
Implicit MHD Based on SUNDIALS Software

Future Directions for M3D Workshop

Princeton Plasma Physics Lab

20 March 2007

Daniel R. Reynolds, drreynolds@ucsd.edu

Ravi Samtaney, samtaney@pppl.gov

Carol S. Woodward, cswoodward@llnl.gov

(1)

Outline

I. MHD Description and Equations

II. Space-Time Discretization

III. Solution Approach

IV. Preconditioning Approach

V. Numerical Results

VI. Conclusions and Continuing Research

(2)

Resistive MHD – Conservation Form

Using standard vector identities,

∇× (a× b) = (∇a)b− (∇b)a + (∇ · b)a− (∇ · a)b,

a× (b× c) = (a · c)b− (a · b)c, . . .

we reformulate the restive MHD model as the advection-diffusion system,

∂tρ+∇ · (ρv) = 0,

∂t(ρv) +∇ ·
“
ρvvT −BBT +

`
p+ 1

2
B ·B

´
I
”

+B(∇ ·B) = ∇ · τ,

∂te+∇ ·
`
(e+ p+ 1

2
B ·B)v −B(B · v)

´
= ∇ · (τv + κ∇T)

+∇ ·
“
η

“
1
2
∇(B ·B)−B(∇B)T

””
+∇ · (B(∇ ·B)),

∂tB +∇ ·
“
vBT −BvT

”
= ∇ ·

“
η∇B− η (∇B)T

”
.

• Standard models drop terms proportional to ∇ ·B.

• Allows numerical methods that preserve conservation to machine precision.

(3)

Condensed Form

Condensing notation, we solve for U = (ρ, ρv, B, e)T :

∂tU = −∇ · Fh(U) +∇ · Fv(U) = ∇ · F(U),

where

Fh(U) =

0BBBBBBB@

ρv

ρvvT −BBT + (p+ 1
2
B ·B)I

vBT −BvT

(e+ p+ 1
2
B ·B)v −B(B · v)

0

1CCCCCCCA
, ←− Hyperbolic flux (Ideal MHD)

Fv(U) =

0BBBBBBB@

0

τ

η
`
∇B− (∇B)T

´
τv + κ∇T + η

`
∇(1

2
B ·B)−B(∇B)T

´
0

1CCCCCCCA
, ←− Parabolic flux

(4)

Shaped Plasma Geometry

We adopt a flux-tube coordinate system

for modeling the shaped plasma:

• Flux surfaces ψ are determined

from a separate equilibrium calcu-

lation

• Cylindrical coordinates (R,ϕ, z) are

mapped to the new system (η, ϕ, ξ):

ξ = ξ(R, z), η = η(R, z)

• Flux surfaces given by ψ = ψ0ξ

12

Curvilinear coordinates for shaped plasma

• Adopt a flux-tube coordinate
system (flux surfaces ! are

determined from a separate

equilibrium calculation)

– R! R (!, "), and Z! Z (!, ")

– " ! ! (R,Z), and " ! "(R,Z)

– Flux surfaces: ! = #0 !

– # coordinate is retained as

before

• Equations in transformed

coordinates

R

ϕ z ϕ
η

ξ

(5)

Shaped Grid Equations

In cylindrical coordinates, (R,ϕ, z), the system becomes

∂tU +
1

R

∂

∂R
(RF(U)) +

∂

∂z
H(U) +

1

R

∂

∂ϕ
G(U) = S(U) +∇ · Fv(U),

where F, G and H are the previous hyperbolic fluxes, and S is a local source

term in the ρvR, ρvϕ and Bϕ equations due to the transformation.

Transforming to the mapped system, (R,ϕ, z)→ (η, ϕ, ξ), we have

∂t(UJ) +
1

R

∂

∂ξ
(RF̃(U)) +

1

R

∂

∂η
(RH̃(U)) +

1

R

∂

∂ϕ
(JG(U)) = S̃(U) +∇ · Fv(U),

where F̃ = ∂z
∂η

F− ∂R
∂η

H and H̃ = − ∂R
∂ξ

F + ∂z
∂ξ

H, and J = ∂R
∂ξ

∂z
∂η
− ∂R

∂η
∂z
∂ξ

.

Note: in both of these formulations, the transformation adds only a local

‘reaction’ term to the general structure of the advection-diffusion system.

(6)

Outline

I. MHD Description and Equations

II. Space-Time Discretization

III. Solution Approach

IV. Preconditioning Approach

V. Numerical Results

VI. Conclusions and Continuing Research

(7)

Spatial Discretization

We treat the cell-centered simulation unknowns as a 3D grid, and decompose

our parallel simulation in all directions equally.

Overall Domain

z

φ

R Processor Decomposition

(8)

Computational Fluid Dynamics Approach

• Foliate space-time domain into dis-

tinct spatial snapshots,

Ω× [t0,∞)→
[
n

Ω(tn).

• Cut each slab into cells (boxes),

Ω(tn) =
[
i

Ωi(tn),

U(xi, tn) defined at cell centers.

• Evolve U(xi) in time using Gauss’

Theorem (conservation form):Z
Ωi

∂tU dx =

Z
Ωi

∇ · F(U) dx

=

Z
∂Ωi

F(U) · n ds
“Finite-Volume” method

(9)

Computational Fluid Dynamics Approach

• Foliate space-time domain into dis-

tinct spatial snapshots,

Ω× [t0,∞)→
[
n

Ω(tn).

• Cut each slab into cells (boxes),

Ω(tn) =
[
i

Ωi(tn),

U(xi, tn) defined at cell centers.

• Evolve U(xi) in time using Gauss’

Theorem (conservation form):Z
Ωi

∂tU dx =

Z
Ωi

∇ · F(U) dx

=

Z
∂Ωi

F(U) · n ds
Spatial domain (Ui,j,k)

(10)

Computational Fluid Dynamics Approach

• Foliate space-time domain into dis-

tinct spatial snapshots,

Ω× [t0,∞)→
[
n

Ω(tn).

• Cut each slab into cells (boxes),

Ω(tn) =
[
i

Ωi(tn),

U(xi, tn) defined at cell centers.

• Evolve U(xi) in time using Gauss’

Theorem (conservation form):Z
Ωi

∂tU dx =

Z
Ωi

∇ · F(U) dx

=

Z
∂Ωi

F(U) · n ds
Interface reconstruction (Ui+1/2,j,k)

(11)

Computational Fluid Dynamics Approach

• Foliate space-time domain into dis-

tinct spatial snapshots,

Ω× [t0,∞)→
[
n

Ω(tn).

• Cut each slab into cells (boxes),

Ω(tn) =
[
i

Ωi(tn),

U(xi, tn) defined at cell centers.

• Evolve U(xi) in time using Gauss’

Theorem (conservation form):Z
Ωi

∂tU dx =

Z
Ωi

∇ · F(U) dx

=

Z
∂Ωi

F(U) · n ds
Conservative evolution F(Ui+1/2,j,k)

(12)

Flux Computations

Reconstruction algorithm for values at interfaces ∂Ωi is the heart of CFD

techniques. Reconstruction method can dramatically affect

• Physicality of results: ∇ ·B, shock resolution

• Numerical stability in presence of steep gradients (Gibbs phenomena)

• Solution accuracy and cost

Our simulations may use any one of:

1. Godunov: O(h2) Roe and Riemann methods; inherently dissipative; helpful

for capturing shocks; non-commutative (πiπj 6= πjπi)

2. WENO: O(h2) adaptive stencil; helpful for capturing shocks; πiπj 6= πjπi

3. Centered: O(h2) or O(h4) interpolation based on neighbor averages;

non-dissipative; increased dispersion error; πiπj = πjπi

4. Tuned Centered: similar to (3), but with reduced dispersion error

5. Zip: similar interpolation properties to (3), possibly improved stability

(13)

Explicit vs. Implicit Integration

We may discretize ∂tU = f(U) in time:

Un = Un−1 + ∆tf(Un−1), [explicit]

Un = Un−1 + ∆tf(Un), [implicit]

Explicit methods simpler but less stable:

• ∆t limited by smallest ∆x and fastest

dynamical speed, λ, in the problem.

• Results in so-called CFL condition,

∆tCFL ≤ ∆x/λ

Implicit methods can be stable for all time step sizes:

• Potential scalability in time (no ∆t dependence on ∆x)

• Nontrivial: require a (non)linear solver for solution of the resulting system.

Both allow high-order methods, unlike semi-implicit and linearly-implicit

methods which relegate time accuracy to first-order (at best).

(14)

Stiffness in Resistive MHD

Resistive MHD stiffness results from fast hyperbolic waves and diffusive effects.

The ideal MHD waves are given by

λe = v (entropy wave)

λd = v (magnetic-flux wave)

λa = v ±An (Alfvén waves)

λf,s = v ± cf,s (fast/slow magnetosonic)

• The characteristic speeds satisfy cs << An < cf . Typically cf ≈ 106 m/s

for fusion plasmas.

• Diffusive (resistive, viscous, XMHD) effects induce quadratic explicit time

step dependence on the spatial mesh (∆t ∝ (∆x)2).

• For magnetic reconnection, explicit methods would thus require simulation

times that scale as O(S3/2).

(15)

Outline

I. MHD Description and Equations

II. Space-Time Discretization

III. Solution Approach

IV. Preconditioning Approach

V. Numerical Results

VI. Conclusions and Continuing Research

(16)

Solution Approach: Time Stepping (CVODE)

We consider time discretization of the system of ordinary differential equations,

∂tUi = fi(U) :=
1

|Ωi|

Z
∂Ωi

F(U) · n ds,

and evolve the solution using a high-order implicit multistep method (BDF),

g(Un) := Un −∆tβ0f(Un)−
qX

i=1

ˆ
αiU

n−i + ∆tβif(Un−i)
˜
.

• The time-evolved state Un = U(x, tn) is found as the solution to the

system of nonlinear algebraic equations g(U) = 0.

• For a given order of accuracy q, the parameters αi and βi are fixed, e.g.

BDF1: Un = Un−1 + ∆tf(Un)

BDF2: Un = 1
3

`
4Un−1 −Un−2 + 2∆tf(Un)

´
• If q ≤ 2, the method is A-stable, otherwise it is A(α)-stable

• http://www.llnl.gov/CASC/sundials/

[Gear & Saad, 1983; Hindmarsh et al., 2005]

(17)

Adaptive Time Step, Order Selection

CVODE adaptively chooses the time step size ∆t and the BDF method order q

at each time step to best balance

• Solution accuracy: compares explicit predictor with implicit corrector to

estimate local temporal truncation error.

• Temporal stability: monitors solution history data {Un−i}qi=1 to detect

BDF instability at q ≥ 3.

• Solver efficiency: estimates optimal ∆t to maximize time step while

minimizing solution cost.

[Hindmarsh 1992, 1995; Hindmarsh et al., 2005]

(18)

Solution Approach: Nonlinear

To solve the nonlinear algebraic equations for the time-evolved solution Un:

• Algorithms must have (nearly) linear space and time complexity on a

sequential computer to extend toward large-scale problems.

• Algorithms must also scale (nearly) linearly with the number of processors

on large parallel computers for use on next-generation petascale machines.

We use globalized Inexact Newton methods, which construct a sequence of

iterates {Uk}, Uk → Un, each solving a local linearized Newton system:

• Newton’s method exhibits a convergence rate that is independent of

spatial resolution in many PDE systems [Allgower et al., 1986; Weiser et al., 2005].

• Solution of the Newton linearization systems dominate spacetime

complexity of the solution algorithm (all else has linear complexity).

(19)

Solution Approach: Inexact Newton method

Beginning with an explicitly-predicted initial guess Un ≈ U0 ∈ span{Un−i}, solve

g(Un) = 0 using a sequence of linearized solutions:

1. Given: Uk

2. Find δUk solving: J(Uk) δUk = −g(Uk) + r,

3. Set: Uk+1 = Uk + λ δUk

4. Check: ‖g(Uk+1)‖ < ε

• The Gâteaux derivative J(U)V := limτ→0
d

dτ
g(U + τV) may be

approximated,

J(U)V ≈ [g(U + τV)− g(U)] /τ, 0 < τ � 1.

• ‖ · ‖ is a 2-norm, weighted by relative magnitudes of solution components.

[Dembo et al., 1982; Dennis & Schnabel, 1983; Brown & Saad, 1990; . . .]

(20)

Solution Approach: Linear Subproblems

The subproblems are solved via a Krylov subspace approximation algorithm

(GMRES). Constructs another sequence {δUk,l}l, δUk,l → δUk, where

δUk,l = Argmin
V∈Kl(J(Uk),g(Uk))

‖J(Uk)V + g(Uk)‖2,

with the enlarging approximation subspace defined by

Kl(J, g) = span{g, Jg, J2g, . . . , J lg}.

• Iteration stops when ‖J(Uk) δUk,l + g(Uk)‖2 = ‖r‖2 < δ.

• Requires only products with the linear operator J(Uk)V;

we use the approximation J̃(Uk)V = [g(U + τV)− g(U)] /τ .

• Convergence guaranteed for nonsingular J(U); must store basis for Kl(J, g).

• Convergence rate depends on the spectrum of J(U): method minimizes

the interpolating polynomial through approximate spectrum at each step.

Krylov: [Saad & Schultz, 1986; Greenbaum, 1997; Trefethen & Bau, 1997; . . .]

Implicit resistive MHD: [D.R., Samtaney & Woodward, 2006; Keyes, D.R. & Woodward, 2006]

(21)

General Comments on SUNDIALS Solvers

• The solver infrastructure only requires vector-space operations, hence is

applicable to any spatial discretization method (AMR, FEM), etc.

• High-order BDF integration requires that previous solution vectors be

defined on the same data so that linear combinations make sense. For

spatially-adaptive approaches, we would be limited to BDF1 or BDF2.

• Due to directional derivative approximations, no Jacobian need be

computed/stored, though the RHS functions f(U) must be sufficiently

differentiable.

• As SUNDIALS has no data-structure knowledge, preconditioning is not

supplied and is the responsibility of the application.

• CVODE time integrator is usable from within PETSc.

(22)

Outline

I. MHD Description and Equations

II. Space-Time Discretization

III. Solution Approach

IV. Preconditioning Approach

V. Numerical Results

VI. Conclusions and Continuing Research

(23)

Implicit MHD Preconditioner Acceleration

Instead of solving the original Newton systems J δU = −g, we may instead solve

(JP−1)(P δU) = −g for some nonsingular operator P , effectively manipulating

the spectrum of J to minimize the number of required Krylov iterations.

• P may then be any approximation to the linearized system that can be

solved efficiently.

• The choice of P does not affect the accuracy of the nonlinear solution,

only the convergence properties of the linear solver.

• P may be formed using problem-specific knowledge, enabling increased

efficiency through physical insight.

Since MHD stiffness results from fast hyperbolic and diffusive effects, we set

P−1 = P−1
h P−1

d = J(U)−1 +O(∆t2).

Often termed operator-splitting, and widely used as a stand-alone solver, we

use it to accelerate convergence of our more stable and accurate approach.

(24)

Ideal MHD Preconditioner (Ph)

Ph solves for the fastest wave effects within the implicit hyperbolic system.

Denoting (·) as the location of action for the linear operator, this has Jacobian

Jh(U) = I + ∆t [∂x(Jx(·)) + ∂y(Jy(·)) + ∂z(Jz(·))]

= I + ∆t
ˆ
L−1

x Lx∂x(Jx(·)) + L−1
y Ly∂y(Jy(·)) + L−1

z Lz∂z(Jz(·))
˜

= I + ∆t
ˆ
L−1

x ∂x(LxJx(·))− L−1
x ∂x(Lx)Jx

+ L−1
y ∂y(LyJy(·))− L−1

y ∂y(Ly)Jy

+ L−1
z ∂z(LzJz(·))− L−1

z ∂z(Lz)Jz
˜

We then form a directionally-split O(∆t2) preconditioner as

Ph = PxPyPzPlocal

=
ˆ
I + ∆tL−1

x ∂x(LxJx(·))
˜ ˆ
I + ∆tL−1

y ∂y(LyJy(·))
˜ ˆ
I + ∆tL−1

z ∂z(LzJz(·))
˜

ˆ
I −∆t L−1

x ∂x(Lx)Jx −∆t L−1
y ∂y(Ly)Jy −∆t L−1

z ∂z(Lz)Jz
˜
.

(25)

Mapped Grid Adjustments

In the mapped-grid curvilinear case, we may additionally handle the local source

terms with this approach:

Jh(U) = I + ∆t
ˆ
∂ξ(RJF̃(·)) + ∂η(RJH̃(·)) + J ∂ϕ(JG(·)) + JS̃

˜
= I + ∆t

h
L−1

F̃
LF̃∂ξ(RJF̃(·)) + L−1

H̃
LH̃∂η(RJH̃(·)) + JL−1

G LG∂ϕ(JG(·)) + JS̃

i
= I + ∆t

h
L−1

F̃
∂ξ(RLF̃JF̃(·))−RL−1

F̃
∂ξ(LF̃)JF̃

+ L−1

H̃
∂η(RLH̃JH̃(·))−RL−1

H̃
∂η(LH̃)JH̃

+ JL−1
G ∂ϕ(LGJG(·))− JL−1

G ∂ϕ(LG)JG + JS̃

i
We again form our directionally-split O(∆t2) preconditioner as

Ph = PξPηPϕPlocal

=
h
I + ∆tL−1

F̃
∂ξ(RLF̃JF̃(·))

i h
I + ∆tL−1

H̃
∂η(RLH̃JH̃(·))

i h
I + ∆tJL−1

G ∂ϕ(LGJG(·))
i

h
I −∆tRL−1

F̃
∂ξ(LF̃)JF̃ −∆tRL−1

H̃
∂η(LH̃)JH̃ −∆tJL−1

G ∂ϕ(LG)JG −∆t JS̃

i
.

(26)

Solving the Directional Systems

• Li is the spatially-local left eigenvector matrix for Ji, i.e. at a given x ∈ Ω,

Li(x)Ji(x) = Λi(x)Li(x), Λi = Diag(λ1, . . . , λ8)

• These eigen-decompositions are already computed for upwind fluxes.

• The Pi systems may be decoupled into 1D wave equations along

characteristics:h
I + ∆tL−1

i ∂i(LiJi(·))
i
ν = β ⇔ Li

h
I + ∆tL−1

i ∂i(ΛiLi(·))
i
ν = Liβ

⇐⇒

ζ + ∆t ∂i(Λiζ) = η ⇔ ζl + ∆t ∂i(λ
l
iζ

l) = ηl, l = 1, . . . , 8,

where ζ = Liν and η = Liβ.

• We need only solve for the fastest, stiffness-inducing, waves (fast

magnetosonic, Alfvèn).

• These are solved to low-order (O(∆x2)) since used for preconditioning only.

(27)

Parallelism of Directional Solves

For each wave, we have a simple 1D tridiagonal system, spread over all

processors in a spatial row. We parallelize the solve with a phased approach:

1. (local) Each processor solves its own portion of the system, assuming

neighboring boundary values are zero.

2. (global) The processor-boundary unknowns are now decoupled from the

interiors. This (2p× 2p) system is formed and solved on each processor.

3. (local) With the updated processor-boundary values, the local interior

solutions are updated accordingly.

Benefits:

• Two sets of global communication: once to set up 1D MPI

sub-communicators, once at each solve for global system.

• Non-iterative, i.e. ’true’ solution is known at end of second phase.

• Easily generalizable to arbitrary boundary conditions.

[adapted from Arbenz & Gander, ETH Zürich, Technical Report, 1994]

(28)

Solving the Plocal System

For spatially heterogeneous problems, or those involving local source terms, the

Plocal term is required:

Plocal = I + ∆t
ˆ
L−1

x ∂x (Lx) Jx + L−1
y ∂y (Ly) Jy + L−1

z ∂z (Lz) Jz + JS

˜
= I + ∆t

ˆ
L−1

x ∂x (Lx)L−1
x ΛxLx

+ L−1
y ∂y (Ly)L−1

y ΛyLy

+L−1
z ∂z (Lz)L−1

z ΛzLz + JS

˜

Plocal may thus be constructed from available eigen-information. Since it has no

spatial couplings on the unknown, the dense local matrices may be solved easily:

• Pre-compute the 8× 8 block-matrices Plocal at each spatial location

• Factorize each block Plocal = LlocalUlocal

• Use this decomposition for fast solves at each Krylov iteration.

(29)

Pd: Diffusive MHD Preconditioner

Pd solves the remaining diffusive effects within the implicit system,

∂tU−∇ · Fv = 0.

We set Pd to be the Jacobian of this operator,

Pd = Jv(U) = I −∆t ∂
∂U

(∇ · Fv)

=

2666664
I 0 0 0

0 I −∆tDρv 0 0

0 0 I −∆tDB 0

−∆tLρ −∆tLρv −∆tLB I −∆tDe

3777775

We may then exploit the lower-triangular structure of Pd to achieve an efficient

and accurate solution.

(30)

Pd: Implementation Details

To solve Pd y = b for y = [yρ, yρv, yB, ye]T :

1. Update yρ = bρ

2. Solve (I −∆tDρv) yρv = bρv for yρv

3. Solve (I −∆tDB) yB = bB for yB

4. Update b̃e = be + ∆t (Lρ yρ + Lρv yρv + LB yB)

5. Solve (I −∆tDe) ye = b̃e for ye.

• Due to their diffusive nature, steps 2, 3 and 5 are solved using a

system-based geometric multigrid solver [HYPRE].

• Step 4 may be approximated through one finite-difference, instead of

constructing and multiplying by the individual sub-matrices:

Lρ yρ + Lρv yρv + LB yB = 1
σ

[∇ · Fv(U + σW)−∇ · Fv(U)]e +O(σ),

where W = [yρ, yρv, yB, 0]
T .

(31)

Outline

I. MHD Description and Equations

II. Space-Time Discretization

III. Solution Approach

IV. Preconditioning Approach

V. Numerical Results

VI. Conclusions and Continuing Research

(32)

Ph Results – Linear Wave Advection

Ideal MHD linear wave advection test problem:

• 2.5D problem, slow wave propagation at 44.5o to x-axis

• 50 time steps, fixed ∆t = C ∗∆tCFL, nonlinear tolerance ε = 10−7

• Preconditioning: none [N], 8-wave [FW], block-split [BT]

Mesh C CPU[N] CPU[BT] CPU[FW] Krylov[N] Krylov[BT] Krylov[FW]

50 14.75 52.31 17.31 620 50 50

642 100 26.27 78.29 15.59 1226 111 50

500 31.10 593.19 285.00 1531 1283 5146

50 56.17 227.00 64.12 661 50 50

1282 100 100.46 364.89 64.87 1254 120 50

500 422.11 1941.88 599.23 4729 927 2482

50 307.12 873.00 278.93 618 50 56

2562 100 661.75 1333.38 274.23 1409 113 50

500 2951.58 7692.26 1880.34 6209 966 1701

50 1285.05 3719.43 991.43 608 50 50

5122 100 2765.79 6278.70 1000.86 1265 133 50

500 14791.33 35547.76 1009.03 6444 1055 56

(33)

Ph Results – Weak Parallel Scaling

Problem size increases with processor count, [procs in ()]; ε = 10−7.

Preconditioning: none [N], formulation 0 [FW0], formulation 1 [FW1]

Mesh C Newt[N] Newt[FW0] Newt[FW1] Kry[N] Kry[FW0] Kry[FW1]

1282 50 50 50 50 708 50 50

(1) 100 50 50 50 1307 50 50

500 50 65 59 3186 5103 3910

2562 50 50 50 50 619 50 50

(4) 100 50 50 50 1386 50 50

500 79 50 50 7682 1095 713

5122 50 50 50 50 626 50 50

(16) 100 50 50 50 1279 50 50

500 79 50 50 7473 1568 741

10242 50 50 50 50 635 50 50

(64) 100 50 50 50 1309 50 50

500 73 52 50 6817 2153 75

20482 50 50 50 50 634 50 50

(256) 100 50 50 50 1275 50 50

500 72 50 53 6742 1922 2768

40962 50 50 50 50 645 50 50

(1024) 100 50 50 50 1260 50 50

500 70 50 50 6590 1442 165

(34)

Ph Results – Kelvin Helmholtz

Ideal MHD Kelvin Helmholtz test problem:

• 3D problem, initial perturbation 10−3

• 50 time steps, fixed ∆t = C ∗∆tCFL, ε = 10−7

• Preconditioning: none [N], 8-wave [FW]

Mesh C CPU[N] CPU[FW] Newton[N] Newton[FW] Krylov[N] Krylov[FW]

1 5.70 8.76 150 100 300 199

16×8×8 5 9.36 15.64 150 150 756 435

10 14.29 22.64 157 156 1369 690

1 23.77 56.07 120 100 240 190

32×16×16 5 52.19 92.30 150 150 767 425

10 74.28 125.63 150 150 1439 633

1 111.20 309.24 100 100 200 174

64×32×32 5 258.62 589.83 148 149 730 408

10 427.93 796.38 150 150 1346 618

(35)

Initial Pd Results – Diffusion Dominated

• 3D resistive MHD pellet-injection test problem (η = 1)

• 50 time steps, fixed ∆t = C ∗∆tCFL

• Preconditioning: none [N], Diffusive [Pd]

Mesh C Newton [N, Pd] Krylov [N, Pd]

163 1 21, 20 30, 20

163 10 30, 40 128, 49

163 100 34, 45 680, 140

323 1 20, 20 20, 20

323 10 30, 40 153, 40

323 100 35, 51 785, 160

1 10 100
0

100

200

300

400

500

600

700

800

Δ tCFL Fraction

Kr
yl

ov

Total Krylov Iterations Per Implicit Simulation

163 Mesh, No Prec
163 Mesh, Prec
323 Mesh, No Prec
323 Mesh, Prec

(36)

Reconnection Results (P = I)

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6
x 10−3

Time

M
ax

 R
ec

on
ne

ct
io

n
R

at
e

Reconnection Rate Histories for Various Lundquist Numbers

explicit, S=1000
implicit, S=1000
explicit, S=2000
implicit, S=2000
explicit, S=10000
implicit, S=10000

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.002

0.004

0.006

0.008

0.01

0.012

S−1/2

M
ax

 R
ec

on
ne

ct
io

n
R

at
e

Sweet−Parker Scaling of Reconnection Rate With S−1/2

data
best fit

Implicit method produces identical physical results as explicit, captures theoretical scaling properties.

mesh size Exp. CPU Time Exp Nt Exp ∆t Imp. CPU Time Imp Nt Imp ∆t

64×32 75 s. 1636 3.06e-2 47 s. 1144 4.37e-2

128×64 768 s. 3247 1.54e-2 285 s. 1158 4.32e-2

256×128 8214 s. 6493 7.70e-3 1817 s. 1075 4.65e-2

512×256 80348 s. 12985 3.85e-3 14203 s. 1473 3.39e-2

Explicit and implicit CPU times, time steps, step sizes to reach t = 50. (CVODE takes conservative ∆t)

(37)

Pellet Injection Results (P = I)

256^3128^364^332^3

104

105

Mesh Size

S
ca

le
d

C
P

U
 T

im
e

Explicit vs. Implicit Efficiency

Explicit
Implicit

Pellet injection/ablation; Explicit, Implicit scaled CPU times.

mesh size (procs) Exp. CPU Time Exp Nt Exp ∆t Imp. CPU Time Imp Nt Imp ∆t

323 (1) 4198 s. 2844 1.05e-3 7168 s. 6221 4.82e-4

643 (8) 9136 s. 4886 6.14e-4 16520 s. 6467 4.64e-4

1283 (64) 23136 s. 8995 3.34e-4 28598 s. 8979 3.34e-4

2563 (256) 49507 s. 17619 1.70e-4 40842 s. 9725 3.08e-4

Explicit and implicit CPU times, time steps, step sizes to reach t = 3.

(38)

Conclusions

• For MHD systems dominated by hyperbolic stiffness from fast wave

effects, we have developed a preconditioning approach that:

– uses characteristic info. otherwise used only within upwind methods,

– allows preconditioning of any combination of MHD waves,

– is fully parallel, requiring minimal communication per P−1
h solve.

• For MHD systems dominated by diffusive stiffness, we have a

multigrid-based preconditioning approach that:

– uses scalable solver technology for diffusive problems,

– is easily extensible to highly-anisotropic heat conduction (AMG).

• Most problems exhibit both of these effects, so they may be combined in

an operator-split fashion.

(39)

Continuing Research

• Investigate coupled operator-split preconditioning approach on resistive

MHD problems of balanced type (advection & diffusion)

• Extend preconditioners to mapped curvilinear grids (through Plocal term),

allowing for implicit finite-volume simulations of toroidal fusion devices.

• Investigate approaches for constrained implicit evolution of finite-volume

MHD equations (direct enforcement of ∇ ·B = 0)

• Compare operator split preconditioner with other approaches for fully

implicit evolution of compressible MHD (in collab. w/ Chacon).

(40)

Thanks and Acknowledgements

• U.S. Department of Energy, Scientific Discovery through Advanced

Computing Program. Specifically:

– Towards Optimal Petascale Simulations (TOPS),

– Applied Partial Differential Equations (APDEC),

– Center for Extended MHD Modeling (CEMM)

• UCSD Mathematics and Physics Departments

• Princeton Plasma Physics Laboratory

• Lawrence Livermore National Lab:

– Nonlinear Solvers and Differential Equations Project

– Scalable Linear Solvers Project

(41)

