Solvers Discussion
FDM3D Workshop

Moderated by
David Keyes* and Mark Adams
TOPS Project & Columbia University

*In over my head and under my rest



Consider the full ecosystem

“You can never do just one thing” — Barry Commoner, late of UCSB
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Metaphor for this discussion

Imagine a conductor who Is put over an
orchestra of marvelous individual players

He doesn’t quite know what to ask them to
play together

... but he knows that they are good!

So, he decides to show them off with
Individual solos to generate ideas and to
allow them to hear each other



Ten-minute “seeds”

Alan Glasser, LANL

— FETI-DP (Finite element tearing and interconnection,
dual-primal formulation)

Ravi Samtaney, PPPL

— Preconditioned Jacobian-free Newton-Krylov
Mark Adams, Columbia

— Multigrid for hyperbolic problems

Steve Jardin, PPPL

— ADI-based on direct inversion

Guoyong Fu

— Implicit treatment of fast and Alfven waves



Other material to run through

Xiao-Chuan Cai, UColorado-Boulder & K.
— Nonlinear Schwarz

Luis Chacon, LANL
— Physics-based preconditioning
Paul Fischer, ANL

— Scalability estimates for global spectral and domain decomposed
multilevel methods for elliptic kernels

Sherry Li, LBNL

— Parallel direct methods

Tom Manteuffel, UColorado-Boulder

— Preconditioning high-order methods, FOSLS

Chi-Wang Shu, Brown University
— Discontinuous Galerkin discretizations



Metrics for algorithmic comparison

Convergence rate for the algebraic problem

— “Convergence factor” per iteration, related to “condition number,” any
“preconditioning” and any “acceleration” scheme, based on some norm

Cost per iteration for the algebraic problem
— “Operator Complexity” relative to fine-grid “work unit”

Approximation effectiveness per degree of freedom of the algebraic
problem

— “Order of convergence” of the discretization (relevant for smooth problems)
Implementation efficiency of the algorithm on a distributed,
hierarchical memory computer

— Communication-to-computation “volume”

— Number of communication startups and synchronizations

— Spatial and temporal cache locality
Set-up versus reuse complexities and implementation efficiencies

— Matrix assembly and storage (or cost of function eval. if matrix-free)

— Number of times set-up for a given system is reused
Extensibility to complex geometry, multiple components, problems

with “bad” features (indefiniteness, nonsymmetry, inhomogeneity,
anisotropy)

Fragility with respect to local lack of smoothness



Algebraic multigrid on BG/L

Algebraic multigrid a key algorithmic technology

— Discrete operator defined for finest grid by the application,
itself, and for many recursively derived levels with
successively fewer degrees of freedom, for solver purposes

— Unlike geometric multigrid, AMG not restricted to problems
with “natural” coarsenings derived from grid alone

Optimality (cost per cycle) intimately tied to the ability to
coarsen aggressively

Convergence scalability (numbe!
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Major decision drivers for solvers

e Separation of scales and opportunity for
Implicitness to suppress physically
uninteresting but explicit stability-limiting
modes

« Exploitability of high-order discretizations

e Cost of partitioning and load balancing
gridfunction and matrix operator objects
following adaptation steps



Types of performance
Improvements

* More flops per second
— Better per-processor performance
— Better scalability

* More “science” per flop
— Better formulations
— Better discretizations
— Better solution algorithms

 These potential improvements are usually not
“orthogonal”
— Some synergistic, some mutually interfering



Other objectives for a new code

 New capabilities

— Sensitivities built in from the beginning will
make the code useful for V&V, UQ,
optimization, control, and inversion

— Well defined interfaces will prepare the code
for multiphysics uses

 New platforms

— Any code written today will have to run on
multicore processors (homogeneous and
heterogeneous)



Our environment

« Adaptive or fully unstructured grids with local
discretizations

— Sparse, irregular data structures
 Distributed, hierarchical memory computers
— MPI programming model, cache-awareness

 Premium on weak scaling, due to multiscale,
multirate physics and to funding politics

— Optimal, implicit methods based on domain
decomposition

— High-order spatial discretization and time integration
schemes



Other directions for discussion

* Review of the other three math centers under
SciDAC-2
— APDEC
— CSCAPES
— ITAPS

 Review of the petascale hardware roadmaps
— BlueGene: ANL, LLNL
— Cell: LANL
— XT: LBNL, ORNL, SNL
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