 2 1 1, , ,

V V VI R IU I I R R F R I
t R R R R

FI F I F
R R z R R R

φ φ φχ ψ χ
φ

ψη η ψ η η

∗

∗
⊥

⎡ ⎤ ⎛ ⎞∂ ∂⎡ ⎤= − + + − + Δ −⎜ ⎟⎢ ⎥⎣ ⎦∂ ∂⎣ ⎦ ⎝ ⎠
′ ′⎡ ∂ ∂ ⎤⎛ ⎞′ ′ ′+ Δ − ∇ + + − + −⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

(5)

The Energy Equation
The energy equation in the resistive MHD version M3D is normally solved in terms
of the plasma pressure; simple substitution of the code variables into the pressure
equation gives

[] () †

0 0

2 1, ,
V Vp R p UU p p p

t R R R z R
φ φχ γ χ ρ κ p

φ φ ρ⊥

∂ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= − − − + Δ + + ∇⋅ ∇⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ⎝ ⎠⎝ ⎠ ⎣ ⎦

(6)

Outline
• Overview

– Version history
– Platforms
– Statistics

• Equations
– Standard form
– M3D form

• Spatial Discretization
– Meshing
– Linear elements
– Domain decomposition

• Time advance
– General form
– Detailed scheme
– Artificial sound wave
– Linear operation

• Libraries
– PETSc
– HDF5

• Other Options
– Stellarator
– Two-fluid
– Hybrid
– Higher-order elements
– Resistive wall

• Concluding thoughts

The M3D Mesh
• Uses linear basis functions on

unstructured triangular finite element
mesh in each constant-φ plane.

• 3 parameters control mesh resolution: # of
planes, # of radial grids, # of theta sections.

• Mesh has same topology in all planes. In
the tokamak case, it has the same geometry
in all planes as well.

• Mesh is aligned with equilibrium flux
surfaces (from VMEC-generated input files)
but does not follow field lines.

• Uses either 4th-order finite differences or
pseudo-spectral derivatives between
planes.

Packing the Mesh at a Flux Surface
In order to resolve fine structures at a particular surface, the option exists to concentrate
zones of the M3D mesh about a given minor radius (1D packing).

Command line options:
-packingFactor <pf> Ratio of packed to unpacked mesh density.
-packingRadius <x0> Relative position of packing surface (from 0 to 1).
-packingWidth <w> Relative width of peak packing area (on 0 to 1 scale).

Example: pf=4.0; x0=0.5; w=0.12:
Before packing After packing

Linear Finite Elements

(,) (,)j j
j

f R z f R zλ= ∑
2 2

,Mass matrix: (,)i j i j i j j
j j

f R z d x f d x M fλ λ λ= ≡∑ ∑∫∫ ∫∫
() ()2 2 2 2 2

iStiffness matrix: , j i j j i j
j

f R z d x f d x f d xλ λ λ λ λ⊥ ⊥ ⊥∇ = ∇ = ∇ ⋅ ∇∑∫∫ ∫∫ ∫∫{ }2
,i j i j j

j j

d x S fλ λ⊥ ⊥− ∇ ⋅∇ ≡∑ ∑∫∫

Galerkin method: integrate equations over each basis function to get “weak form” → linear algebraic equation.

1

2

3
1 2 3Side lengths , etc.dr r r≡ −

()1 ˆ3 linear basis functions ()
4

() 1; () 0

r r r dr

r r

α β α
β α

α α α β α

λ φ

λ λ
≠

≠

= − × ⋅
Δ

= =

∑

1
1 22

ˆArea dr dr φΔ = × ⋅

2 2
,"dRoverR" matrix: (,) ji i

j i j j
j j

f R z d x f d x R f
R R R R

λλ λ ∂∂
= ≡

∂ ∂∑ ∑∫∫ ∫∫

()
2

1 2 3
! ! !Handy identity: 2

2 !
m n m nd x

m n
λ λ λ

Δ
= Δ

+ + +∫∫

Linear basis functions on a triangle:

, , ,Lumped mass matrix (diagonal): i j i j i j
j

Mδ≡ ∑M

Boundary Conditions

• All calculations use a fixed boundary.

• Standard cases use perfectly conducting wall,
with or without a “slot”.

• Slip or no-slip conditions may be imposed.

• Most of these are realized as Dirichlet b.c.s in
linear solves. Exceptions: F, χ use Neumann.

Domain Decomposition

Poloidal
(cross-section view)

Toroidal
(overhead view)

or

D = 1
F = 5

D = 3
F = 3

B = 16
Linear solves are independent on each processor Linear solves are parallel over processors

3 parameters control domain decomposition: # of toroidal PEs, # of radial PEs, # of theta PEs.

Outline
• Overview

– Version history
– Platforms
– Statistics

• Equations
– Standard form
– M3D form

• Spatial Discretization
– Meshing
– Linear elements
– Domain decomposition

• Time advance
– General form
– Detailed scheme
– Artificial sound wave
– Linear operation

• Libraries
– PETSc
– HDF5

• Other Options
– Stellarator
– Two-fluid
– Hybrid
– Higher-order elements
– Resistive wall

• Concluding thoughts

Time Discretization, Overview
• Equations (1-6) are advanced explicitly, except for

parabolic and fast wave terms.

• Time discretization is typically 1st order, forward-in-time.
2nd-order predictor-corrector is also an option.

• Artifical sound term, if selected, is advanced in subcycles
of the main time step.

• Code execution time is dominated by ~13 linear solves
per time step, each of size N, where N is the number of
vertices in a single plane.
– Elliptic solves are more expensive than Helmholtz.
– Neumann b.c.s are more expensive than Dirichlet.

Schematic of Equation Solve

2

2

f f fu D
t x x

∂ ∂ ∂
+ =

∂ ∂ ∂

()

Generic mixed hyperbolic/parabolic equation:

*1. Explicit solve:
n

n n ff f t u
x

δ ∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠

Galerkin F.E. method

() ()*2
1

2

2. Implicit solve:

1 source
source

n
f

f
x D t

f
f

D tδ δ
+⎡ ⎤∂

− = −⎢ ⎥∂⎣

−
−

⎦

1. Recompute dt based on CFL condition for shear Alfvén wave.
2. Adjust resistivity profile to track temperature.
3. Compute
4. Advance particles if hybrid option is on.
5. Solve (2a) for vorticity ; ideal terms explicitly, followed by implicit solve

for viscous term and elliptic solve for U.
6. Simultaneously solve (5) for toroidal field, (2b-c) for ∇⊥χ, and ideal part of (6)

for pressure or temperature implicitly (in-plane) to step over fast wave time
scale. Integrate to solve for χ. Many terms are still explicit; resistivity, viscosity
and heat diffusion are still implicit, perpendicular to ∇ϕ.

7. Apply perpendicular (or isothermal) heat conduction.
8. Advance (1) for density ρ.
9. Advance artificial sound wave.
10. Advance (2d) for toroidal velocity.
11. Solve elliptic equation (3) for electrostatic potential.
12. Solve (4) for ψ or Δ*(4) for Ca followed by an elliptic solve for ψ.
13. Solve elliptic equation for F.
14. Diagnostics, output, checkpointing.

Order of Operations in Main Loop

2, I I Bε= +

†w U= Δ

Artificial Sound Wave Substep
T us
t ρ

∂ ⋅∇
=

∂
B

2u s T u
t

ν∂
= ⋅∇ + ∇

∂
B

Repeat napmax times:
• Solve T equation with reduced time step rdtdp

explicitly.

• Solve hyperbolic part of u equation explicitly.

• Solve parabolic part of u equation implicitly.

• Check stability.

Linear vs. Nonlinear
By default, the time advance is fully nonlinear. However an option exists
to search for linear toroidal eigenmodes.

• Begin by adding a perturbation with toroidal mode #n to velocity
variable U in equilibrium.

• With pseudospectral method, only three planes are needed to resolve
the mode. (Use number of field periods = n).

• After each nonlinear advance of a variable, find the mode n
component, add to the n=0 component from the original equilibrium to
get advanced-time value.

• Fastest-growing mode will eventually dominate over others; growth
rate determined from rate of change of total kinetic energy.

• Rescale perturbed quantities periodically to keep total kinetic energy
below nonlinear level but above noise.

Outline
• Overview

– Version history
– Platforms
– Statistics

• Equations
– Standard form
– M3D form

• Spatial Discretization
– Meshing
– Linear elements
– Domain decomposition

• Time advance
– General form
– Detailed scheme
– Artificial sound wave
– Linear operation

• Libraries
– PETSc
– HDF5

• Other Options
– Stellarator
– Two-fluid
– Hybrid
– Higher-order elements
– Resistive wall

• Concluding thoughts

PETSc
• Portable, Extensible Toolkit for Scientific Computation.

• MPI-based suite of data structures & routines for parallel solution
of PDEs.

• Maintained by PETSc group, Mathematics and Computer
Science Division, Argonne National Lab.

• Latest version is 2.3.2.

• The MPI version of M3D is highly dependent on PETSc.
• Uses versions 2.1.6, 2.3.0.
• Parallel data structures, ghost exchanges

• Vectors (variable fields)
• Matrices (linear operators)

• Linear solves – great flexibility in solver choices
• Asymmetric operators: GMRES
• Symmetric operators: CG
• Direct solves (SuperLU), Multigrid

• Most of M3D computation occurs in PETSc solves, so we rely on
PETSc optimization for performance, scalability.

HDF5
• Hierarchical Data Format

– Widely adopted and supported portable binary format
– Allows self-describing data organized in file-system-

like hierarchies.
– Random access

• M3D uses HDF5 as its primary output option.
– A subset of the fields in the checkpoint (12 scalar, 1

vector) is written every several time steps, in single
precision.

• Mesh is described as a set of triangular prisms.
• Data values are given at vertices.

– Checkpoint files can also be converted between native
binary and HDF5 for intersystem portability.

– UCD (text) output is another option; the OpenMP
version can also produce NCAR graphics.

Outline
• Overview

– Version history
– Platforms
– Statistics

• Equations
– Standard form
– M3D form

• Spatial Discretization
– Meshing
– Linear elements
– Domain decomposition

• Time advance
– General form
– Detailed scheme
– Artificial sound wave
– Linear operation

• Libraries
– PETSc
– HDF5

• Other Options
– Stellarator
– Two-fluid
– Hybrid
– Higher-order elements
– Resistive wall

• Concluding thoughts

Stellarator
(H. Strauss)

ϕ = π/6 ϕ = π/3ϕ = 0

• By generating a mesh from a 3D equilibrium
file, M3D can run stellarator cases.

• Planes can be made to span just one field
period.

• Toroidal derivatives require extra terms for
toroidal mesh variation, impacting speed
and accuracy. Ballooning mode in NCSX

Two Fluid
(L. Sugiyama)

• A hierarchy of extended MHD models exists in M3D.

• The simplest uses the drift ordering to approximate the
ion gyroviscous stress tensor term in the momentum
equation (-∇·Πi

gv) using the diamagnetic drift velocity:

• The Hall term can also be added to Ohm’s law,
introducing the dispersive whistler wave, which is very
difficult to stabilize.

() () 2
i e it

ρ μ∗
⊥

∂⎡ ⎤+ ⋅∇ + = −∇ + + × + ∇⎢ ⎥∂⎣ ⎦
⋅∇

v v v p p J Bv v v

||* *
i i e e ne

≡ − = − +
J

v v v v v,i e ne
∗ ∗ ⊥≡ +

Jv v 2 ,e
e

p
neB

∗ ×∇
≡ −

Bv

Hybrid (Kinetic Hot Ions)
(G. Fu)

• Gyrokinetic particle push based on GTC group’s formulation.

• Large ensemble of ions substepped through interpolated M3D B field.

• Hot ions couple back to fluid model through pressure tensor:

• MPI Parallelization follows domain decomposition of M3D mesh; particles
can move between processors.

• Typical particle push time is comparable to fluid advance time.

• Fully kinetic ion model (with fluid electrons) also exists.

()*
i ih

d P
dt

ρ ρ ⊥ −∇⋅⋅∇ − ⋅∇ ⋅Π+ = −∇ + ×
v J bbBv Pv

()||h P P P⊥ ⊥= + −P I bb

() () ()|| ||,i i i
i

f v vδ δ δ μ μ= − − −∑ R R

where

based on moments taken over the particle distribution function

Higher-Order Elements
(H. Strauss, J. Chen)

2nd-order Lagrange 2nd-order lumped

3rd-order Lagrange 3rd-order lumped

• 2nd and 3rd-order polynomial elements are available.
• Formed by adding nodes to existing mesh triangles.
• In “lumped” elements, nodes are placed at quadrature points of integral, resulting

in a diagonal mass matrix for much faster evaluation, at a cost of more vertices.

Resistive Wall
(H. Strauss, J. Breslau)

• OpenMP code uses external package to generate
vacuum-region mesh extending M3D mesh out to
wall.

• Mesh may exclude axis region (not shown) with
internal boundary condition.

• MPI version can initialize from mesh+data file
generated by OMP version.

• Vacuum region treated as low density, low
temperature (high η) plasma.

• Boundary conditions on fields at wall are applied
using Green’s functions precomputed by GRIN for
each toroidal mode based on boundary geometry.

VDE in ASDEX (early time).

Outline
• Overview

– Version history
– Platforms
– Statistics

• Equations
– Standard form
– M3D form

• Spatial Discretization
– Meshing
– Linear elements
– Domain decomposition

• Time advance
– General form
– Detailed scheme
– Artificial sound wave
– Linear operation

• Libraries
– PETSc
– HDF5

• Other Options
– Stellarator
– Two-fluid
– Hybrid
– Higher-order elements
– Resistive wall

• Concluding thoughts

Concluding Thoughts
• The proliferation of new physics modules, options, and numerical

techniques has made M3D very versatile and flexible but also very
complex and challenging to maintain.

• A set of thorough standard tests for validation is badly needed.

• The code has been very productive on present machines,
producing results few other MHD codes are capable of.

• But it could be a lot more efficient, and scaling up usefully to
petascale runs remains a formidable hurdle.

• Need more implicitness.
• Need higher order elements.
• Need efficient, scalable solvers.

	Present Status of M3D
	Outline
	Capsule History of M3D
	Platforms
	Statistics
	Outline
	Extended MHD Equations
	M3D Scalar Variables
	M3D Form of the Resistive MHD Equations
	Evolution of the Compressible Velocity
	Evolution of the Toroidal Velocity
	Electrostatic Potential
	Evolution of the Poloidal Field
	Evolution of the Toroidal Field
	The Energy Equation
	Outline
	The M3D Mesh
	Packing the Mesh at a Flux Surface
	Linear Finite Elements
	Boundary Conditions
	Domain Decomposition
	Outline
	Time Discretization, Overview
	Schematic of Equation Solve
	Order of Operations in Main Loop
	Artificial Sound Wave Substep
	Linear vs. Nonlinear
	Outline
	PETSc
	HDF5
	Outline
	Stellarator�(H. Strauss)
	Two Fluid�(L. Sugiyama)
	Hybrid (Kinetic Hot Ions)�(G. Fu)
	Higher-Order Elements�(H. Strauss, J. Chen)
	Resistive Wall�(H. Strauss, J. Breslau)
	Outline
	Concluding Thoughts

