SEL: A Fully-Implicit, Parallel Spectral Element Fluid Simulation Code

Alan H. Glasser

Collaborators: V. S. Lukin, V. D. Liseikin

Presented at Future Directions for M3D, PPPL Princeton, NJ, March 20, 2007

U N C L A S S I F I E D

Slide 0

SEL Code Features

- ¾ Advanced Fortran 95.
- ¾ Flux-source form: simple, general problem setup.
- \triangleright Spatial discretization:
	- High-order C^0 spectral elements, modal basis
	- Harmonic grid generation, adaptation, alignment
- \triangleright Time step: fully implicit, 2nd-order accurate,
	- θ-scheme
	- •BDF2
- ¾ Static condensation, Schur complement.
	- Small local direct solves for grid cell interiors.
	- Preconditioned GMRES for Schur complement.

U N C L A S S I F I E D¾ Distributed parallel operation with MPI and PETSc.

Spatial Discretization

Flux-Source Form of Equations

$$
\frac{\partial u^i}{\partial t} + \nabla \cdot \mathbf{F}^i = S^i
$$

$$
\mathbf{F}^i = \mathbf{F}^i(t, \mathbf{x}, u^j, \nabla u^j)
$$

 $S^i = S^i(t, \mathbf{x}, u^j, \nabla u^j)$

Galerkin Expansion

$$
u^i(t,\mathbf{x}) \approx \sum_{j=0}^n u^i_j(t) \alpha_j(\mathbf{x})
$$

Weak Form of Equations

$$
(\alpha_i, \alpha_j) \dot{u}_j^k = \int_{\Omega} d\mathbf{x} \left(S^k \alpha_i + \mathbf{F}^k \cdot \nabla \alpha_i \right) - \int_{\partial \Omega} d\mathbf{x} \alpha_i \mathbf{F}^k \cdot \hat{\mathbf{n}}
$$

U N C L A S S I F I E D

Slide 2

Alternative Polynomial Bases

- \bullet Lagrange interpolatory polynomials
- • Uniformly-spaced nodes
- \bullet Diagonally subdominant

- \bullet Lagrange interpolatory polynomials
- Nodes at roots of $(1-x^2) P_n^{(0,0)}(x)$
- \bullet Diagonally dominant

U N C L A S S I F I E D

Jacobi Nodal Basis Spectral (Modal) Basis

- • Jacobi polynomials *(1+x)/2, (1-x)/2,* $(1-x^2) P_n^{(1,1)}(x)$
- •Nearly orthogonal
- • Manifest exponential convergence

Implicit Time Discretization: θ-Scheme

 $\mathbf{M}\dot{\mathbf{n}} = \mathbf{r}$

$$
\mathsf{M}\left(\frac{\mathbf{u}^+ - \mathbf{u}^-}{h}\right) = \theta \mathbf{r}^+ + (1-\theta) \mathbf{r}^-
$$

$$
\mathbf{R}(\mathbf{u}^+) \equiv \mathbf{M}(\mathbf{u}^+ - \mathbf{u}^-) - h \left[\theta \mathbf{r}^+ + (1 - \theta)\mathbf{r}^- \right] \to 0
$$

$$
\mathbf{J}\equiv \mathbf{M}-h\theta \left\{\frac{\partial r_{i}^{+}}{\partial u_{j}^{+}}\right\}
$$

 $\mathbf{R}(\mathbf{u}^+) + \mathbf{J}\delta\mathbf{u}^+ = \mathbf{0}, \quad \delta\mathbf{u}^+ = -\mathbf{J}^{-1}\mathbf{R}(\mathbf{u}^+), \quad \mathbf{u}^+ \to \mathbf{u}^+ + \delta\mathbf{u}^+$

- Nonlinear Newton-Krylov iteration.
- •Elliptic equations: $M = 0$.
- Static condensation
-

U N C L A S S I F I E D

• PETSc: GMRES with Schwarz ILU, overlap of 3, fill-in of 5.

Static Condensation

Partition into Subdomains (Grid Cells) Ω**i**

I: InteriorsΓ: Interface: (faces) + edges + vertices.

Block Matrix Form

$$
Lu = r, \quad L = \begin{pmatrix} L_{II} & L_{IT} \\ L_{\Gamma I} & L_{\Gamma \Gamma} \end{pmatrix}, \quad u = \begin{pmatrix} u_I \\ u_{\Gamma} \end{pmatrix}, \quad r = \begin{pmatrix} r_I \\ r_{\Gamma} \end{pmatrix}
$$

Solution for u*I*

 $\mathbf{u}_I = \mathbf{L}_{II}^{-1}(\mathbf{r}_I - \mathbf{L}_{I\Gamma}\mathbf{u}_{\Gamma})$

Schur Complement

$$
\textbf{S} \equiv \textbf{L}_{\Gamma\Gamma} - \textbf{L}_{\Gamma I} \textbf{L}_{II}^{-1} \textbf{L}_{I\Gamma}, \quad \textbf{S} \textbf{u}_{\Gamma} = \textbf{r}_{\Gamma} - \textbf{L}_{\Gamma I} \textbf{L}_{II}^{-1} \textbf{r}_{I}
$$

 $\triangleright \mathbf{L}_{II}^{-1}$: small local direct solves, LU factorization and back substitution.

¾ **S**-1: global solve, preconditioned GMRES.

U N C L A S S I F I E D

Slide 5

The Benefits of Static Condensation

nx = number of grid cells in *^x* direction *ny* = number of grid cells in *y* direction *np* = degree of polynomials in *^x* and *y nqty* = number of physical quantities

N = order of global matrix to be solved

Without static condensation: $N = nx ny nqty np^2$ With static condensation: $N = nx ny nqty (2 np - 1)$

Surface to volume ratio. Substantial reduction of condition number.

U N C L A S S I F I E D

The Need for a 3D Adaptive Field-Aligned Grid

- ¾An essential feature of magnetic confinement is very strong anisotropy, $\chi_{\perp} \odot \chi_{\perp}$.
- \blacktriangleright The most unstable modes are those with $k_{\textit{II}} \otimes 1/R < 1/a \otimes k_{\textit{II}}$.
- \blacktriangleright The most effective numerical approach to these problems is a field-aligned grid packed in the neighborhood of singular surfaces and magnetic islands. NIMROD.
- \blacktriangleright Long-time evolution of helical instabilities requires that the packed grid follow the moving perturbations into 3D.
- \blacktriangleright Multidimensional oblique rectangular AMR grid is larger than necessary and does not resolve anisotropy.
- \blacktriangleright Novel algorithms must be developed to allow alignment of the grid with the dominant magnetic field and automatic grid packing normal to this field.
- \blacktriangleright Such methods must allow for regions of magnetic islands and stochasticity.

U N C L A S S I F I E D

Methods of Adaptive Gridding

Adaptive Mesh Refinement

- 1. Coarse and fine patches of rectangular grid.
- 2. Complex data structures.
- 3. Oblique to magnetic field.
- 4. Static regrid.
- 5. Explicit time step; implicit a research problem.
- 6. Berger, Gombosi, Colella, Samtaney, Jardin

Harmonic Grid Generation

- 1. Harmonic mapping of rectangular grid onto curvilinear grid.
- 2. Logically rectangular
- 3. Aligned with magnetic field.
- 4. Static or dynamic regrid.
- 5. Explicit or implicit time step.
- 6. Liseikin, Winslow, Dvinsky, Brackbill, Knupp

U N C L A S S I F I E D

Adaptive Grid Kinematics: How to Use Logical Coordinates.

$$
x^{j}(\xi^{k}) = \sum_{i} x_{i}^{j} \alpha_{i}(\xi^{k}), \quad j, k = 1, 2
$$

$$
\mathcal{J} \equiv (\hat{\mathbf{z}} \cdot \nabla \xi^{1} \times \nabla \xi^{2})^{-1} = \frac{\partial x^{1}}{\partial \xi^{1}} \frac{\partial x^{2}}{\partial \xi^{2}} - \frac{\partial x^{1}}{\partial \xi^{2}} \frac{\partial x^{2}}{\partial \xi^{1}}
$$

$$
\frac{\partial u^{k}}{\partial t} + \nabla \cdot \mathbf{F}^{k} = S^{k}, \quad \frac{\partial u^{k}}{\partial t} + \frac{1}{\mathcal{J}} \frac{\partial}{\partial \xi^{j}} \left(\mathcal{J} \mathbf{F}^{k} \cdot \nabla \xi^{j} \right) = S^{k}
$$

$$
u^{k}(t, \mathbf{x}) \approx \sum_{j=0}^{n} u_{j}^{k}(t) \alpha_{j}(\xi), \quad (u, v) \equiv \int_{\Omega} uv d\mathbf{x} = \int_{\Omega} uv \mathcal{J} d\xi
$$

$$
\bigotimes_{\text{LoS. All am}} (\alpha_i, \alpha_j) \dot{u}_j^k = \int_{\Omega} \left(S^k \alpha_i + \mathbf{F}^k \cdot \nabla \xi^j \frac{\partial \alpha_i}{\partial \xi^j} \right) \mathcal{J} d\xi - \int_{\partial \Omega} \alpha_i \mathbf{F}^k \cdot \hat{\mathbf{n}} \mathcal{J} d\xi
$$

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Adaptive Grid Dynamics: How to Choose Logical coordinates.

$$
\mathcal{L} \equiv \frac{1}{2} \int \left[\left(\mathbf{B} \cdot \nabla \xi^{j} \right)^{2} + \epsilon |\nabla \xi^{j}|^{2} \right] d\mathbf{x}
$$

$$
\frac{\delta \mathcal{L}}{\delta \xi^{j}} = 0 \Rightarrow \nabla \cdot (\mathbf{g} \cdot \nabla \xi^{j}) = 0, \quad \mathbf{g} \equiv \mathbf{B} \mathbf{B} + \epsilon \mathbf{I}
$$

Beltrami equation + boundary conditions \Rightarrow logical coordinates. Alignment with magnetic field except where $\mathbf{B} \to 0$, isotropic term dominates.

Vladimir D. Liseikin

A Computational Differential Geometry Approach to Grid Generation Springer Series in Synergetics, 2003

U N C L A S S I F I E D

Slide 10

Domains and Transformations Used in Harmonic Grid Generation

Modified Beltrami Equation

Variational Principle

$$
\mathcal{L}=\frac{1}{2}\int_{\Omega}\frac{1}{w\sqrt{g}}\mathbf{g}:\nabla\xi^{i}\nabla\xi^{i}d\mathbf{x}
$$

Euler-Lagrange Equation

$$
\nabla\cdot\left(\frac{1}{w\sqrt{g}}{\bf g}\cdot\nabla\xi^i\right)=0
$$

Expressed in Logical Coordinates

$$
\frac{1}{\mathcal{J}}\frac{\partial}{\partial \xi^j}\left(\frac{\mathcal{J}}{w\sqrt{g}}g^{kl}\frac{\partial \xi^i}{\partial x^k}\frac{\partial \xi^j}{\partial x^l}\right) = 0, \quad \frac{\partial \xi^i}{\partial x^j} \to \frac{\partial x^i}{\partial \xi^j}
$$

U N C L A S S I F I E D

Slide 12

Two-Fluid Extended MHD Equations

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v_i}) = 0
$$

$$
\frac{\partial (\rho \mathbf{v_i})}{\partial t} + \nabla \cdot \mathbf{T}_i = 0
$$

 $\mathbf{T}_i \equiv \rho \mathbf{v}_i \mathbf{v}_i + p \mathbf{I} + (B^2/2) \mathbf{I} - \mathbf{B} \mathbf{B} - \bar{\mu} (\nabla \mathbf{v}_i + \nabla \mathbf{v}_i^T) - \bar{\nu} \nabla (v_{ez} \hat{z})$

$$
\mathbf{E} = -\mathbf{v_e} \times \mathbf{B} - \frac{d_i}{\rho} \nabla p_e + \bar{\eta} \mathbf{J} + \frac{d_i}{\rho} \bar{\nu} \nabla^2 (v_{ez} \hat{z})
$$

$$
\frac{1}{\gamma - 1} \frac{\partial p}{\partial t} + \nabla \cdot \left(\frac{\gamma}{\gamma - 1} p \mathbf{v_i} - \kappa_{\perp} \nabla_{\perp} T - \kappa_{\parallel} \nabla_{\parallel} T \right) \n= \mathbf{v_i} \cdot \nabla p + \bar{\eta} |\mathbf{J}|^2 + \bar{\mu} (\nabla \mathbf{v_i} + \nabla \mathbf{v_i}^T) : \nabla \mathbf{v_i} + \bar{\nu} |\nabla v_{ez}|^2
$$

$$
d_i \nabla \times \mathbf{B} = d_i \mathbf{J} = \rho \mathbf{v_i} - \rho \mathbf{v_e}, \quad \frac{\partial \mathbf{B}}{\partial \mathbf{t}} = -\nabla \times \mathbf{E}
$$

$$
p=p_i+p_e=\rho T=\rho(T_i+T_e),\quad \frac{T_e}{T_i}=\alpha
$$

U N C L A S S I F I E D

Slide 13

GEM Challenge Problem Dimensionless Parameter Definitions and Values

$$
d_i \equiv \frac{c/\omega_{pi}}{L_0} = 1, \quad \alpha = 0.2
$$

$$
\bar{\eta} \equiv \frac{\eta c^2}{L_0 B_0} \left(\frac{n_0 m_i}{4\pi}\right)^{1/2} = 5 \times 10^{-3}
$$

$$
\bar{\mu} \equiv \frac{\mu_i}{L_0 B_0} \left(\frac{4\pi m_i}{n_0}\right)^{1/2} = 5 \times 10^{-2}
$$

$$
\bar{\nu} \equiv \frac{\mu_e}{L_0 B_0} \left(\frac{4\pi}{n_0 m_i}\right)^{1/2} = 5 \times 10^{-6}
$$

$$
\bar{\kappa}_{\parallel} \equiv \frac{\kappa_{\parallel}}{L_0 B_0} \left(\frac{4 \pi m_i}{n_0} \right)^{1/2} = 2 \times 10^{-2}
$$

$$
\bar{\kappa}_{\perp} \equiv \frac{\kappa_{\perp}}{L_0 B_0} \left(\frac{4\pi m_i}{n_0}\right)^{1/2} = 2 \times 10^{-2}
$$

U N C L A S S I F I E D

Slide 14

Contour Plots

 $v = 1*10^{-5}$

Logical grid: $[nx, ny, np] = [40, 40, 8]$

of time-steps = 419 dt = .0625 \rightarrow .25

of grid remappings $= 18$

Computed on Bassi 4 nodes x 8 processors

Wallclock time = 9 hours \Rightarrow cpu time = 288 hours

Computational Grids

U N C L A S S I F I E D

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

nos ORATORY

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

U N C L A S S I F I E D

 $t = 20.0625$ (peak of reconnection rate)

NNSS

Cut at mid-plane $(x-axis in units of d_i)$

Time-Dependent Diagnostics

Initial and boundary conditions as in the original GEM challenge (Birn, *et. al.*, J. Geophys. Res. **106**, 3715 (2001)):

 $B_x = B_0 \tanh(y/\lambda)$, $\rho = \rho_0(1/\cosh^2(y/\lambda) + .2)$, **v**_i= 0, zero guide field, uniform temperature;

 $\lambda = d/2$; box size: [lx, ly] = [25.6d_i, 12.8d_i], periodic in x, perfectly conducting walls in y.

Scalability By Domain Decomposition

- ¾ 3D extended MHD modeling of magnetically confined fusion plasmas requires petascale computing: 1 petaflop = 10^{15} flops \sim 10⁴ procs.
- ¾ Efficient petascale computing requires scalable linear systems: condition number independent of grid size, number of processors.
- \triangleright Domain decomposition is a promising approach to scalability.
	- Schwarz overlapping methods.
	- Non-overlapping methods, domain substructuring, *e.g.* FETI-DP.
- \triangleright Analytical proofs of scalability for simple systems: Poisson, linear elasticity, Navier-Stokes.
- ¾ Empirical studies proposed using existing 2D SEL code for extended MHD.

U N C L A S S I F I E D

FETI-DP

Finite Element Tearing and Interconnecting, Dual-Primal Domain decomposition, non-overlapping, Schur complement

Axel Klawonn and Olof B. Widlund, "Dual-Primal FETI Methods for Linear Elasticity," Comm. Pure Appl. Math. **59**, 1523-1572 (2006).

Partition

- ¾ I: Interior points, inside each subdomain (grid cell) Ω*ⁱ*.
- \blacktriangleright Δ: Dual interface points, continuity imposed by Lagrange multipliers.
- ¾Π: Primal interface points, continuity imposed directly.

Initial Block Matrix Form

$$
L u = r, \quad L = \begin{pmatrix} L_{II} & L_{I\Delta} & L_{I\Pi} \\ L_{\Delta I} & L_{\Delta\Delta} & L_{\Delta\Pi} \\ L_{\Pi I} & L_{\Pi\Delta} & L_{\Pi\Pi} \end{pmatrix}, \quad u = \begin{pmatrix} u_I \\ u_\Delta \\ u_\Pi \end{pmatrix}, \quad r = \begin{pmatrix} r_I \\ r_\Delta \\ r_\Pi \end{pmatrix}
$$

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Algebraic Reorganization

Local Block Matrices: $I + \Delta$

$$
\mathbf{L}_{BB} = \begin{pmatrix} \mathbf{L}_{II} & \mathbf{L}_{I\Delta} \\ \mathbf{L}_{\Delta I} & \mathbf{L}_{\Delta\Delta} \end{pmatrix}, \quad \mathbf{u}_{B} = \begin{pmatrix} \mathbf{u}_{I} \\ \mathbf{u}_{\Delta} \end{pmatrix}, \quad \mathbf{r}_{B} = \begin{pmatrix} \mathbf{r}_{I} \\ \mathbf{r}_{\Delta} \end{pmatrix}
$$

Dual Continuity: Lagrange Multipliers

 λ is a vector of Lagrange multipliers used to impose continuity on the dual dependent variables \mathbf{u}_{Δ} .

$$
\textbf{B} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{B}_{\Delta} \end{pmatrix}, \quad \textbf{B}_{\Delta} \textbf{u}_{\Delta} = 0, \quad \textbf{L}_{BB} \textbf{u}_{B} + \textbf{L}_{B \Pi} \textbf{u}_{\Pi} + \textbf{B}^{T} \lambda = \textbf{r}_{B}
$$

Final Block Matrix Form

$$
\mathbf{L} = \begin{pmatrix} \mathbf{L}_{BB} & \mathbf{L}_{B\Pi} & \mathbf{B}^T \\ \mathbf{L}_{\Pi B} & \mathbf{L}_{\Pi \Pi} & \mathbf{0} \\ \mathbf{B} & \mathbf{0} & \mathbf{0} \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} \mathbf{u}_B \\ \mathbf{u}_\Pi \\ \lambda \end{pmatrix}, \quad \mathbf{r} = \begin{pmatrix} \mathbf{r}_B \\ \mathbf{r}_\Pi \\ \mathbf{0} \end{pmatrix}
$$

U N C L A S S I F I E D

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Solution and Reduction

Solutions for u_B and u_{Π}

$$
\mathbf{u}_{B} = \mathbf{L}_{BB}^{-1} \left(\mathbf{r}_{B} - \mathbf{L}_{B\Pi} \mathbf{u}_{\Pi} - \mathbf{B}^{T} \lambda \right)
$$

$$
\mathbf{S}_{\Pi\Pi} \equiv \mathbf{L}_{\Pi\Pi} - \mathbf{L}_{\Pi B} \mathbf{L}_{BB}^{-1} \mathbf{L}_{B\Pi}
$$

$$
\mathbf{u}_{\Pi}=\mathbf{S}_{\Pi\Pi}^{-1}\left[\mathbf{r}_{\Pi}-\mathbf{L}_{\Pi B} \mathbf{L}_{BB}^{-1}\left(\mathbf{r}_{B}-\mathbf{B}^{T}\boldsymbol{\lambda}\right)\right]
$$

Global Schur Complement Equation for λ

 $F\lambda = d$

$$
\mathbf{F} = \mathbf{B}\left(\mathbf{L}_{BB}^{-1} + \mathbf{L}_{BB}^{-1}\mathbf{L}_{B\Pi}\mathbf{S}_{\Pi\Pi}^{-1}\mathbf{L}_{\Pi B}\mathbf{L}_{BB}^{-1}\right)\mathbf{B}^T
$$

 $\mathbf{d} = \mathbf{B} \mathsf{L}_{BB}^{-1} \left[\mathbf{r}_{B} - \mathsf{L}_{B\Pi} \mathsf{S}_{\Pi\Pi}^{-1} \left(\mathbf{r}_{\Pi} - \mathsf{L}_{\Pi B} \mathsf{L}_{BB}^{-1} \mathbf{r}_{B} \right) \right]$

U N C L A S S I F I E D

Slide 22

Solution Strategy

- \blacktriangleright \triangleright Small dense block matrices of L_{BB} solved locally by LAPACK.
- ¾Sparse global, primal matrix S_{III} solved in parallel by SuperLU_dist.
- ¾ Global Schur complement matrix **F** solved by parallel preconditioned Krylov method, *e.g.* GMRES. Requires preconditioner for adequate rate of convergence.
- \triangleright Choose primal interface constraints to provide coarse global problem, ensure scalability. 2D: vertices. 3D: more complicated.
- ¾ The scalability of **F** is accomplished by the coarse, primal solver. The quality of the preconditioner determines the rate of convergence but not the scalability.
- \triangleright Scalability has been proven analytically for a limited range of simple problems: Poisson, linear elasticity, Navier-Stokes. More general: empirical.

U N C L A S S I F I E D

Slide 23

Preconditioning

Definitions For Each Subdomain Ω_i

 $\mathbf{B}_{D,\Delta}^{(i)} \equiv$ scaled jump matrix

 $\mathbf{R}_{\Gamma\Delta}^{(i)} \equiv$ restriction matrix from full interface to dual variables $S_{\varepsilon}^{(i)} \equiv$ Schur complement obtained by eliminating interior variables

Preconditioner

$$
\mathbf{M}^{-1} = \sum_{i=1}^{n} \mathbf{B}_{D,\Delta}^{(i)} \mathbf{R}_{\Gamma\Delta}^{(i)} \mathbf{S}_{\varepsilon}^{(i)} \mathbf{R}_{\Gamma\Delta}^{(i)T} \mathbf{B}_{D,\Delta}^{(i)T}, \quad \mathbf{M}^{-1} \mathbf{F} \lambda = \mathbf{M}^{-1} \mathbf{d}
$$

Condition Number

$$
\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i, \quad \kappa(\mathbf{A}) \equiv \left| \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} \right|
$$

U N C L A S S I F I E D

Slide 24

Proposed Research Program

- \blacktriangleright Use existing 2D SEL spectral element code as test bed.
- \blacktriangleright Implement FETI-DP as a modification of existing static condensation routines.
- \blacktriangleright Study a progression of extended MHD systems as *nx* and *ny* are increased to determine:
	- \bullet Constancy of condition number.
	- •Constancy of Krylov iterations required for convergence.
	- •Scaling of condition number with parameters.
- ¾Extend spectral element code to 3D.
- \blacktriangleright Investigate optimal choice of primal constraints for scalability.

U N C L A S S I F I E D

Future Development of SEL

- \triangleright Generalized domain connectivity and topology with PETSc Index Sets and Generalized Gather/Scatter
- \triangleright Improved preconditioning and scalability by domain substructuring, FETI-DP.
- ¾ Third dimension of spectral elements.
- ¾ Slava Lukin: unstructured grid of triangles (2D) or tetrahedra (3D).
- ¾ Visualization with VisIt or AVS Express.
- ¾ CAD interface for input of geometry.

U N C L A S S I F I E D

What Can SEL Contribute to M3D?

- \triangleright Flux-source form.
- \triangleright High-order C⁰ spectral elements.
- \triangleright Static condensation.
- \triangleright Improved preconditioning and scalability by domain substructuring, FETI-DP.
- ¾ Harmonic grid generation.

U N C L A S S I F I E D

