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SEL Code Features
Advanced Fortran 95.

Flux-source form: simple, general problem setup.

Spatial discretization:
• High-order C0 spectral elements, modal basis
• Harmonic grid generation, adaptation, alignment

Time step: fully implicit, 2nd-order accurate, 
• θ-scheme
• BDF2

Static condensation, Schur complement.
• Small local direct solves for grid cell interiors.
• Preconditioned GMRES for Schur complement.

Distributed parallel operation with MPI and PETSc.
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Spatial Discretization
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Uniform Nodal Basis Jacobi Nodal Basis Spectral  (Modal) Basis

Alternative Polynomial Bases

• Lagrange interpolatory 
polynomials

• Uniformly-spaced 
nodes

• Diagonally 
subdominant

• Lagrange 
interpolatory 
polynomials

• Nodes at roots of 
(1-x2) Pn

(0,0)(x)

• Diagonally 
dominant

• Jacobi polynomials 
(1+x)/2, (1-x)/2,                 
(1-x2) Pn

(1,1)(x)

• Nearly orthogonal

• Manifest exponential 
convergence
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Implicit Time Discretization: θ-Scheme

• Nonlinear Newton-Krylov iteration.
• Elliptic equations: M = 0.
• Static condensation
• PETSc: GMRES with Schwarz ILU, overlap  of 3, fill-in of 5.
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Static Condensation

LII
-1: small local direct solves, LU factorization and back substitution.

S-1: global solve, preconditioned GMRES.

Partition into Subdomains (Grid Cells) Ωi

I: Interiors
Γ: Interface: (faces) + edges + vertices.

Block Matrix Form

Solution for uI

Schur Complement



U N C L A S S I F I E D

U N C L A S S I F I E D

Slide 6
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

The Benefits of Static Condensation

nx = number of grid cells in x direction
ny = number of grid cells in y direction
np = degree of polynomials in x and y
nqty = number of physical quantities

N = order of global matrix to be solved

Without static condensation: N = nx ny nqty np2

With static condensation: N = nx ny nqty (2 np - 1)

Surface to volume ratio.
Substantial reduction of condition number.
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The Need for a 3D Adaptive Field-Aligned Grid

An essential feature of magnetic confinement is very strong anisotropy, χ⎟⎟ χ⊥.

The most unstable modes are those with k⎟⎟ 1/R < 1/a k⊥.

The most effective numerical approach to these problems is a field-aligned grid packed in the 
neighborhood of singular surfaces and magnetic islands. NIMROD.

Long-time evolution of helical instabilities requires that the packed grid follow the moving 
perturbations into 3D.

Multidimensional oblique rectangular AMR grid is larger than necessary and does not 
resolve anisotropy.  

Novel algorithms must be developed to allow alignment of the grid with the dominant 
magnetic field and automatic grid packing normal to this field.

Such methods must allow for regions of magnetic islands and stochasticity.
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Methods of Adaptive Gridding

Adaptive Mesh Refinement

1. Coarse and fine patches of 
rectangular grid.

2. Complex data structures.

3. Oblique to magnetic field.

4. Static regrid.

5. Explicit time step; implicit a 
research problem.

6. Berger, Gombosi, Colella, 
Samtaney, Jardin

Harmonic Grid Generation

1. Harmonic mapping of rectangular 
grid onto curvilinear grid.

2. Logically rectangular

3. Aligned with magnetic field.

4. Static or dynamic regrid.

5. Explicit or implicit time step.

6. Liseikin, Winslow, Dvinsky, 
Brackbill, Knupp
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Adaptive Grid Kinematics: How to Use Logical Coordinates.
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Adaptive Grid Dynamics: How to Choose Logical coordinates.

Beltrami equation + boundary conditions ⇒ logical coordinates.
Alignment with magnetic field except where B → 0, isotropic term dominates.

Vladimir D. Liseikin
A Computational Differential Geometry Approach to Grid Generation

Springer Series in Synergetics, 2003
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Domains and Transformations
Used in Harmonic Grid Generation
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Modified Beltrami Equation
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Two-Fluid Extended MHD Equations
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GEM Challenge Problem
Dimensionless Parameter Definitions and Values
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Contour Plots

ν = 1*10-5

Logical grid: 
[nx, ny, np] = [40, 40, 8]

# of time-steps = 419 
dt = .0625 → .25

# of grid remappings = 18

Computed on Bassi
4 nodes x 8 processors

Wallclock time = 9 hours  
=>  cpu time = 288 hours
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Computational Grids

Peak of Reconnection Rate, t = 20.0625 Peak of Kinetic Energy, t = 20.0625
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Slice Plots
Cut at mid-plane

(x-axis in units of di)
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Time-Dependent Diagnostics
Initial and boundary conditions as in the original GEM challenge

(Birn, et. al., J. Geophys. Res. 106, 3715 (2001)):

Bx = B0tanh(y/λ),  ρ = ρ0(1/cosh2(y/λ) + .2), vi= 0, zero guide field, uniform temperature;

λ = di/2; box size: [lx, ly] = [25.6di, 12.8di], periodic in x, perfectly conducting walls in y.
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Scalability By Domain Decomposition

3D extended MHD modeling of magnetically confined fusion plasmas
requires petascale computing: 1 petaflop = 1015 flops ~104 procs.

Efficient petascale computing requires scalable linear systems: 
condition number independent of grid size, number of processors.

Domain decomposition is a promising approach to scalability.
• Schwarz overlapping methods.
• Non-overlapping methods, domain substructuring, e.g. FETI-DP.

Analytical proofs of scalability for simple systems: Poisson, linear 
elasticity, Navier-Stokes.

Empirical studies proposed using existing 2D SEL code for extended 
MHD.
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Finite Element Tearing and Interconnecting, Dual-Primal
Domain decomposition, non-overlapping, Schur complement

Axel Klawonn and Olof B. Widlund, 
“Dual-Primal FETI Methods for Linear Elasticity,”

Comm. Pure Appl. Math. 59, 1523-1572 (2006).

Partition

I: Interior points, inside each subdomain (grid cell) Ωi.

Δ: Dual interface points, continuity imposed by Lagrange multipliers.

Π: Primal interface points, continuity imposed directly.

Initial Block Matrix Form

FETI-DP
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Algebraic Reorganization



U N C L A S S I F I E D

U N C L A S S I F I E D

Slide 22
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Solution and Reduction
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Solution Strategy

Small dense block matrices of LBB solved locally by LAPACK.

Sparse global, primal matrix SΠΠ solved in parallel by SuperLU_dist.

Global Schur complement matrix F solved by parallel preconditioned Krylov 
method, e.g. GMRES.  Requires preconditioner for adequate rate of 
convergence.

Choose primal interface constraints to provide coarse global problem, ensure 
scalability.  2D: vertices.  3D: more complicated.

The scalability of F is accomplished by the coarse, primal solver.  The quality 
of the preconditioner determines the rate of convergence but not the 
scalability.

Scalability has been proven analytically for a limited range of simple 
problems: Poisson, linear elasticity, Navier-Stokes.  More general: empirical.
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Preconditioning
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Proposed Research Program

Use existing 2D SEL spectral element code as test bed.

Implement FETI-DP as a modification of existing static condensation routines.

Study a progression of extended MHD systems as nx and ny are increased to 
determine:

• Constancy of condition number.
• Constancy of Krylov iterations required for convergence.
• Scaling of condition number with parameters.

Extend spectral element code to 3D.

Investigate optimal choice of primal constraints for scalability.
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Future Development of SEL

Generalized domain connectivity and 
topology with PETSc Index Sets and 
Generalized Gather/Scatter

Improved preconditioning and scalability 
by domain substructuring, FETI-DP.

Third dimension of spectral elements.

Slava Lukin: unstructured grid of triangles 
(2D) or tetrahedra (3D).

Visualization with VisIt or AVS Express.

CAD interface for input of geometry.
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What Can SEL Contribute to M3D?

Flux-source form.

High-order C0 spectral elements.

Static condensation.

Improved preconditioning and scalability 
by domain substructuring, FETI-DP.

Harmonic grid generation.


