Solvers Discussion FDM3D Workshop

Moderated by David Keyes* and Mark Adams TOPS Project & Columbia University

*in over my head and under my rest

Consider the full ecosystem

"You can never do just one thing" - Barry Commoner, late of UCSB

Metaphor for this discussion

- Imagine a conductor who is put over an orchestra of marvelous individual players
- He doesn't quite know what to ask them to play together
- ... but he knows that they are good!
- So, he decides to show them off with individual solos to generate ideas and to allow them to hear each other

Ten-minute "seeds"

- Alan Glasser, LANL
 - FETI-DP (Finite element tearing and interconnection, dual-primal formulation)
- Ravi Samtaney, PPPL
 Preconditioned Jacobian-free Newton-Krylov
- Mark Adams, Columbia
 - Multigrid for hyperbolic problems
- Steve Jardin, PPPL
 - ADI-based on direct inversion
- Guoyong Fu
 - Implicit treatment of fast and Alfven waves

Other material to run through

- Xiao-Chuan Cai, UColorado-Boulder & K.
 - Nonlinear Schwarz
- Luis Chacon, LANL
 - Physics-based preconditioning
- Paul Fischer, ANL
 - Scalability estimates for global spectral and domain decomposed multilevel methods for elliptic kernels
- Sherry Li, LBNL
 - Parallel direct methods
- Tom Manteuffel, UColorado-Boulder
 - Preconditioning high-order methods, FOSLS
- Chi-Wang Shu, Brown University
 - Discontinuous Galerkin discretizations

Metrics for algorithmic comparison

• Convergence rate for the algebraic problem

 "Convergence factor" per iteration, related to "condition number," any "preconditioning" and any "acceleration" scheme, based on some norm

Cost per iteration for the algebraic problem

- "Operator Complexity" relative to fine-grid "work unit"
- Approximation effectiveness per degree of freedom of the algebraic problem
 - "Order of convergence" of the discretization (relevant for smooth problems)
- Implementation efficiency of the algorithm on a distributed, hierarchical memory computer
 - Communication-to-computation "volume"
 - Number of communication startups and synchronizations
 - Spatial and temporal cache locality

• Set-up versus reuse complexities and implementation efficiencies

- Matrix assembly and storage (or cost of function eval. if matrix-free)
- Number of times set-up for a given system is reused
- Extensibility to complex geometry, multiple components, problems with "bad" features (indefiniteness, nonsymmetry, inhomogeneity, anisotropy)
- Fragility with respect to local lack of smoothness

Algebraic multigrid on BG/L

- Algebraic multigrid a key algorithmic technology
 - Discrete operator defined for finest grid by the application, itself, and for many recursively derived levels with successively fewer degrees of freedom, for solver purposes
 - Unlike geometric multigrid, AMG not restricted to problems with "natural" coarsenings derived from grid alone
- Optimality (cost per cycle) intimately tied to the ability to coarsen aggressively
- Convergence scalability (numbe)
- While much research and development remains, multigrid will clearly be practical at BG/Lscale concurrency

Figure shows weak scaling result for AMG out to 120K processors, with one 25×25×25block per processor (up to 1.875B dofs)

c/o U. M. Yang, LLNL

7-pt Laplacian, total execution time, AMG-CG, total problem size ~2 billion

Major decision drivers for solvers

- Separation of scales and opportunity for implicitness to suppress physically uninteresting but explicit stability-limiting modes
- Exploitability of high-order discretizations
- Cost of partitioning and load balancing gridfunction and matrix operator objects following adaptation steps

Types of performance improvements

- More flops per second
 - Better per-processor performance
 - Better scalability
- More "science" per flop
 - Better formulations
 - Better discretizations
 - Better solution algorithms
- These potential improvements are usually not "orthogonal"
 - Some synergistic, some mutually interfering

Other objectives for a new code

- New capabilities
 - Sensitivities built in from the beginning will make the code useful for V&V, UQ, optimization, control, and inversion
 - Well defined interfaces will prepare the code for multiphysics uses
- New platforms
 - Any code written today will have to run on multicore processors (homogeneous and heterogeneous)

Our environment

- Adaptive or fully unstructured grids with local discretizations
 - Sparse, irregular data structures
- Distributed, hierarchical memory computers
 MPI programming model, cache-awareness
- Premium on weak scaling, due to multiscale, multirate physics and to funding politics
 - Optimal, implicit methods based on domain decomposition
 - High-order spatial discretization and time integration schemes

Other directions for discussion

- Review of the other three math centers under SciDAC-2
 - APDEC
 - CSCAPES
 - ITAPS
- Review of the petascale hardware roadmaps
 - BlueGene: ANL, LLNL
 - Cell: LANL
 - XT: LBNL, ORNL, SNL