# SEL: A Fully-Implicit, Parallel Spectral Element Fluid Simulation Code

# Alan H. Glasser



Collaborators: V. S. Lukin, V. D. Liseikin

# Presented at Future Directions for M3D, PPPL Princeton, NJ, March 20, 2007



UNCLASSIFIED

Slide 0



# **SEL Code Features**

- Advanced Fortran 95.
- ➢ Flux-source form: simple, general problem setup.
- Spatial discretization:
  - High-order C<sup>0</sup> spectral elements, modal basis
  - Harmonic grid generation, adaptation, alignment
- ➤ Time step: fully implicit, 2<sup>nd</sup>-order accurate,
  - θ-scheme
  - BDF2
- Static condensation, Schur complement.
  - Small local direct solves for grid cell interiors.
  - Preconditioned GMRES for Schur complement.



Distributed parallel operation with MPI and PETSc.
UNCLASSIFIED



## **Spatial Discretization**

Flux-Source Form of Equations

$$\frac{\partial u^i}{\partial t} + \nabla \cdot \mathbf{F}^i = S^i$$
$$\mathbf{F}^i = \mathbf{F}^i(t, \mathbf{x}, u^j, \nabla u^j)$$

$$S^i = S^i(t, \mathbf{x}, u^j, \nabla u^j)$$

**Galerkin Expansion** 

$$u^{i}(t, \mathbf{x}) \approx \sum_{j=0}^{n} u_{j}^{i}(t) \alpha_{j}(\mathbf{x})$$

Weak Form of Equations

$$(\alpha_i, \alpha_j)\dot{u}_j^k = \int_{\Omega} d\mathbf{x} \left( S^k \alpha_i + \mathbf{F}^k \cdot \nabla \alpha_i \right) - \int_{\partial \Omega} d\mathbf{x} \alpha_i \mathbf{F}^k \cdot \hat{\mathbf{n}}$$



UNCLASSIFIED

Slide 2



# **Alternative Polynomial Bases**



- Lagrange interpolatory polynomials
- Uniformly-spaced nodes
- Diagonally subdominant





- Lagrange interpolatory polynomials
- Nodes at roots of  $(1-x^2) P_n^{(0,0)}(x)$
- Diagonally dominant

#### UNCLASSIFIED

### Spectral (Modal) Basis



- Jacobi polynomials  $(1+x)/2, (1-x)/2, (1-x^2) P_n^{(1,1)}(x)$
- Nearly orthogonal
- Manifest exponential convergence

Slide 3



## **Implicit Time Discretization: θ-Scheme**

 $M\dot{\mathbf{u}}=\mathbf{r}$ 

$$\mathsf{M}\left(rac{\mathbf{u}^+-\mathbf{u}^-}{h}
ight)= heta\mathbf{r}^++(1- heta)\mathbf{r}^-$$

$$\mathbf{R}(\mathbf{u}^{+}) \equiv \mathbf{M}(\mathbf{u}^{+} - \mathbf{u}^{-}) - h\left[\theta \mathbf{r}^{+} + (1 - \theta)\mathbf{r}^{-}\right] \to 0$$

$$\mathbf{J} \equiv \mathbf{M} - h\theta \left\{ \frac{\partial r_i^+}{\partial u_j^+} \right\}$$

 $\mathbf{R}\left(\mathbf{u}^{+}\right)+\mathsf{J}\delta\mathbf{u}^{+}=\mathbf{0},\quad\delta\mathbf{u}^{+}=-\mathsf{J}^{-1}\mathbf{R}\left(\mathbf{u}^{+}\right),\quad\mathbf{u}^{+}\rightarrow\mathbf{u}^{+}+\delta\mathbf{u}^{+}$ 

- Nonlinear Newton-Krylov iteration.
- Elliptic equations:  $\mathbf{M} = 0$ .
- Static condensation
- Los Alamos
   NATIONAL LABORATORY

UNCLASSIFIED

• PETSc: GMRES with Schwarz ILU, overlap of 3, fill-in of 5.

Slide 4



## **Static Condensation**

#### Partition into Subdomains (Grid Cells) $\Omega_i$

*I*: Interiors  $\Gamma$ : Interface: (faces) + edges + vertices.

**Block Matrix Form** 

$$\mathbf{L}\mathbf{u} = \mathbf{r}, \quad \mathbf{L} = \begin{pmatrix} \mathbf{L}_{II} & \mathbf{L}_{I\Gamma} \\ \mathbf{L}_{\Gamma I} & \mathbf{L}_{\Gamma\Gamma} \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} \mathbf{u}_{I} \\ \mathbf{u}_{\Gamma} \end{pmatrix}, \quad \mathbf{r} = \begin{pmatrix} \mathbf{r}_{I} \\ \mathbf{r}_{\Gamma} \end{pmatrix}$$

Solution for **u**<sub>1</sub>

 $\mathbf{u}_{I} = \mathsf{L}_{II}^{-1} \left( \mathbf{r}_{I} - \mathsf{L}_{I\Gamma} \mathbf{u}_{\Gamma} \right)$ 

#### **Schur Complement**

$$\mathbf{S} \equiv \mathbf{L}_{\Gamma\Gamma} - \mathbf{L}_{\Gamma I} \mathbf{L}_{II}^{-1} \mathbf{L}_{I\Gamma}, \quad \mathbf{S} \mathbf{u}_{\Gamma} = \mathbf{r}_{\Gamma} - \mathbf{L}_{\Gamma I} \mathbf{L}_{II}^{-1} \mathbf{r}_{I}$$



 $\succ$  **L**<sub>II</sub><sup>-1</sup>: small local direct solves, LU factorization and back substitution.

 $\succ$  **\$**<sup>-1</sup>: global solve, preconditioned GMRES.

UNCLASSIFIED

Slide 5



# **The Benefits of Static Condensation**

nx = number of grid cells in x direction ny = number of grid cells in y direction np = degree of polynomials in x and y nqty = number of physical quantities

N = order of global matrix to be solved

Without static condensation: With static condensation: N = nx ny nqty np<sup>2</sup>N = nx ny nqty (2 np - 1)

Surface to volume ratio. Substantial reduction of condition number.



UNCLASSIFIED





# The Need for a 3D Adaptive Field-Aligned Grid

- An essential feature of magnetic confinement is very strong anisotropy,  $\chi_{||} \oslash \chi_{\perp}$ .
- ➤ The most unstable modes are those with  $k_{//} \odot 1/R < 1/a \odot k_{\perp}$ .
- The most effective numerical approach to these problems is a field-aligned grid packed in the neighborhood of singular surfaces and magnetic islands. NIMROD.
- Long-time evolution of helical instabilities requires that the packed grid follow the moving perturbations into 3D.
- Multidimensional oblique rectangular AMR grid is larger than necessary and does not resolve anisotropy.
- Novel algorithms must be developed to allow alignment of the grid with the dominant magnetic field and automatic grid packing normal to this field.
- Such methods must allow for regions of magnetic islands and stochasticity.



UNCLASSIFIED



## **Methods of Adaptive Gridding**

## **Adaptive Mesh Refinement**

- 1. Coarse and fine patches of rectangular grid.
- 2. Complex data structures.
- 3. Oblique to magnetic field.
- 4. Static regrid.
- 5. Explicit time step; implicit a research problem.
- 6. Berger, Gombosi, Colella, Samtaney, Jardin

### **Harmonic Grid Generation**

- 1. Harmonic mapping of rectangular grid onto curvilinear grid.
- 2. Logically rectangular
- 3. Aligned with magnetic field.
- 4. Static or dynamic regrid.
- 5. Explicit or implicit time step.
- 6. Liseikin, Winslow, Dvinsky, Brackbill, Knupp



UNCLASSIFIED



## Adaptive Grid Kinematics: How to Use Logical Coordinates.

$$\begin{split} x^{j}(\xi^{k}) &= \sum_{i} x_{i}^{j} \alpha_{i}(\xi^{k}), \quad j, k = 1, 2 \\ \mathcal{J} &\equiv (\hat{\mathbf{z}} \cdot \nabla \xi^{1} \times \nabla \xi^{2})^{-1} = \frac{\partial x^{1}}{\partial \xi^{1}} \frac{\partial x^{2}}{\partial \xi^{2}} - \frac{\partial x^{1}}{\partial \xi^{2}} \frac{\partial x^{2}}{\partial \xi^{1}} \\ \frac{\partial u^{k}}{\partial t} + \nabla \cdot \mathbf{F}^{k} = S^{k}, \quad \frac{\partial u^{k}}{\partial t} + \frac{1}{\mathcal{J}} \frac{\partial}{\partial \xi^{j}} \left( \mathcal{J} \mathbf{F}^{k} \cdot \nabla \xi^{j} \right) = S^{k} \\ u^{k}(t, \mathbf{x}) \approx \sum_{j=0}^{n} u_{j}^{k}(t) \alpha_{j}(\xi), \quad (u, v) \equiv \int_{\Omega} uv d\mathbf{x} = \int_{\Omega} uv \mathcal{J} d\xi \end{split}$$

$$(\alpha_{i}, \alpha_{j})\dot{u}_{j}^{k} = \int_{\Omega} \left( S^{k}\alpha_{i} + \mathbf{F}^{k} \cdot \nabla \xi^{j} \frac{\partial \alpha_{i}}{\partial \xi^{j}} \right) \mathcal{J}d\xi - \int_{\partial \Omega} \alpha_{i}\mathbf{F}^{k} \cdot \hat{\mathbf{n}}\mathcal{J}d\xi$$
UNCLASSIFIED
UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA



## Adaptive Grid Dynamics: How to Choose Logical coordinates.

$$\mathcal{L} \equiv \frac{1}{2} \int \left[ \left( \mathbf{B} \cdot \nabla \xi^j \right)^2 + \epsilon |\nabla \xi^j|^2 \right] d\mathbf{x}$$
$$\frac{\delta \mathcal{L}}{\delta \xi^j} = 0 \Rightarrow \nabla \cdot \left( \mathbf{g} \cdot \nabla \xi^j \right) = 0, \quad \mathbf{g} \equiv \mathbf{B}\mathbf{B} + \epsilon \mathbf{I}$$

Beltrami equation + boundary conditions  $\Rightarrow$  logical coordinates. Alignment with magnetic field except where  $\mathbf{B} \rightarrow 0$ , isotropic term dominates.

Vladimir D. Liseikin

A Computational Differential Geometry Approach to Grid Generation Springer Series in Synergetics, 2003



UNCLASSIFIED

Slide 10



# **Domains and Transformations**

Used in Harmonic Grid Generation





## **Modified Beltrami Equation**

Variational Principle

$$\mathcal{L} = \frac{1}{2} \int_{\Omega} \frac{1}{w\sqrt{g}} \mathbf{g} : \nabla \xi^i \nabla \xi^i d\mathbf{x}$$

**Euler-Lagrange Equation** 

$$\nabla \cdot \left(\frac{1}{w\sqrt{g}}\mathbf{g} \cdot \nabla \xi^i\right) = 0$$

**Expressed in Logical Coordinates** 

$$\frac{1}{\mathcal{J}}\frac{\partial}{\partial\xi^j}\left(\frac{\mathcal{J}}{w\sqrt{g}}g^{kl}\frac{\partial\xi^i}{\partial x^k}\frac{\partial\xi^j}{\partial x^l}\right) = 0, \quad \frac{\partial\xi^i}{\partial x^j} \to \frac{\partial x^i}{\partial\xi^j}$$



UNCLASSIFIED

Slide 12



## **Two-Fluid Extended MHD Equations**

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v_i}) = 0$$
$$\frac{\partial (\rho \mathbf{v_i})}{\partial t} + \nabla \cdot \mathbf{T}_i = 0$$

 $\mathbf{T}_{i} \equiv \rho \mathbf{v}_{i} \mathbf{v}_{i} + p \mathbf{I} + (B^{2}/2) \mathbf{I} - \mathbf{B} \mathbf{B} - \bar{\mu} (\nabla \mathbf{v}_{i} + \nabla \mathbf{v}_{i}^{T}) - \bar{\nu} \nabla (v_{ez} \hat{z})$ 

$$\begin{split} \mathbf{E} &= -\mathbf{v_e} \times \mathbf{B} - \frac{d_i}{\rho} \nabla p_e + \bar{\eta} \mathbf{J} + \frac{d_i}{\rho} \bar{\nu} \nabla^2 (v_{ez} \hat{z}) \\ &\frac{1}{\gamma - 1} \frac{\partial p}{\partial t} + \nabla \cdot \left( \frac{\gamma}{\gamma - 1} p \mathbf{v_i} - \bar{\kappa_{\perp}} \nabla_{\perp} T - \bar{\kappa_{\parallel}} \nabla_{\parallel} T \right) \end{split}$$

$$= \mathbf{v_i} \cdot \nabla p + \bar{\eta} |\mathbf{J}|^2 + \bar{\mu} (\nabla \mathbf{v_i} + \nabla \mathbf{v_i}^T) : \nabla \mathbf{v_i} + \bar{\nu} |\nabla v_{ez}|^2$$

$$d_i \nabla \times \mathbf{B} = d_i \mathbf{J} = \rho \mathbf{v_i} - \rho \mathbf{v_e}, \quad \frac{\partial \mathbf{B}}{\partial \mathbf{t}} = -\nabla \times \mathbf{E}$$

$$p = p_i + p_e = \rho T = \rho (T_i + T_e), \quad \frac{T_e}{T_i} = \alpha$$



UNCLASSIFIED

Slide 13



## **GEM Challenge Problem** Dimensionless Parameter Definitions and Values

$$d_i \equiv \frac{c/\omega_{pi}}{L_0} = 1, \quad \alpha = 0.2$$

$$\bar{\eta} \equiv \frac{\eta c^2}{L_0 B_0} \left(\frac{n_0 m_i}{4\pi}\right)^{1/2} = 5 \times 10^{-3}$$

$$\bar{\mu} \equiv \frac{\mu_i}{L_0 B_0} \left(\frac{4\pi m_i}{n_0}\right)^{1/2} = 5 \times 10^{-2}$$

$$\bar{\nu} \equiv \frac{\mu_e}{L_0 B_0} \left(\frac{4\pi}{n_0 m_i}\right)^{1/2} = 5 \times 10^{-6}$$

$$\bar{\kappa}_{\parallel} \equiv \frac{\kappa_{\parallel}}{L_0 B_0} \left(\frac{4\pi m_i}{n_0}\right)^{1/2} = 2 \times 10^{-2}$$

$$\bar{\kappa}_{\perp} \equiv \frac{\kappa_{\perp}}{L_0 B_0} \left(\frac{4\pi m_i}{n_0}\right)^{1/2} = 2 \times 10^{-2}$$



UNCLASSIFIED

Slide 14



# **Contour Plots**



 $v = 1*10^{-5}$ 

Logical grid: [nx, ny, np] = [40, 40, 8]

# of time-steps = 419 dt = .0625  $\rightarrow$  .25

# of grid remappings = 18

Computed on Bassi 4 nodes x 8 processors

Wallclock time = 9 hours => cpu time = 288 hours







## **Computational Grids**





UNCLASSIFIED

Slide 16





# Cut at mid-plane $(x-axis in units of d_i)$

t = 20.0625 (peak of reconnection rate)

NS

## **Time-Dependent Diagnostics**

Initial and boundary conditions as in the original GEM challenge (Birn, et. al., J. Geophys. Res. **106**, 3715 (2001)):

 $B_x = B_0 tanh(y/\lambda), \rho = \rho_0(1/cosh^2(y/\lambda) + .2), v_i = 0$ , zero guide field, uniform temperature;

 $\lambda = d_i/2$ ; box size: [lx, ly] = [25.6d\_i, 12.8d\_i], periodic in x, perfectly conducting walls in y.



# **Scalability By Domain Decomposition**

- > 3D extended MHD modeling of magnetically confined fusion plasmas requires petascale computing: 1 petaflop =  $10^{15}$  flops ~ $10^4$  procs.
- Efficient petascale computing requires scalable linear systems: condition number independent of grid size, number of processors.
- > Domain decomposition is a promising approach to scalability.
  - Schwarz overlapping methods.
  - Non-overlapping methods, domain substructuring, *e.g.* FETI-DP.
- Analytical proofs of scalability for simple systems: Poisson, linear elasticity, Navier-Stokes.
- Empirical studies proposed using existing 2D SEL code for extended MHD.



UNCLASSIFIED





# **FETI-DP**

Finite Element Tearing and Interconnecting, Dual-Primal Domain decomposition, non-overlapping, Schur complement

Axel Klawonn and Olof B. Widlund, "Dual-Primal FETI Methods for Linear Elasticity," Comm. Pure Appl. Math. **59**, 1523-1572 (2006).

#### Partition

- > I: Interior points, inside each subdomain (grid cell)  $\Omega_i$ .
- $\blacktriangleright$   $\Delta$ : Dual interface points, continuity imposed by Lagrange multipliers.
- $\succ$  П: Primal interface points, continuity imposed directly.

#### **Initial Block Matrix Form**

$$Lu = r, \quad L = \begin{pmatrix} L_{II} & L_{I\Delta} & L_{I\Pi} \\ L_{\Delta I} & L_{\Delta\Delta} & L_{\Delta\Pi} \\ L_{\Pi I} & L_{\Pi\Delta} & L_{\Pi\Pi} \end{pmatrix}, \quad u = \begin{pmatrix} u_I \\ u_{\Delta} \\ u_{\Pi} \end{pmatrix}, \quad r = \begin{pmatrix} r_I \\ r_{\Delta} \\ r_{\Pi} \end{pmatrix}$$

Operated by the Los Alamos National Security, LLC for the DOE/NNSA



# **Algebraic Reorganization**

Local Block Matrices: I +  $\Delta$ 

$$\mathbf{L}_{BB} = egin{pmatrix} \mathbf{L}_{II} & \mathbf{L}_{I\Delta} \ \mathbf{L}_{\Delta I} & \mathbf{L}_{\Delta\Delta} \end{pmatrix}, \quad \mathbf{u}_B = egin{pmatrix} \mathbf{u}_I \ \mathbf{u}_\Delta \end{pmatrix}, \quad \mathbf{r}_B = egin{pmatrix} \mathbf{r}_I \ \mathbf{r}_\Delta \end{pmatrix}$$

#### **Dual Continuity: Lagrange Multipliers**

 $\lambda$  is a vector of Lagrange multipliers used to impose continuity on the dual dependent variables  $\mathbf{u}_{\Delta}$ .

$$\mathbf{B} = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_{\Delta} \end{pmatrix}, \quad \mathbf{B}_{\Delta} \mathbf{u}_{\Delta} = 0, \quad \mathbf{L}_{BB} \mathbf{u}_{B} + \mathbf{L}_{B\Pi} \mathbf{u}_{\Pi} + \mathbf{B}^{T} \lambda = \mathbf{r}_{B}$$

#### Final Block Matrix Form

$$\mathbf{L} = \begin{pmatrix} \mathbf{L}_{BB} & \mathbf{L}_{B\Pi} & \mathbf{B}^T \\ \mathbf{L}_{\Pi B} & \mathbf{L}_{\Pi \Pi} & \mathbf{0} \\ \mathbf{B} & \mathbf{0} & \mathbf{0} \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} \mathbf{u}_B \\ \mathbf{u}_\Pi \\ \lambda \end{pmatrix}, \quad \mathbf{r} = \begin{pmatrix} \mathbf{r}_B \\ \mathbf{r}_\Pi \\ \mathbf{0} \end{pmatrix}$$

UNCLASSIFIED



Operated by the Los Alamos National Security, LLC for the DOE/NNSA



# **Solution and Reduction**

Solutions for  $u_B$  and  $u_{\Pi}$ 

$$\mathbf{u}_{B} = \mathbf{L}_{BB}^{-1} \left( \mathbf{r}_{B} - \mathbf{L}_{B\Pi} \mathbf{u}_{\Pi} - \mathbf{B}^{T} \lambda \right)$$
$$\mathbf{S}_{\Pi\Pi} \equiv \mathbf{L}_{\Pi\Pi} - \mathbf{L}_{\Pi B} \mathbf{L}_{BB}^{-1} \mathbf{L}_{B\Pi}$$
$$\mathbf{u}_{\Pi} = \mathbf{S}_{\Pi\Pi}^{-1} \left[ \mathbf{r}_{\Pi} - \mathbf{L}_{\Pi B} \mathbf{L}_{BB}^{-1} \left( \mathbf{r}_{B} - \mathbf{B}^{T} \lambda \right) \right]$$

## Global Schur Complement Equation for $\lambda$

 $\mathbf{F}\lambda = \mathbf{d}$ 

$$\mathbf{F} = \mathbf{B} \left( \mathbf{L}_{BB}^{-1} + \mathbf{L}_{BB}^{-1} \mathbf{L}_{B\Pi} \mathbf{S}_{\Pi\Pi}^{-1} \mathbf{L}_{\Pi B} \mathbf{L}_{BB}^{-1} \right) \mathbf{B}^T$$



 $\mathbf{d} = \mathsf{B}\mathsf{L}_{BB}^{-1}\left[\mathbf{r}_B - \mathsf{L}_{B\Pi}\mathsf{S}_{\Pi\Pi}^{-1}\left(\mathbf{r}_\Pi - \mathsf{L}_{\Pi B}\mathsf{L}_{BB}^{-1}\mathbf{r}_B\right)\right]$ 

UNCLASSIFIED

Slide 22



# **Solution Strategy**

- > Small dense block matrices of  $L_{BB}$  solved locally by LAPACK.
- Sparse global, primal matrix  $\mathbf{S}_{\Pi\Pi}$  solved in parallel by SuperLU\_dist.
- Global Schur complement matrix F solved by parallel preconditioned Krylov method, e.g. GMRES. Requires preconditioner for adequate rate of convergence.
- Choose primal interface constraints to provide coarse global problem, ensure scalability. 2D: vertices. 3D: more complicated.
- The scalability of F is accomplished by the coarse, primal solver. The quality of the preconditioner determines the rate of convergence but not the scalability.
- Scalability has been proven analytically for a limited range of simple problems: Poisson, linear elasticity, Navier-Stokes. More general: empirical.



UNCLASSIFIED

Slide 23



# Preconditioning

## Definitions For Each Subdomain $\Omega_i$

 $\mathbf{B}_{D,\Delta}^{(i)} \equiv \text{ scaled jump matrix}$ 

 $\mathbf{R}_{\Gamma\Delta}^{(i)} \equiv \text{restriction matrix from full interface to dual variables}$  $\mathbf{S}_{\varepsilon}^{(i)} \equiv \text{Schur complement obtained by eliminating interior variables}$ 

### Preconditioner

$$\mathbf{M}^{-1} = \sum_{i=1}^{n} \mathbf{B}_{D,\Delta}^{(i)} \mathbf{R}_{\Gamma\Delta}^{(i)} \mathbf{S}_{\varepsilon}^{(i)} \mathbf{R}_{\Gamma\Delta}^{(i)T} \mathbf{B}_{D,\Delta}^{(i)T}, \quad \mathbf{M}^{-1} \mathbf{F} \lambda = \mathbf{M}^{-1} \mathbf{d}$$

Condition Number

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i, \quad \kappa(\mathbf{A}) \equiv \left| \frac{\lambda_{\max}}{\lambda_{\min}} \right|$$



UNCLASSIFIED

Slide 24



# **Proposed Research Program**

- ➤ Use existing 2D SEL spectral element code as test bed.
- Implement FETI-DP as a modification of existing static condensation routines.
- Study a progression of extended MHD systems as nx and ny are increased to determine:
  - Constancy of condition number.
  - Constancy of Krylov iterations required for convergence.
  - Scaling of condition number with parameters.
- ➢ Extend spectral element code to 3D.
- Investigate optimal choice of primal constraints for scalability.



UNCLASSIFIED

Slide 25



# **Future Development of SEL**

- Generalized domain connectivity and topology with PETSc Index Sets and Generalized Gather/Scatter
- Improved preconditioning and scalability by domain substructuring, FETI-DP.
- > Third dimension of spectral elements.
- Slava Lukin: unstructured grid of triangles (2D) or tetrahedra (3D).
- > Visualization with VisIt or AVS Express.
- > CAD interface for input of geometry.



UNCLASSIFIED



# What Can SEL Contribute to M3D?

- $\succ$  Flux-source form.
- > High-order  $C^0$  spectral elements.
- > Static condensation.
- Improved preconditioning and scalability by domain substructuring, FETI-DP.
- > Harmonic grid generation.



UNCLASSIFIED



