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Solver Strategies Used in SEL

Now: Static condensation, Schur
complement.
• Small local direct solves for grid cell 

interiors.
• Preconditioned GMRES for Schur

complement.

Eventual: Domain substructuring, FETI-DP.   
Improved precondition, scalability
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Static Condensation, Schur Complement

LII
-1: small local direct solves, LU factorization and back substitution.

S-1: global solve, preconditioned GMRES.

Partition into Subdomains (Grid Cells) Ωi

I: Interiors
Γ: Interface: (faces) + edges + vertices.

Block Matrix Form

Solution for uI

Schur Complement
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The Benefits of Static Condensation

nx = number of grid cells in x direction
ny = number of grid cells in y direction
np = degree of polynomials in x and y
nqty = number of physical quantities

N = order of global matrix to be solved

Without static condensation: N = nx ny nqty np2

With static condensation: N = nx ny nqty (2 np - 1)

Surface to volume ratio.
Substantial reduction of condition number.
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Finite Element Tearing and Interconnecting, Dual-Primal
Domain decomposition, non-overlapping, Schur complement

Axel Klawonn and Olof B. Widlund, 
“Dual-Primal FETI Methods for Linear Elasticity,”

Comm. Pure Appl. Math. 59, 1523-1572 (2006).

Partition

I: Interior points, inside each subdomain (grid cell) Ωi.

Δ: Dual interface points, continuity imposed by Lagrange multipliers.

Π: Primal interface points, continuity imposed directly.

Initial Block Matrix Form

FETI-DP
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Solution Strategy

Small dense block matrices of LBB solved locally by LAPACK.

Sparse global, primal matrix SΠΠ solved in parallel by SuperLU_dist.

Global Schur complement matrix F solved by parallel preconditioned Krylov 
method, e.g. GMRES.  Requires preconditioner for adequate rate of 
convergence.

Choose primal interface constraints to provide coarse global problem, ensure 
scalability.  2D: vertices.  3D: more complicated.

The scalability of F is accomplished by the coarse, primal solver.  The quality 
of the preconditioner determines the rate of convergence but not the 
scalability.

Scalability has been proven analytically for a limited range of simple 
problems: Poisson, linear elasticity, Navier-Stokes.  More general: empirical.
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Scalability

A method is scalable if the condition number of the matrix, and hence the number of Krylov 
iterations to convergence, is independent of the number of subdomains.

Preconditioning and Scalability


