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The Extended MHD equations for a magnetized (fusion)
plasma are a high-order system of 8 scalar variables that

are characterized by a wide range of space and timescales.

Our approach is as follows:

Multiple space scales - unstructured adaptive elements

Multiple time scales - iImplicit time differencing

High order derivatives - C! continuity elements (up to 4" order)

8 scalar variables - split implicit time advance & compact rep.

Strong magnetic field - stream function/potential representation



Extended MHD Equations:

Resistive MHD
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Scalar data is represented using 18 degree of
freedom quintic triangular finite elements Q4

» All data is at nodes: function + first 5
derivatives (6 dof)

« Complete quintic polynomial has 21
coefficients

» 18 values come from the 3 nodes (3 x 6) \

» 3 values come from requirement that the
normal derivative along each edge be only a
(univariate) cubic....leads to C1 continuity

e Contains a complete Taylor series through 4th
order...error ~ h°
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« Compact representation ... only 3 dof/triangle Wy

 C1 continuity allows up to 4t derivatives in
space without introducing auxiliary variables

« Unstructured triangular mesh allows adaptive
zoning



Implicit velocity time-advance substitutes in from field
equations to contain all Ideal MHD wave phenomena

N =(J+95tj)x(§+95t|§)—v(P+95tF'>)+--.

g

VxVx[(V+H5t\7)x B}+--.

J

§=V><[(\7+05t\7)x3}+...

P= —(\7 + 05tV )-VP — g on(\7 + 05tV )

- \7’n+1 _\7n R _ .
letV = rra— move all V"™ terms to left side of equation

Use SuperLU to invert this linear operator to get from
time n to (n+1)



A similar technigue is used on the magnetic field equations. Fully implicit
Extended MHD (2-fluid) equations-- time step determined by accuracy only:
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* 3 non-trivial subsets with 6,4,2 variables

Whistler, KAW, field diffusion physics



GEM Nonlinear Benchmark

GEM Reconnection Problem

v’ (X,Y) :%In(cosh 2y)
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Flux ¥ P (x,y)= [sech 2y + 0.2]
O (X, y)=ecosk,xcosk,y
C ¢ 1. Resistive MHD
urren _ | |
Density J * High and Low Viscosity

(n=10n,pn=0.1n)
2. Two-Fluid

* Provides a non-trivial, convenient test problem for code
verification and validation and cross-code comparison

» Also, extending this by adding an equilibrium magnetic field
Into the plane (guide field)



Resistive MHD gives convergent results. Time
step depends on accuracy requirement only
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* Dependence of kinetic energy on viscosity (varies by 100)
» Lower viscosity cases require smaller timestep for accuracy

» 60 x 60 grid gives adequate spatial resolution



Current Density contours for resistive MHD case

Resolution requirements are modest for resistive MHD; n =.005, v=10n



2-fluid reconnection qualitatively different,
requires high resolution for convergent results
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Kinetic Energy
D

Time

* Note sudden transition where velocity abruptly increases

*These calculations used a hyperviscosity term in Ohm’s law
proportional to (Ax)2--- required for a stable calculation



Current Density contours for 2-fluid MHD

» Starts like resistive MHD

« Dramatic change in configuration for t > 20



Close-up of 2-fluid current density at t=32

* Note very
localized region of
high current
density in center

midplane

These calculations
did not assume any
symmetry, except for
initial and boundary
conditions




Midplane Current density collapses to
the width of 1-3 triangular elements

Midplane Current Density vs time

Time

t=32 time of previous contour plot
( note sudden collapse at t=24)



Reconnection rate
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e note transition at
t ~ 24 for 2-fluid case

» After transition,
2-fluid reconnection
rate is over 50 times
larger than resistive
MHD rate



Midplane electric field before and after transition
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Midplane electric field before and after transition
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Hyper-resistivity coefficient must
be large enough that current

density collapse is limited to 1-2
triangles: reason for factor (4x)?
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Test of sensitivity to hyperresistivity coefficient A,
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* These calculations had (120)2 grid, everything else fixed
 In caption is value of of 4,(4x)?
« Appears to be converging to a unique answer for A4, (4x)> > 0

» Need for small value of 4, (4x)? implies need for small Ax
(to avoid current layer collapsing to less than one zone width)



Effect of adding a guide field on 2-fluid reconnection

Effect of a Guide Field (into the paper)
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» Adding a guide field delays transition time and reduces maximum
reconnection rate

« Small effect for B, < 0.2

* To be studied further



Change in velocity field with toroidal field strength
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» Velocity field becomes more like incompressible flow as toroidal field
strength increases



Adaptive Meshing

{a) Initial mesh (b) Adapted mesh

Andy Bauer (RPI) has implemented an arbitrary Adapted Mesh in the M3D-C1
code and is exploring different adaptive strategies. This should greatly
improve the efficiency of the 2-fluid reconnection problem.



Summary and Conclusions

Full 8-field E-MHD equations solved in 2D slab
geometry with stream function/potential form

Qs elements allow high accuracy, compact
representation of solution

Implicit solution technique implies time step can
be set by accuracy requirements, not stability

2-fluid reconnection problems require localized
regions with high resolution...natural for
adaptive refinement

Extensions to toroidal geometry and 3D
underway



Supplementary vgs if time permits



Tests of the 2-fluid and Gyroviscous terms:
Gravitational Instability
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M3D-C! Gravitational Instability stabilized by Gyroviscosity

We have calculated the stabilization of the gravitational
instability by Gyroviscosity: low beta (left) and high beta (right)



M3D-C!...Gravitational Instability: nonlinear

No Gyroviscosity

Ferraro





Anisotropic Diffusion

Shows greater than N- convergence
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Non-linear evolution of tilting cylinder in full 6-field 2-fluid model
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