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Abstract 
 
Here we describe a technique for solving the 4-field extended-magnetohydrodynamic (MHD) 
equations in 2 dimensions.  The introduction of triangular high-order finite elements with C1 
continuity leads to a compact representation compatible with direct inversion of the 
associated sparse matrices.   The split semi-implicit method is introduced and used to 
integrate the equations in time, yielding unconditional stability for arbitrary time step.  The 
method is applied to the cylindrical tilt mode problem with the result that a non-zero value of 
the collisionless ion skin depth will increase the growth rate of that mode.  The effect of this 
parameter on the reconnection rate and geometry of a Harris equilibrium and on the Taylor 
reconnection problem is also demonstrated.  This method forms the basis for a generalization 
to a full extended-MHD description of the plasma with 6, 8, or more scalar fields. 
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I. Introduction 
It has been recognized for some time that it is necessary to go beyond the simple "resistive 
MHD" description of the plasma in order to get the correct quantitative results for the growth 
and saturation of global dissipative modes in a fusion device. The inclusion of a more 
complete "generalized Ohms law" and the off-diagonal terms in the ion pressure tensor 
introduce whistler waves, kinetic Alfvén waves, and gyro-viscous waves, all of which are 
dispersive and require special numerical treatment. We describe a numerical approach to 
solving these extended-MHD equations using a compact representation that is specifically 
designed to yield efficient, high-order-of-accuracy implicit solutions of a general formulation 
of the extended-MHD equations. The representation is based on a triangular finite element 
with fifth order accuracy that is constructed to have continuous derivatives across element 
boundaries.  The Galerkin technique allows this element to be applied to systems of 
equations containing spatial derivative operators of up to 4th order. The final set of discrete 
block matrix equations is solved using a parallel sparse direct solver. 

For the general formulation, the magnetic and velocity fields are decomposed without loss of 
generality in a potential, stream function form as in [1].  Formulating the problem in these 
variables allows two non-trivial subsets of equations that can be studied before embarking on 
the full set of equations.  The 2-variable system described in [2] is the well known 2-field 
“reduced MHD” equations consisting of a single flux function for the magnetic field and a 
single stream function for the velocity.  The present paper describes the method applied to a 
more complex subsystem:   the 4-field reduced MHD equations, also known as the reduced 
two-fluid MHD equations.   This set of equations contains both MHD behavior associated 
with the shear Alfvén wave and the essential features of the whistler and kinetic Alfvén wave 
physics.  Variations of these equations have been extensively studied in the literature [3-5]. 

We present the 4-field equations in Sec. II, and then describe the split semi-implicit method 
for their solution in Sec. III and the numerical stability of this method in Sec. IV.  Sections V, 
VI, and VII present applications of this method to three model problems: presenting new 
results on the effect of the collisionless ion skin depth on the growth rate of the tilt mode in 
Sec. IV and confirming the importance of this term on reconnection rates in Secs. VI and 
VII.   The paper is summarized with discussion in Sec. VIII. 

II. The Equations 
 
The reduced two-dimensional (x,y) two-fluid MHD equations in the limit of zero electron 
mass can be written [3] 
 

2 2 2, ,
t

4φ φ φ ψ ψ µ∂ ⎡ ⎤ ⎡ ⎤∇ = ∇ + ∇ + ∇⎣ ⎦ ⎣ ⎦∂
φ                                                             (1a) 

[ ] [ ] 2, ,z
z z

V V I V h
t

φ ψ µ µ∂
= + + ∇ − ∇

∂
4

zV                                                      (1b) 

[ ] [ ] 2, ,id I
t

4ψ φ ψ ψ η ψ ν∂
= + + ∇ − ∇

∂
ψ                                                       (1c) 
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[ ] [ ]2 2, , ,i z
I 4I d V I
t

φ ψ ψ ψ η∂ ⎡ ⎤= + ∇ + + ∇ − ∇⎣ ⎦∂
Iν                                     (1d) 

 
where we have utilized the Poisson bracket notation: 
 

[ ] ˆ,a b a b z≡ ∇ ×∇ ⋅  
 
Here, φ  is the in-plane velocity stream function,  is the z-component of the velocity, zV ψ  is 
the magnetic flux function, and I is the z-component of the magnetic field.   Thus, the 
magnetic field and (incompressible) fluid velocity are represented as:  ˆ ˆB zψ Iz= ∇ × +

G
 ; 

.    It is shown in [3] that Eqs. (1a-d) are valid in the low guide-field limit in 
which whistler waves are the dominant 2-fluid effect, but that a very similar set of equations 
is valid in the high guide-field limit in which the kinetic Alfvén wave is prominent.  Thus, we 
take the Eqs. (1) to be typical of the extended MHD equations in 2D. 

ˆ zV zφ= ∇ × +
G

ˆV z

 
The fluid viscosity, electrical resistivity,  hyper-resistivity (or electron viscosity) and 
collisionless ion skin depth are given by µ , η , ν , and .   (The parameter h is a hyper-
viscosity coefficient added to damp spurious oscillations that might otherwise develop.)  
Terms involving the electron mass have been neglected.  The 2-field reduced MHD system 
studied in [1] are just Equations (1a) and (1c) with the parameter  set to zero. 

id

id
 
The equations (1) have the energy integral (in the absence of sources): 

{ }
2 22 22 2

2 22 21
2 2 2 22 2 2

2

( )

ˆ

z

z

z

V I
V I dA dA

t h V I

d n

µ φ µ η ψ η
φ ψ

µ ν ψ ν

ψ ψ

⎧ ⎫∇ + ∇ + ∇ + ∇∂ ⎪ ⎪∇ + + ∇ + = − ⎨ ⎬∂ ⎪ ⎪+ ∇ + ∇ ∇ + ∇⎩ ⎭

+ ∇ ∇

∫∫ ∫∫

∫ A iv

    (2) 

To derive (2), we have assumed the perturbed variables obey the boundary conditions: 
2

1ˆ ˆ ˆ 0z zn V h n V I n Iφ µ φ µ ψ ν ψ ν= ∇ = = ∇ = = ∇ = = ∇ =� � � � �� �i i i �

t

 
 

III. The Numerical Method: 
 
To derive the implicit system, we Taylor expand the RHS of Eq. (1) in time to center the 
spatial derivatives at the advanced time: n nt tθ θδ+ ≡ + , keeping only the terms through first 
order in the time step tδ .  This gives 
 

2 2 2 2 2

2 2 4

, , ,

, ,

t t

t t t 4

,φ φ φ θδ φ φ θδ φ φ ψ ψ

θδ ψ ψ θδ ψ ψ µ φ θδ µ φ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡∇ = ∇ + ∇ + ∇ + ∇⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ ∇ + ∇ + ∇ + ∇⎣ ⎦ ⎣ ⎦

� � �

�� �

⎤⎦                                 (3a) 

[ ] [ ] [ ]
2 2 4 4

, , , , ,z z z z

z z z z

V V t V t V I t I t I

V t V h V h t V

,φ θδ φ θδ φ ψ θδ ψ θδ ψ

µ µθδ µ µ θδ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + + +⎣ ⎦ ⎣ ⎦⎣ ⎦
+ ∇ + ∇ − ∇ − ∇

�� � � �

� �
                    (3b) 
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[ ] [ ] [ ] [ ]
2 2 4 4

, , , , ,i i it t d I d t I d t

t t

, Iψ φ ψ θδ φ ψ θδ φ ψ ψ θδ ψ θδ ψ

η ψ ηθδ ψ ν ψ νθδ ψ

⎡ ⎤ ⎡ ⎤= + + + + + ⎣ ⎦⎣ ⎦
+ ∇ + ∇ − ∇ − ∇

� �� � �

� �
                     (3c) 

 
[ ]

[ ] [ ]

2 2 2

2 2 4 4

, , , , ,

, , ,

i i i

z z z

I I t I t I d d t d t

V t V t V I t I I t I

,φ θδ φ θδ φ ψ ψ θδ ψ ψ θδ ψ ψ

ψ θδ ψ θδ ψ η ηθδ ν νθδ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + ∇ + ∇ + ∇⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦
⎡ ⎤+ + + + ∇ + ∇ − ∇ − ∇⎣ ⎦

�� � � �

� ��
⎦

�
     (3d) 

 
The split semi-implicit method consists of  using Eqs.  (3c) and (3d) , but with the field time 
derivatives ψ�  and on the right of the equal sign set to zero and ignoring (small) dissipative 
terms, to eliminate time derivatives 

I�

ψ�  and from Eqs.  (3a) and (3b).  This has the effect of 
isolating the linearized Alfven wave characteristics in those two equations.  Thus, the 
modified velocity equations become: 

I�

 

[ ] [ ]( ) [ ] [ ]( )

{ }

2 2 2 4

2 2

2 2 4

2 2 2

, ,

, , , , , ,

, ,

( ) , , , ,

i id I d I
t

t

φ φ φ ψ ψ µ φ

φ ψ ψ ψ ψ φ ψ ψ
θδ

φ φ φ φ µ φ

θδ φ ψ ψ ψ φ ψ

⎡ ⎤ ⎡ ⎤∇ = ∇ + ∇ + ∇ +⎣ ⎦ ⎣ ⎦
⎧ ⎫⎡ ⎤ ⎡∇ + + ∇ +⎣ ⎦ ⎣⎪ ⎪+ ⎨ ⎬

⎡ ⎤ ⎡ ⎤+ ∇ + ∇ + ∇⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ ∇ + ∇⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

�

� � �

� �

⎤⎦                     (3a)′ 

and 
 

[ ] [ ]

[ ] [ ]( )
[ ] [ ]( )

( ){ }

2 4

2

2 4

2

, ,

, , , ,

, , , , ,

( ) , , , , ,

z z z z

i z

i z

z z

z

V V I V h V

I d V

t I d I V V

V h V

t I V I

φ ψ µ µ

φ ψ ψ ψ ψ

θδ φ ψ ψ φ φ

µ µ

θδ φ ψ ψ φ ψ

= + + ∇ − ∇

⎧ ⎫⎡ ⎤⎡ ⎤+ ∇ +⎣ ⎦⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤⎡ ⎤ z⎡ ⎤+ + + + +⎨ ⎬⎣ ⎦⎣ ⎦ ⎣ ⎦
⎪ ⎪
+ ∇ − ∇⎪ ⎪
⎩ ⎭

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤+ + +⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

�

� �

� �

� ��

                                  (3b)′ 

 
The system (3a)′ , (3b)′ , (3c) and (3d) is solved each time step as two pairs of equations, 
with Eqs. (3a)′ and (3b)′ being solved first to obtain the velocity time derivatives , 
and these being substituted into Eqs.  (3c) and (3d), which are then solved to obtain the field 
time derivatives

and zVφ� �

and Iψ �� .   
 
The motivation is to form two compact systems that can be efficiently solved each time step 
using elementary matrix methods.   The Courant time step restriction associated with the 
Alfvén waves is eliminated by the implicit simultaneous solution of (3a)′  and (3b)′ .  Since  
Eqs.  (3c) and (3d) contain the mechanism for the whistler waves, at least in the electron 
MHD (EMD) model [6], these can next be solved implicitly to remove the severe time step 
restriction associated with the dispersive whistler waves.   
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A similar technique, but applied to the Alfvén wave only, has been called the “differential 
approximation” in [7] and [8]. The present treatment differs from those in the time-centering 
of the variables and in the retention of terms linear in tδ  in the modified equations (3a)′ and 
(3b)′.  However the major difference between this and previous work is in the extension of 
this technique to the whistler wave through equations (3c) and (3d).  The numerical stability 
of this system is discussed in Sec. IV. 
 
To obtain the discrete matrices, we first finite difference in time, with the 
notation: , with n being the time index.  If we define the time step 

 then the second order expression for the time derivative, centered 
about , is

( , ) ( , , )n x y x y tφ φ≡ n

n1n nt t tδ +≡ −
1/ 2nt t += 1

2 1( , , ) ( , ) ( , )n n nt x y t x y x yδ φ φ φ+ +≅ −� .   By making use of the readily 
verified identity,  

 
[ ] [ ]2 2 2, , , 2 , 2 ,x x y ya b a b a b a b a b⎡ ⎤ ⎡ ⎤ ,⎡ ⎤∇ = ∇ + ∇ + + ⎣ ⎦⎣ ⎦ ⎣ ⎦                                          (4) 

 
straightforward manipulation gives the following set of equations relating the variables at 
time level n+1 to those at time level n: 
  
{ } { }2 1 2 2 1 2 1 3 2 2 2 2

11 11 11 11 11 1 1( ) ( 1)( ) ( )v v n v v v n vtL t L tL tL t L t R tRθδ θδ φ θδ δ θ θ δ φ θ δ δ+∇ − − = ∇ − + − − + + 1v     (5a) 
 

{ } { }
{ } {

1 2 2 1 1 2 2 1
21 21 22 22

1 3 2 2 1 3 2 2
21 21 21 22 22 22

2 2 1
2 2

( ) ( ) 1 ( )

( 1)( ) 1 ( 1)( )

( )

v v n v v n
z

v v v n v v v} n
z

v v

t L t L tL t L V

tL tL t L tL tL t L V

t R tR

θδ θδ φ θδ θδ

θδ δ θ θ δ φ θδ δ θ θ δ

θ δ δ

+ +− − + − − =

− + − − + − + − −

+ +

      (5b) 

 
{ } { }1 1 1 1 1 1

11 12 11 12 11 1 (1 )p n p n p n p ntL tL I tL tL I tRθδ ψ θδ θ δ ψ θδ δ+ +− − = + − − + 1 p                    (5c) 
 

{ } { }1 1 1 1 1 1 1
21 22 21 22 21 1 (1 )p n p n p n p n ptL tL I tL tL I tRθδ ψ θδ θδ ψ θ δ δ+ +− + − = − + + − +                  (5d) 

 
Here, we have defined the operators: 
 

{ }
{ }

{ }

1 1 1 2 2 1 4 1
11

2 1 1 2 2 1 2 1
11

1 1

3 2 4
11

2 2 2
1

, ,

, , , , , ,

2 , , 2 , ,

,

, , ,

v n n n n

v n n n n

n n
x x y y

v n

v
i i

L

L

L

R d I d

φ φ φ φ φ µ φ

φ φ ψ ψ φ ψ ψ ψ φ ψ

φ ψ ψ φ ψ ψ

φ φ φ µ φ

ψ ψ ψ

+ + + +

+ + + +

+ +

⎡ ⎤ ⎡ ⎤= ∇ + ∇ + ∇⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤ ⎡= ∇ + ∇ + ∇⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦ ⎣

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤= ∇ + ∇⎣ ⎦
⎡ ⎤⎡ ⎤= ∇ + ∇⎣ ⎦⎣ ⎦ [ ]

[ ]

2

1 2
1

, ,

2 , , 2 , ,

,

i

i x x i y y

v

⎤⎤⎦⎦

,I d I

d I d I

R

ψ ψ ψ

ψ ψ ψ ψ

ψ ψ

⎡ ⎤⎡ ⎤ ⎡+ ∇ ⎤⎣ ⎦ ⎣⎣ ⎦
⎡ ⎤⎡ ⎤+ +⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤= ∇⎣ ⎦

⎦

                            (6a) 
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{ }
{ }
{ }
{ }
{ }
{ }

1 1 1
21

2 1 1 1
21

1 1 1 2 1
22

2 1 1
22

3 1
21 2

3 21
22 2

2 2
2

,

, , , ,

,

, ,

,

,

, , ,

v n n
z

v n n n

v n n n
z z z

v n n
z z

v n
z

v n
z z z

v
i i

L V

L I I

L V V V

L V V

L V

L V V V h V

R d d I

φ φ

φ φ ψ φ ψ

φ µ

ψ ψ

φ φ

φ µ µ

ψ ψ ψ

+ +

+ + +

+ + +

+ +

⎡ ⎤= ⎣ ⎦
⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣
⎡ ⎤= + ∇⎣ ⎦
⎡ ⎤⎡ ⎤= ⎣ ⎦⎣ ⎦
⎡ ⎤= ⎣ ⎦
⎡ ⎤= + ∇ − ∇⎣ ⎦
⎡ ⎤⎡ ⎤= ∇ +⎣ ⎦⎣ ⎦ [ ]

[ ]1
2

,

,v

4
z

⎤⎦

I

R I

ψ

ψ

⎡ ⎤⎣ ⎦

=

                                                  (6b) 

{ }
{ }

{ }
{ }

1 1 1 1 2 1 4 1
11

1 1 1
12

1 1
1

1 1 2 1 2 1 1
21

1 1 1 2 1 4 1
22

1 1
2

, ,

,

,

, , ,

,

,

p n n n n n
i

p n n
i

p n n

p n n n n
i i z

p n n n n

p n n
z

L d I

L I d I

R

L d d V

L I I I I

R I V

ψ φ ψ ψ η ψ ν ψ

ψ

θ φ φ ψ

ψ ψ ψ ψ ψ ψ

φ η ν

θ φ φ

+ + + + +

+ +

+

+ + + +

+ + + +

+

⎡ ⎤ ⎡ ⎤= + + ∇ − ∇⎣ ⎦ ⎣ ⎦
⎡ ⎤= ⎣ ⎦
⎡ ⎤= −⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ∇ + ∇ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= + ∇ − ∇⎣ ⎦

⎡ ⎤= + − +⎣ ⎦{ } [ ]1 2, ,n n
z i zV d V ,ψ ψ ψ ψ+⎡ ⎤ ⎡ ⎤− + ∇ +⎣ ⎦ ⎣ ⎦

             (6c) 

 
We next represent each of the unknown scalar fields as a set of time-varying amplitudes 
multiplying time-independent spatial basis functions [2].  The domain is divided into M 
triangular regions.  Within each triangle m, 18 basis functions are defined, 
{ }, ( , ); 1,18m i x y iν =  with the properties: (i) each of the basis functions is a quintic polynomial 
in (x,y) that has the value unity at one node for either the function or one of its first five 
derivatives,  (ii) the basis function and its first five derivatives are zero at the two other 
nodes, and (iii) the quintic terms in the polynomial are constrained so that the normal 
derivative of the basis function is at most a cubic function along each side of the triangle.  
These conditions are enough to uniquely determine the 21 polynomial coefficients for each 
basis function and to insure that any scalar field represented in terms of these basis functions 
will have continuous first derivatives across triangle boundaries.  This property is denoted in 
the literature by C1 [9]. 
 
Using these basis functions, the unknown quantities take the physical significance of being 
the function, its two first, and three second derivatives at each of the nodes.  For example, the 
stream function is represented as a sum over each of the 18 basis functions in each of the M 
triangles: 
 

18

;
1 1

( , ) ( , )
M

n
m i m i

m i

x y x yφ ν
= =

= ∑∑ ;
nΦ                                                             (7) 
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The unknowns { }; 1,18n
i iΦ =  for triangle m break into three sets of six:  { }, ; 1, 6n

m i iΦ =  

correspond to , , , , ,x y xx xy yyφ φ φ φ φ φ  at the first node, { }, ; 7,12n
m i iΦ =  are the same quantities 

at the second node, and  { }, ; 13,18n
m i iΦ =  are these quantities at the third node.  Note that all 

the unknowns in Eq. (7) are located at the nodes and are thus shared with all triangles using 
that node.  Since there are asymptotically an average of six triangles utilizing each node, 
there are approximately a total of 3×M unknowns for the global representation of each scalar 
field, rather than 18×M, which might be inferred from Eq. (7). 
 
The discrete expansion (7) for each of the four scalar fields is substituted into the four 
equations (5).   The Galerkin method consists of multiplying each equation (5a)-(5d) by each 
of the basis functions (or trial functions) and integrating these over the domain to obtain 
matrix equations for the discrete unknowns.  Integration by parts is used to shift derivatives 
onto the trial functions so that no higher than second spatial derivatives appear in the final 
integrals.  These are allowable in this procedure since the basis functions were constructed to 
have continuous first derivatives across triangle boundaries. 
 
We next represent each quantity as the sum of an equilibrium part that is independent of time 
and a perturbed part, thus , etc.  This yields the two sets of matrix equations 
that can be solved sequentially:  

0nΦ →Φ +Φn

;

,

n

nI
⎤Ψ
⎥
⎦

;

,

n

nV
⎤Φ
⎥
⎦

 

            (8) 
1

; ;11 11 11 12
1
, ,21 22 21 22 21 22

0 0n nv v v v
m i m i m i
n nv v v v v v

zm i zm i m i

S D R R
V VS S D D R R

+

+

⎡ ⎤ ⎡ ⎤ ⎡Φ Φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣
 

1 1
; ; ;11 12 11 12 11 11
1 1
, , ,21 22 21 22 21 22 21 22

0 0n n np p p p p p
m i m i m i m i

n n np p p p p p p p
zm i zm i zm i zm i

S S D D R Q
I I VS S D D R R Q Q

+ +

+ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡Ψ Ψ Φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣
             (9) 

                               
The block matrix elements appearing here are defined in Appendix B.  The matrix equations 
(8) and (9) are solved sequentially using the distributed version of the direct sparse matrix 
software package SuperLU [10].  This solution procedure is exceptionally efficient for a 
linear system, since only a one-time LU decomposition of the two matrices appearing on the 
left of the equals sign is required.   A nonlinear problem requires performing the LU 
decomposition whenever there is significant change in the values of the matrix elements. 
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IV. Numerical Stability 
 
The split semi-implicit time advance method given by equations (8) and (9) is based on 
advancing the velocity variables first each time step, followed by advancing the field 
variables.  This clearly leads to a more efficient numerical method than if the coupled system 
were advanced together (as in Appendix C), since the rank of each matrix appearing on the 
left in Eq. (9) is half of what it would be for the combined system.  To understand how this 
leads to an unconditionally stable time advance, let us consider a simpler problem that has 
the essential features of the one under investigation. 
 
Consider the simplified Hall MHD system for the f uid velocityV l

G
, the perturbed magnetic 

field , and the perturbed current densityB
G

J B= ∇×
G G

.  Assume for simplicity that the 
equilibrium magnetic field is uniform and in the ẑ  direction, and that the density is spatially 
constant.  In suitably normalized units, the linearized momentum equation and the curl of the 
induction equation become simply: 
 

0
V J B
t

∂
= ×

∂

G G G
                                                                                   (10a) 

0( )i
J B V d J B
t t

∂ ∂ ⎡ ⎤= ∇ × = ∇ ×∇× − ×⎣ ⎦∂ ∂

G G G G G
                                               (10b) 

Setting 0 ˆB z=
G

, and specializing for simplicity to wave propagation in the ẑ  direction so 

that ˆ ˆ zz z
z
∂

∇ → ≡ ∂
∂

, and both  and J V
G G

 are in the ˆ ˆx y− plane, the split semi-implicit time 

advance corresponding to equations (5) is 
 

{ }2 2 1 2 2 ˆ1 ( ) ( )n n n n
it V V t t V d J tzθδ δ θδ δ+ ⎡ ⎤⎡ ⎤− ∇ − = ∇ − ∇ − ×⎣ ⎦ ⎣ ⎦

G G G G
nJ
G

ˆ n
G

z

z

t

d

                           (11a) 
2 1 2 1 2ˆ ˆ1 ( ) [ (1 ) ]n n n n

i itd z J J tz V V td z Jθδ δ θ θ δ+ +⎡ ⎤+ ×∇ − = ×∇ + − − ×∇⎣ ⎦
G G G G

                 (11b) 
 

Or, in matrix component form: 
12 2

2 2

2 2

2 2

2 2 2 2

2 2 2 2

2 2

1 ( ) 0 0 0
0 1 ( ) 0 0
0 1

0 1

1 ( 1)( ) 0 ( )
0 1 ( 1)( ) ( )
0 ( 1) 1 ( 1)

( 1)

n
xz

yz

xz i z

yz i z

z i z

z i

z i

Vt
Vt
Jt td
Jt td

t t d
t t t d

t t
t

θδ
θδ
θδ θδ

θδ θδ

θ θ δ θ δ δ
θ θ δ δ θ δ
θ δ θ δ

θ δ

+
⎡ ⎤ ⎡ ⎤− ∂
⎢ ⎥ ⎢ ⎥− ∂⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∂ − ∂
⎢ ⎥ ⎢ ⎥

− ∂ ∂ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

− − ∂ − ∂
− − ∂ − − ∂

=
− ∂ − − ∂

− − ∂

i

2 20 ( 1) 1

n
x

y

x

yz i z

V
V
J
Jtdθ δ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

− ∂ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

i

    (12) 
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The numerical stability is determined by replacing the spatial derivative by an effective wave 
number, , and by introducing the amplification factor r for the vector in Eq. 
(12).  The amplification factor is thus determined by the generalized eigenvalue equation 

2 2 2
z k∇ = ∂ → − eff

 
2 2 2 2

2 2 2 2

2 2

2 2

1 ( ) 0 ( )
0 1 ( ) ( )

det 0 ,
0

0

eff i eff

eff i eff

eff i eff

eff i eff

r t k s t d k t
r t k s t t d k

tk s r d tk s
tk s d tk s r

θ δ θ δ δ
θ δ δ θ δ
δ δ

δ δ

⎡ ⎤− +
⎢ ⎥− + −⎢ ⎥ =
⎢ ⎥− − −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

              (13) 

 
with [ ](1 ) 1s r θ≡ − − .  Evaluation of  Eq. (13) with both a generalized eigenvalue solver and 
by symbolic expansion of the determinant and using a polynomial root finder give identical 
results:  the amplification factor 1r ≤ , and thus the system is stable, for arbitrary real 

 , 2 0effk > 0tδ > , and  provided the implicit parameter satisfies 0id > 1 2θ ≥ .
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V. The Tilting Cylinder 
 
Here we apply the method to the extension of the analysis of the tilting cylinder problem 
considered in [2] to the 4-field model.  Following [2,11,12] we define an initial force free 
bipolar vortex equilibrium state: 

[ ] ( )
( )

0 10
1

2 / ( ) cos , 1,
( , ) ( ) 0

1/ cos , 1,

kJ k J kr r
x y J k

r r r

θ
ψ

θ

<⎧⎪= =⎨
− >⎪⎩

                              (14) 

We have defined a polar coordinate system such that cosy r θ= , sinx r θ= .  The initial 
toroidal field is defined as: 

( )2 2 2
00

0

, 1
( , )

1

k x y B r
I x y

B r

ψ⎧ + <⎪= ⎨
>⎪⎩

                                                   (15) 

It is readily verified that these satisfy the equilibrium condition: 
02

2 0 1
2 0.dI

d
ψ

ψ
∇ + =  

This equilibrium is known to be unstable to a tilting motion.  
 
As in [2], the simulation box is a square with sides of length 4 that is divided into (N-1) × (N-
1) rectangular regions, each with 2 right triangles (using the diagonal that runs from upper 
right to lower left).  Conducting, no slip boundary conditions are applied at the walls. Thus, 
at the y boundary, we impose:  

2

2 0
x x
ψ ψψ ∂ ∂

= = =
∂ ∂

, 
2

2 0I II
x x
∂ ∂

= = =
∂ ∂

, 

2

2 0z z
z

V VV
x x

∂ ∂
= = =

∂ ∂
, 

2 2

2 0
x x y x y
φ φ φ φφ ∂ ∂ ∂ ∂

= = = = =
∂ ∂ ∂ ∂ ∂

, 

 
with similar, but rotated boundary conditions applied at the x-boundary. 
 
We used uniform values of η=µ=0.001, h=1, ν=(∆x)2η .  The instability is known to persist 
even at η=0 and is thus considered an ideal instability.   To examine the effect of the Hall 
term on this mode, we specify a value of the ion skin depth di and run the code in a linear 
mode to calculate the linear growth rate.  Figure 1 gives this growth rate as a function of the 
square of di , for which it is seen to have a near linear dependence.  Results for both N=15 
and N=31 are shown.  This study was performed with time-step ∆t=0.05, but the growth 
rates changed by less than 2% when going from this value to ∆t=0.20.  The corresponding 
eigenmode for the case with N=31 and di=0.2 is shown in Fig. 2 (a)-(d) where we display 
contours of the perturbed values of the magnetic flux ψ with range [-0.0229,+0.0229], the 
stream function φ with range [0.0076,+0.0175], the z-directed magnetic field I with range [-
0.073, +0.072], and the z-component of the velocity, Vz,, with range [-0.0175,+0.0175]. 
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VI.  Harris Reconnection 
 
We define a Harris equilibrium and perturbation similar to the one used in the GEM 
magnetic reconnection challenge [13], but within the limitations of the 4-field equations.  
The initial equilibrium, shown in Fig. 3, is defined by an equilibrium and a perturbed 
magnetic flux function as follows: 

( ) ( ) ( )0 1, log cosh 2 ; , cos cos
2 x yx y y x y k x k yψ ψ ε= =                                 (16) 

with all the other quantities initialized to zero.  The initial equilibrium and perturbed current 
densities are just the laplacian of the flux, 0 2 0 2,J J ,ψ ψ= ∇ = ∇ The computation is carried 
out in a rectangular domain  and / 2 / 2x xL x L− ≤ ≤ / 2 / 2yL y Ly− ≤ ≤ .  The system is taken 
to be periodic in the x direction with ideal conducting boundaries (see Sec. V) at .   
As in [11], we chose the parameters such that 

/ 2yy L= ±

2 /x xk Lπ= , /y yk Lπ= , with 
25.6, 12.8, 0.1x yL L ε= = = . 

 
We illustrate the results from a pair of comparison calculations in Figs. 3-7 .  Both cases had 
N=31, η=µ=0.001, h=1, ν=(∆x)2η, time step ∆t=0.25, implicit parameter θ=0.6.  The first 
case had the ion skin depth set to zero, di = 0, while the second case had di=1.0.   
 
Figures 4 and 5 show the poloidal magnetic flux (top) and current density (bottom) for the 
two cases at time t=37.5.  We see in Fig. 4 that the case with di = 0 (resistive MHD) has a 
thin current layer on the midplane, known as the Sweet-Parker [14]layer.  The corresponding 
case with di=1.0 (Hall-MHD) is shown in Figs. 5-6.  In comparing Fig. 4 and Fig. 5, we see 
that the Sweet-Parker layer is much shorter with di=1, and the reconnection region has 
essentially changed character from a Y-point to an X-point as expected[15].  In Fig. 6 we see 
the out of plane (z-directed) velocity (top) and magnetic field (bottom) in the Hall-
reconnection case with di=1.  Large in-out flows develop as a result of the reconnecting 
fields.  The magnetic field forms the characteristic quadrupole structure near the midplane. 
 
In Figure 7 we show a comparison of the amount of reconnected flux (dark curves) and the 
reconnection rates (red curves) vs time for the two cases.  It is seen that the Hall reconnection 
case with di=1.0 causes reconnection to occur about 8 times faster that the resistive MHD 
case with di=0 for these parameters. 
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VII. The Taylor Problem 
 
The Taylor problem [3] consists of an initial magnetic field given by the flux function 

( )0 1
2

2y yψ = −                                                                          (17) 
The initial z-component of the magnetic field, I0(x,y) , is initially zero, as are the velocity 
variables φ0 and Vz

0 .  For times , the top and bottom boundaries are perturbed as 
follows: 

0t ≥

( ) ( )

( ) ( )

, 1 ( ) cos
1, 1 ( ) sin

x t kx

x t k
k

x

ψ ε

φ ε

± =

± = �∓
                                                           (18) 

The left and right boundaries are periodic.  The time dependent perturbation function is 
defined as 
 

( ) ( ) (0 1 1 exp /tt )tε ε τ
⎡= − + −⎣ τ ⎤

⎦                                                        (19) 

 
This problem has been studied both theoretically [16] and numerically [17] for the case of 
resistive MHD (di=0), but only numerical results [3] exist for the “2-fluid” or “Hall MHD” 
case of non-zero di.   As in these earlier studies, we define the reconnected magnetic flux as: 
Ψ(t) = ½[ψ(0,0,t) - ψ(Lx/2,0,t)], and the reconnection rate as the time derivative of this. 
 
The results of a series of calculations with ε0=.01, τ=1.0, k=2π/Lx, η=µ=10-4, h=1, are 
presented in Fig. 8.  The reconnected flux (top) and reconnection rate (bottom) vs. time are 
shown for different values of the collisionless ion skin depth di.  The parameter  di is seen to 
have a significant impact on the reconnection rate, especially at early time.  These results are 
seen to be qualitatively similar to Fig. 1 of Ref. [3], but extend those results to a nonlinear 
regime with a larger perturbation amplitude.  More generally, the fact that  di ,or the Hall 
term, can greatly accelerate the rate of forced magnetic reconnection is consistent with results 
reported in earlier studies. 
 
The calculations presented in Fig. 8 were performed on a domain with Lx=8, Ly=2, that was 
broken up into 30×30 rectangles, each divided into 2 triangles with a line from upper right to 
lower left.  The other numerical parameters used were δt=0.5 and θ=0.6.  As in the other 
studies in this paper, there was no attempt to concentrate resolution in the reconnection layer, 
although this could dramatically increase the efficiency of this method and will be pursued in 
future studies. 
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VIII. Summary and Discussion 
 
A new technique for solving the extended MHD equations has been described and applied to 
the 4-field model.  This is a generalization of Appendix D of [2] where the MHD 2-field 
model was discussed.  The further generalization of this method to the fully compressible 6-
field or 8-field system of the full extended MHD equations is underway. 
 
The method is characterized by representing the fluid and field in a potential/stream-function 
representation [1] in which higher derivatives occur.  The higher derivatives are handled by 
using a compact triangular high-order finite element representation with C1 continuity rather 
than by introducing auxiliary variables that would increase the rank of the matrices. 
 
The split semi-implicit time advance is introduced that breaks the time advance into two 
steps each cycle.  In the first step, the implicit method avoids time-step restrictions due to the 
Alfven waves by inverting the ideal MHD force operator.  In the second step, the implicit 
field advance avoids time-step restrictions due to the dispersive waves.  It was shown in Sec. 
IV that the combined 2-step time advance is unconditionally stable for arbitrary time step as 
long as the implicitness parameter θ is greater than ½.  The relatively small matrices that 
need to be inverted make a direct sparse matrix inversion practical.  A side benefit is that for 
linear problems, the LU decomposition only needs to be performed once, making the method 
exceptionally efficient. 
 
The present work demonstrated the validity of this method by calculating the effects of the 
collisionless ion skin depth on the ideal MHD tilt mode, and on the rate of magnetic 
reconnection for both a self-reconnecting and a forced reconnection system.  Future work 
will extend this to a higher order system of equations, to toroidal geometry,  and to three 
dimensions. 
 
Finally we remark that we did not take advantage of the geometrical flexibility that is offered 
by triangles in the applications presented here.  Triangular elements offer the potential to fit 
complex domain boundaries and to easily add refinement where needed, and this will be 
exploited in future studies. 
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Appendix A:   Definitions and symmetry relations.   
 
The matrix and tensor quantities used in the text are defined as follows.  These are evaluated 
by closed form integration of the local polynomial expansions as described in Appendices B 
and D of [2]. 
 
 

[ ]

,

2
,

4
,

2
, , , ,

, , , ,

2
, , ,

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ,

( , ) ,

( , ) , ,

i j j i

i j j i

i j j i

i j k j k i k j i j k

i j k j k i i k j j k

i j k l j k l i

D v d d

A v d d

B v d d

G v d d G

K v d d K

P v

ξ η φ ξ η ξ η

ξ η φ ξ η ξ η

ξ η φ ξ η ξ η

ξ η ψ φ ξ η

ξ η ψ φ ξ η

ξ η φ ψ

Φ ≡

Φ ≡ ∇

Φ ≡ ∇

⎡ ⎤Ψ Φ ≡ ∇ = − Ψ Φ⎣ ⎦

Ψ Φ ≡ = − Ψ Φ

⎡ ⎤Ψ Φ Ζ ≡ ∇⎣ ⎦

∫∫
∫∫
∫∫

∫∫
∫∫
∫∫

[ ]
[ ]

[ ]

, , ,

2
, , , , , ,

, , , , , ,

, , , , , ,

, , ,

( : ( , ) , ,

( , ) , ,

( , ) ,

l j k i j k l

k j i l j k l i l j i k j k l

i j k l j k l i i k j l j k l

l j k i j k l l k j i j k l

i j k l j k l i x x

d d P

note P v d d P

Q Z v d d Q Z

Q Z Q Z

R v

ζ ξ η

ξ η ψ ζ φ ξ η

ξ η φ ψ ζ ξ η

ξ η φ ψ

⎡ ⎤ = − Ψ Φ Ζ⎣ ⎦

⎡ ⎤Ψ Φ Ζ = ∇ = − Ψ Φ Ζ⎣ ⎦

Φ Ψ ≡ = − Φ Ψ⎡ ⎤⎣ ⎦
= − Φ Ψ = Φ Ψ

Φ Ψ Ζ ≡

∫∫
∫∫

∫∫ { }

)

, , , , , , , , ,

, ,

, , , , , , , , , , , ,0
, , ,

, , , , , , , , , , , ,

, , , , , ,

,

, , ,

2
2

( )

y y

l j k i j k l i k j l j k l l k j i j k l

i j j i j j

k j i l i j k l i k j l i j k l
i j k l

k l i j i l k j i k l j i l k j

i j k i k j i j k

i j

d d

R R R
D J A

P P P R
C

P P P R

G G G

Q

ζ φ ψ ζ ξ η⎡ ⎤⎡ ⎤+⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦
= − Φ Ψ Ζ = − Φ Ψ Ζ = Φ Ψ Ζ

≡ Ψ

− + +⎡ ⎤
≡ ⎢ ⎥− + +⎣ ⎦

≡ +

( )1
, , , , , , , ,2k l i j k l i j l kQ Q≡ +
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Appendix B:  The Matrix Elements 
 
Making use of the definitions and symmetry relations in Appendix A, the matrix elements are 
given as follows:  
 

0
, , , ,

11 2 0 0 01
, , , 2

0
, ,

21 2 0 0 0 0
, , ,

, , , ,
22

( )

( ) ( )( )

( )

( ) ( )( ) ( )( )

( )

i j i j i j k k kv

i k j l k k l l

i j k zk zkv

i j k l k k l l k k l l

i j i j i j i kv

A t B G
S

t C

tK V V
S

t Q I I I I

D t A hB K
S

θδ µ

θδ

θδ

θδ

θδ µ

⎧ ⎫⎡ ⎤+ − + Φ + Φ⎪ ⎪⎣ ⎦= ⎨ ⎬
+ Ψ + Ψ Ψ + Ψ⎪ ⎪⎩ ⎭
⎧ ⎫− +⎪ ⎪= ⎨ ⎬

⎡ ⎤− + Ψ + Ψ − Ψ + Ψ +⎪ ⎪⎣ ⎦⎩ ⎭

− − +
=

0
,

2 0 0
, , ,

0 01
, , , , 2

11 2 0 0 01
, , , 2

0 01
, , 2

21

( )

( ) ( )( )

(1 ) ( ) ( )

( 1)( ) ( )( )

( ) ( )

j k k

i j k l k k l l

i j i j i j k k k k kv

i k j l k k l l

i j k zk zk zk zkv

t Q

A t B tG
D

t C

tK V V V V
D

θδ

δ θ µ δ θ

θ θ δ

δ θ

⎧ ⎫⎡ ⎤Φ + Φ⎪ ⎪⎣ ⎦
⎨ ⎬
− Ψ + Ψ Ψ + Ψ⎪ ⎪⎩ ⎭

⎧ ⎫⎡ ⎤+ − + Φ + Φ − Φ + Φ⎪ ⎪⎣ ⎦= ⎨ ⎬
+ − Ψ + Ψ Ψ + Ψ⎪ ⎪⎩ ⎭

⎡ ⎤− + + +⎣=
2 0 0 0 0

, , ,

0 01
, , , , , 2

22 2 0 0
, , ,

1
, , 2

11

( 1)( ) ( )( ) ( )( )

(1 ) ( ) ( ) ( )

( 1)( ) ( )( )

(

i j k l k k l l k k l l

i j i j i j i k j k k k kv

i j k l k k l l

i j k k kv

t Q I I I I

D t A hB K
D

t Q

tG
R

θ θ δ

δ θ µ θ

θ θ δ

δ

⎧ ⎫⎪ ⎦
⎨ ⎬

⎡ ⎤− − + Ψ + Ψ − Ψ + Ψ +⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤⎡ ⎤+ − − + Φ + Φ − Φ + Φ⎪ ⎪⎣ ⎦⎣ ⎦= ⎨ ⎬
− − Ψ + Ψ Ψ + Ψ⎪ ⎪⎩ ⎭

Ψ + Ψ
=

⎪

{ }

( )

0 2
, ,

2 0 0 01
, , , 2

2 0 0 01
12 , , , 2

01
, , 2

0 0 0 01 1
, , , , , , , , , 2 321 2

) ( )

( ) ( )( )

( )

( )

( )

i k j k

i i j k l k k l l

v
i i k j l k l

i j k k k

v
i i j k l i k j l i l k j k l k l l k k l

t G J

t d C I I

R t d C

tK I I

d P P PR
t

θ δ η

θ δ

θ δ

δ

θ δ

⎧ ⎫+⎪ ⎪
⎨ ⎬

⎡ ⎤+ × + Ψ + Ψ⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤= × Ψ Ψ⎣ ⎦

− +

⎡ ⎤⎡ ⎤− + + × Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ= ⎣ ⎦ ⎣ ⎦+
( )

( )

0 0 0 0 01 1 1
, , , , , , ,2 3 2

01
, , 2

01
, , , , 222 2

0 0 0 01
, , , , , , 2

( )(

( )

( )( )
( )

i i j k l k l k l l k k l i k j i j k k k

i j k k k

v
i j k i k j k k

i i k j l i k l j k l k l l k

d Q I I I I I I I I G G I I

tK

G GR
t

d Q Q I I I

η

δ

η
θ δ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎛ ⎞⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎡ ⎤⎜ ⎟− + + + + − +⎪ ⎪⎣ ⎦⎝ ⎠⎩ ⎭

+ Ψ + Ψ

⎡ ⎤− Ψ + Ψ= ⎣ ⎦
+

⎡ ⎤− + × Ψ + Ψ + Ψ +⎣ ⎦

)

1
3 k lI

⎧ ⎫
⎪ ⎪⎪ ⎪⎛ ⎞⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎡ ⎤Ψ⎪ ⎪⎣ ⎦⎝ ⎠⎩ ⎭
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{ }

{ }

0 0
11 , , , , , , ,

0
12 , ,

0 0
21 , , , ,

0
22 , , , , ,

,

11 ,

( ) ( )

( )

( ) ( )

( )

(1 )(

p
i j i j i j i k j k k i i j k k k

p
i i k j k k

p
i i j k k k i k j zk zk

p
i j i k j k k i j i j

i jp
i j

S D t A B K d K I I

S td K

S t d G K V V

S D t K A B

A B
D D t

θδ η ν

θδ

θδ

θδ η ν

θ η ν
δ

⎡ ⎤= − − + Φ + Φ + +⎣ ⎦

= − Ψ + Ψ

⎡ ⎤= − Ψ + Ψ + +⎣ ⎦

⎡ ⎤= − Φ + Φ + −⎣ ⎦

− −
= +

0 01
, , , 2

0 01
, , 2

0 01
12 , , 2

0 01
, , 2

21 0 01
, , 2

) ( )

( )

( )

( )

( )

i j i k j k k k k

i i j k k k k k

p
i i k j k k k k

i i j k k k k kp

i k j zk zk zk zk

K

d K I I I I

D td K

d G
D t

K V V V V

θ

θ

δ θ

θ
δ

θ

⎧ ⎫⎡ ⎤⎡ ⎤+ − Φ + Φ + Φ + Φ⎪ ⎣⎢ ⎥⎨ ⎬
⎢ ⎥⎡ ⎤+ − + + +⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭
⎡ ⎤= − Ψ + Ψ + Ψ + Ψ⎣ ⎦

⎧ ⎫⎡ ⎤− Ψ + Ψ + Ψ + Ψ⎪ ⎣ ⎦= ⎨
⎡ ⎤+ − + + +⎪ ⎣ ⎦⎩

⎦ ⎪

{ }{ }0 01
22 , , , , ,2

0
11 , ,

0
21 , ,

0
22 , ,

0 01
11 , , 2

0 01
21 , , 2

( ) (1 )( )

( )

( )

( )

( )

( )

p
i j i k j k k k k i j i j

p
i j k k k

p
i j k k k

p
i j k k k

p
i j k k k k k

p
i j k k k k k

D D t K A B

R t K

R t K I I

R t K

Q tK

Q tK I I I I

δ θ θ η ν

δ θ

δ θ

δ θ

δ θ

δ θ

⎪
⎬
⎪⎭

⎡ ⎤= + − Φ + Φ + Φ + Φ + − −⎣ ⎦

= Ψ + Ψ

= +

= Ψ + Ψ

⎡ ⎤= − Ψ + Ψ + Ψ + Ψ⎣ ⎦
⎡= − + + +⎣

0 01
22 , , 2( )p

i j k k k k kQ tKδ θ

⎤⎦
⎡ ⎤= − Ψ + Ψ + Ψ + Ψ⎣ ⎦
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Appendix C:  Alternate Formulation 
 
Note that an algebraically simpler, but less efficient  fully implicit system can also be formed 
as follows 
 

 

1
11 11 11 11

1
21 22 21 22 21 22 21 22

1
11 11 12 11 11 12

1
21 22 21 22 21 22 21 22

0 0 0 0

0 0

v v n v v

v v v v n v v v v n
z z

p p p n p p p

p p p p n p p p p n

S R D Q
S S R R V D D Q Q V
R S S Q D D

n

n

R R S S I Q Q D D I

φ φ

ψ ψ

+

+

+

+

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢• = •
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥⎦ ⎣ ⎦

 (1.1) 

 
This should be equivalent to the previous set, but will be more time consuming to invert 
since the single matrix will have twice the rank of each of the two matrices in Eqs. (8) and 
(9) . 
 
Here, 
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Figure 1:  Dependence of the linear growth rate for the tilt mode on the square of the ion 
skin depth,   Results are shown for calculations with 15×15 and 31×31 rectangles, each 
divided into 2 triangles. 
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(a)- ψ (b)- φ

(c)- I (d)- Vz
 

 
 
 
 
 
Figure 2:  Linear eigenmodes for one of the calculations performed for Fig. 1 with N=31 and 
di=0.2 . (a) contours of the perturbed values of the magnetic flux ψ with range [-
0.0229,+0.0229], (b) the stream function φ with range [0.0076,+0.0175], the (c) z-directed 
magnetic field I with range [-0.073, +0.072], and (d) the z-component of the velocity, Vz,, 
with range [-0.0175,+0.0175].  The region (-1.5,1.5) ×(-1.5,1.5) is shown while the 
calculation was performed on a (-2.0,2.0) ×(-2.0,2.0) domain with conductor boundary 
conditions imposed. 
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Figure 3:   Initial equilibrium poloidal magnetic flux ψ (top) and current density J (bottom) 
for the Harris reconnection problem.  The ranges of the data are (a) [-0.1, 6.054] and (b) [-
0.00095, 2.189]. 
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(a)
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Figure 4:  Poloidal magnetic flux (top) and current density (bottom) for the “resistive MHD” 
reconnection at time t=37.5 with di=0. Minimum and maximum values of the scalar fields 
are (a) [-0.1426,6.0535], and (b) [-0.576,5.820]. 
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Figure 5:  Poloidal magnetic flux (top) and current density (bottom) for the “Hall- MHD” 
reconnection at time t=37.5 with di=1.0. Minimum and maximum values of the scalar fields 
are (a) [--0.337,6.0535], and (b) [-0.312,2.935]. 
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Figure 6:  Out of plane (z-directed) velocity (top) and magnetic field in the Hall-
reconnection case with di=1 (bottom).  Large in-out flows develop as a result of the 
reconnecting fields.  The magnetic field forms the characteristic quadrupole structure near 
the midplane.  Min and max. values of the scalar fields are (a) [-0.388, 0.210] and (b) [-
0.108, 0.1075]. 
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Figure 7:  Comparison of the amount of reconnected flux (dark curves) and the reconnection 
rates (red curves) vs time for the two cases.  It is seen that the Hall reconnection case with 
di=1.0 causes reconnection to occur about 8 times faster that the resistive MHD case with 
di=0 for these parameters. 
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Figure 8: Reconnected flux (top) and reconnection rate (bottom) vs time for the Taylor 
problem for different values of the collisionless ion skin depth di.  Other physical parameters 
were η=µ=10-4, h=1.  The parameter  di is seen to have a significant impact on the 
reconnection rate, especially at early time. 
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