Preconditioned JFNK Method for Resistive MHD

Ravi Samtaney Daniel Reynolds Carol S. Woodward

> FDM3D Workshop March 19-21, 2007 PPPL, Princeton

Selective Review of Related Work

- Implicit treatment of fast compressive wave
 - Original idea proposed by Harned & Kerner (JCP 1985)
 - Basic idea: Subtract a term which mimics the fast wave behavior from both sides of the v_{\perp} equation; treat one side explicitly and the other implicitly
 - First order in time
- Implicit treatment of Alfvén wave
 - Harned & Schnack (JCP 1986)
 - Similar to the fast compressive treatment with extra heuristics (e.g. set cross terms of the operator to zero)
 - First order in time
- Newton-Krylov Approaches
 - Chacon et. al : "Parabolization + Schur complement + Multigrid"
 - Works for resistive and two-fluid MHD
 - Reynolds et. al: SUNDIALS (cvode, KINSOL)
 - Preconditioner: Operator + Directional splitting, Local wave-structure decomposition

Nonlinearly Implicit : Introduction to Newton-Krylov

• The solution at the next time level to the entire system of equations is expressed as the solution to the following nonlinear equation

$$\mathcal{F}(U^{n+1}) = 0$$

$$\mathcal{F}(U^{n+1}) = U^{n+1} - U^n + (1-\theta)R(U^{n+1}) + \theta R(U^n) = 0$$

The number of unknowns is 8N² for an NxN mesh

• This is solved using Newton's method

$$\delta U^{k} = -\left[\left(\frac{\partial \mathcal{F}}{\partial U}\right)^{n+1,k}\right]^{-1} \mathcal{F}$$

where $J(U^{n+1,k}) \equiv \left(\frac{\partial \mathcal{F}}{\partial U}\right)^{n+1,k}$ is the Jacobian; and $\delta U^k \equiv U^{n+1,k+1} - U^{n+1,k}$ The size of the Jacobian matrix is $64N^4$

• The linear system at each Newton iteration is solved with a Krylov method in which an approximation to the linear system J $\delta U = -f$ is obtained by iteratively building a Krylov subspace of dimension m

$$\mathcal{K}(r_0, J) = span\{r_0, Jr_0, J^2r_0, \cdots, J^{m-1}r_0\}$$

Nonlinearly Implicit : Introduction to Newton-Krylov

- Commonly used Krylov methods which can handle asymmetric matrices
 - GMRES (Generalized Minimum Residual)
 - Long-recurrence Arnoldi orthogonalization method
 - Robust, guaranteed convergence, but heavy on memory requirement
 - BiCGStab (Bi-conjugate Gradient Stabilized)
 - Short-recurrence Lanzcos biorthogonalization procedure
 - Residual not guaranteed to decrease monotonically, but less memory requirement
- Steps in a Newton-Krylov method
 - 1. Guess the solution $U^{n+1,0}$ (= U^n)
 - 2. For each Newton iteration k
 - 1. Using a Krylov Method solve for δU^k Solve $J \delta U^k = -F(U^{n+1,k})$ until || $J \delta U^k + F(U^{n+1,k}) || < Itol$
 - 3. Update the Newton iterate: $U^{n+1,k+1} = U^{n+1,k} + \lambda \delta U^k$
 - 4. Check for convergence $||F(U^{n+1,k+1})|| < ftol$
- Newton method converges quadratically. In practice, we use "Inexact" Newton which can exhibit linear or superlinear convergence
- Jacobian-Free Newton-Krylov: Krylov methods require only matrix-vector products to build up the Krylov subspace, i.e., only J δU is required. Thus, the entire method can be built from evaluations of the nonlinear function F(U)

$$J(U^k)\delta U^k \approx \frac{\mathcal{F}(U^{n+1,k} + \sigma\delta U^k) - \mathcal{F}(U^{n+1,k})}{\sigma}$$

JFNK: Resistive MHD

 Reynolds et al. (JCP 2006) developed a fully implicit MHD method for the fully conservative form of the resistive MHD equations. The nonlinear function was expressed as a high-order BDF method

$$g(\mathbf{U}^{n}) \equiv \mathbf{U}^{n} - \Delta t_{n}\beta_{n,0}f(\mathbf{U}^{n}) - \sum_{i=1}^{q_{n}} \left[\alpha_{n,i}\mathbf{U}^{n-i} + \Delta t_{n}\beta_{n,i}f(\mathbf{U}^{n-i})\right]$$

where $f(\mathbf{U}) \equiv \nabla \cdot (\mathbf{F}_{v}(\mathbf{U}) - \mathbf{F}_{h}(\mathbf{U}))$

In this method, $\alpha_{n,i}$ and $\beta_{n,i}$ are fixed parameters for a given method order q_n . The method is stable for any Δt_n for $q_n = \{1,2\}$

• The divergence of fluxes is discretized as

$$\left(\frac{\partial f}{\partial x}\right)_{i,j,k} = \frac{\tilde{f}_{i+\frac{1}{2},j,k} - \tilde{f}_{i-\frac{1}{2},j,k}}{\Delta x}$$

The numerical fluxes are computed as

$$\tilde{f}_{i+\frac{1}{2},j,k} = \sum_{\nu=-m}^{n} a_{\nu} f_{i+\nu,j,k}$$

The coefficients a_v are chosen based on the order of the method. For 4-th order finite difference method: m=1, n=2, $a_{-1}=a_2=1/12$, $a_0=a_1=7/12$

 Resulting code was conservative, and preserved the solenoidal property of B

Main Idea of Hyperbolic Preconditioner

- Ideal MHD is a hyperbolic system of PDEs
- Linearization about previous time step (or Newton iterate)
- Decomposition of systems of coupled PDEs to decoupled systems of equations governing linear wave propagation
 - Local decomposition into characteristics
 - Riemann invariants propagate along characteristics
 - Claim: If the fastest waves in the system are parasitical but dynamically insignificant then solving for the fastest wave may be an effective preconditioning method
 - Solve for the fastest waves; and reconstruct the solution from the Riemann invariants wherein only the Riemann invariants associated with the fastest waves are updated

- Instead of solving J δ U = -g solve (J P⁻¹) (P δ U) = -g, i.e., right preconditioning is employed
- The preconditioner is split into a hyperbolic and a diffusive component

$$P^{-1} = P_h^{-1} P_d^{-1} = J(\mathbf{U})^{-1} + \mathcal{O}(\Delta t^2)$$

• Denoting by (.) the location of the linear operator action, the ideal MHD Jacobian is

$$J_{h}(\mathbf{U}) = I + \overline{\gamma} \left[J_{x} \partial_{x}(\cdot) + J_{y} \partial_{y}(\cdot) + J_{z} \partial_{z}(\cdot) \right]$$

$$= I + \overline{\gamma} \left[J_{x} L_{x}^{-1} L_{x} \partial_{x}(\cdot) + J_{y} L_{y}^{-1} L_{y} \partial_{y}(\cdot) + J_{z} L_{z}^{-1} L_{z} \partial_{z}(\cdot) \right]$$

$$= I + \overline{\gamma} \left[J_{x} L_{x}^{-1} \partial_{x} \left(L_{x}(\cdot) \right) - J_{x} L_{x}^{-1} \partial_{x} (L_{x})(\cdot) + J_{y} L_{y}^{-1} \partial_{y} \left(L_{y}(\cdot) \right) - J_{y} L_{y}^{-1} \partial_{y} (L_{y})(\cdot) + J_{z} L_{z}^{-1} \partial_{z} \left(L_{z}(\cdot) \right) - J_{z} L_{z}^{-1} \partial_{z} (L_{z})(\cdot) \right]$$

where J_x is the Jacboian of the hyperbolic flux in the x-direction. L_x is the spatially local left eigenvector matrix for J_x . J_y , L_y , J_z , and L_z are similarly defined

• Directional splitting is employed to further approximate the preconditioner

$$\begin{split} P_h &= \left[I + \overline{\gamma} J_x L_x^{-1} \partial_x (L_x(\cdot)) \right] \left[I + \overline{\gamma} J_y L_y^{-1} \partial_y (L_y(\cdot)) \right] \left[I + \overline{\gamma} J_z L_z^{-1} \partial_z (L_z(\cdot)) \right] \\ &\left[I - \overline{\gamma} \left(J_x L_x^{-1} \partial_x \left(L_x \right) + J_y L_y^{-1} \partial_y \left(L_y \right) + J_z L_z^{-1} \partial_z \left(L_z \right) \right) \right] \\ &= P_x \, P_y \, P_z \, P_{\text{corr}}. \end{split}$$

• Decoupling into 1D wave equations along characteristics $L_i(x)J_i(x) = \Lambda_i(x)L_i(x), \quad \Lambda_i = \text{Diag}(\lambda^1, \dots, \lambda^8)$

$$L_i \left[I + \overline{\gamma} J_i L_i^{-1} \partial_i (L_i(\cdot)) \right] \xi = L_i \beta \quad \Leftrightarrow \quad \zeta + \overline{\gamma} \Lambda_i \, \partial_i \zeta = \chi,$$

where $\zeta = L_i \xi$ and $\chi = L_i \beta$

- Only the fastest stiffness inducing waves need to be solved. Furthermore, accuracy may be sacrificed because this is done in the context of the preconditioner.
- Thus along each direction, we get a system of linear wave equations. For each wave family, we now get a sequence of tridiagonal linear systems which can be efficiently solved. In parallel we use the method proposed by Arbenz & Gander (1994)

• For spatially varying J(U) a correction solve is involved

$$P_{\text{corr}} = I - \overline{\gamma} \left[J_x L_x^{-1} \partial_x \left(L_x \right) + J_y L_y^{-1} \partial_y \left(L_y \right) + J_z L_z^{-1} \partial_z \left(L_z \right) \right]$$
$$= I - \overline{\gamma} \left[L_x^{-1} \Lambda_x \partial_x \left(L_x \right) + L_y^{-1} \Lambda_y \partial_y \left(L_y \right) + L_z^{-1} \Lambda_z \partial_z \left(L_z \right) \right]$$

 Since this has no spatial couplings, the resulting local block systems may be solved easily by precomputing the 8x8 block matrices P_{corr} at each location coupled with a LU factorization

• Diffusion Preconditioner P_d : This solves the subsystem $\partial_t U - \nabla \cdot F_v = 0$

$$P_{d} = J_{v}(\mathbf{U}) = I - \overline{\gamma} \frac{\partial}{\partial \mathbf{U}} (\nabla \cdot \mathbf{F}_{v})$$
$$= \begin{bmatrix} I & 0 & 0 & 0\\ 0 & I - \overline{\gamma} D_{\rho \mathbf{v}} & 0 & 0\\ 0 & 0 & I - \overline{\gamma} D_{\mathbf{B}} & 0\\ -\overline{\gamma} L_{\rho} & -\overline{\gamma} L_{\rho \mathbf{v}} & -\overline{\gamma} L_{\mathbf{B}} & I - \overline{\gamma} D_{e} \end{bmatrix}$$

- To solve $P_d y = b$ for $y = [y_{\rho}, y_{\rho v}, y_{B}, y_{e}]^T$ 1. Update $y_{\rho} = b_{\rho}$
 - 2. Solve $(I \overline{\gamma}D_{\rho\mathbf{v}}) y_{\rho\mathbf{v}} = b_{\rho\mathbf{v}}$ for $y_{\rho\mathbf{v}}$
 - 3. Solve $(I \overline{\gamma}D_{\mathbf{B}}) y_{\mathbf{B}} = b_{\mathbf{B}}$ for $y_{\mathbf{B}}$
 - 4. Update $\tilde{b}_e = b_e + \overline{\gamma} \left(L_{\rho} y_{\rho} + L_{\rho \mathbf{v}} y_{\rho \mathbf{v}} + L_{\mathbf{B}} y_{\mathbf{B}} \right)$
 - 5. Solve $(I \overline{\gamma}D_e) y_e = \tilde{b}_e$ for y_e .

Steps 2,3 and 5 are solved using a geometric multigrid approach. Step 4 may be approximated with finite differences instead of constructing and multiplying by individual submatrices

$$\begin{split} L_{\rho} \, y_{\rho} + L_{\rho \mathbf{v}} \, y_{\rho \mathbf{v}} + L_{\mathbf{B}} \, y_{\mathbf{B}} &= \frac{1}{\sigma} \left[\nabla \cdot \mathbf{F}_{v} (U + \sigma W) - \nabla \cdot \mathbf{F}_{v} (\mathbf{U}) \right]_{e} + O(\sigma), \\ \text{where } W &= \left[y_{\rho}, y_{\rho \mathbf{v}}, y_{\mathbf{B}}, 0 \right]^{T} \end{split}$$

Verification Test: Linear Wave Propagation

- Ideal MHD test: Linear waves propagated to t=50
- Slow wave propagating obliquely to the mesh

Mesh	C	CPU[N]	CPU[BT]	CPU[FW]	Krylov[N]	Krylov[BT]	Krylov[FW]
64^{2}	50	14.75	52.31	17.31	620	50	50
	100	26.27	78.29	15.59	1226	111	50
	500	31.10	593.19	285.00	1531	1283	5146
128 ²	50	56.17	227.00	64.12	661	50	50
	100	100.46	364.89	64.87	1254	120	50
	500	422.11	1941.88	599.23	4729	927	2482
256 ²	50	307.12	873.00	278.93	618	50	56
	100	661.75	1333.38	274.23	1409	113	50
	500	2951.58	7692.26	1880.34	6209	966	1701
512^{2}	50	1285.05	3719.43	991.43	608	50	50
	100	2765.79	6278.70	1000.86	1265	133	50
	500	14791.33	35547.76	1009.03	6444	1055	56

Summary

- Verification tests of implicit (w/o preconditioning)
 - Linear wave propagation
 - GEM reconnection
 - Pellet model problem
 - In all tests, the implicit code agreed with the explicit one
- Preconditioners are developed recognizing that ideal MHD is a hyperbolic system
 - Operator + Directional splitting
 - Along each direction, the local wave structure was exploited to solve for the fastest waves
 - Diffusion part of the equations preconditioned using multi-grid
- For the chosen tests (wave propagation, KH) our preconditioned JFNK approach works well as the problem size gets larger and the time step is ~(10-100) larger than the explicit CFL constrained time step
- Future Work: Under the auspices of SciDAC-2, we will combine blockstructured hierarchical adaptive mesh refinement (w/ Chombo) technique with fully implicit time stepping (JFNK)

Introduction to Newton-Krylov: Preconditoners

• Krylov methods can lead to slow convergence. This is especially true for MHD where the Jacobian is ill-conditioned. Preconditioners help alleviate the problem of slow convergence and are formulated as follows

- The basic idea of preconditioners is that the matrix JP⁻¹ or P⁻¹J is close to the identity matrix, i.e., P is a good approximation of J. Furthermore, to make preconditioning effective, P⁻¹ should be computationally inexpensive to evaluate
- Two broad classes of preconditioners
 - **1.** <u>Algebraic</u>: These are of the "black-box" type. Obtained from relatively inexpensive techniques such as incomplete LU, multi-grid etc. These require storage for the preconditioner.
 - **2.** <u>*Physics-based*</u>: These may be derived from semi-implicit methods, and pay close attention to the underlying physics in the problem. Furthermore, these can still operate in the "Jacobian-Free" mode.

