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Neoclassical tearing mode (NTMs) 
3 

 Density, temperature, pressure, etc. 
tend to equilibrate across an island 
width 

 Difference in current at O-point and 
X-point can drive island growth 
 Without these gradients, there can be 

no bootstrap current within the island 
 Bootstrap current at the X-point can 

drive island growth 

 Large islands allow hot, dense 
plasma near core to be transported 
outward, reducing confinement 

 Modifications to magnetic topology 
can result in macroscopic instability 
and disruption 

Images taken from The 

Theory of Toroidally Confined 

Plasmas by R. White, 2006 

 



NTM stability modeling 
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 NTM stability place a severe limit on maximum β 

 Most common cause of disruptions on JET1 

 NTMs incorporate a lot of physics  
 Cause:  Neoclassical kinetic theory 

 Effect:  MHD destabilization 

 Requires a hybrid model 

 High-fidelity simulations required for prediction, 
control, avoidance, and understanding of NTMs 
 Especially important for ITER operation, in which very 

few disruptions can be tolerated2 

 1 P.C. de Vries, et al., Nucl. Fusion 51, 053018 (2011) 
2 T.C. Hender, et al., Nucl. Fusion 47, S128-S202 (2007) 



Framework for hybrid solver 

Solve the drift kinetic 
equation in a 3D 
nonaxisymmetric, 
toroidal geometry for 
the ion and electron 
perturbed distribution 
functions in parameter 
regimes relevant to ITER 
and reactors and couple 
to an MHD solver 

NIES- The Neoclassical 
Ion-Electron Solver 

Solves the drift kinetic 
equation in a 2D 
axisymmetric tokamak 
for the neoclassical ion 
(simplified) and electron 
perturbed distribution 
functions 
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What’s needed Completed work 



Drift-Kinetic Equation 
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 Collision operators taken in their linearized Landau form 

 Velocity taken in frame of each species’ macroscopic flow 

 Two expansion parameters for high-temperature fusion plasmas                    

 Maintain equations to lowest order exhibiting collisional dynamics 

 Electron DKE is maintained to order           , or  

 Ion DKE should be maintained to order 

 For now, ion DKE is maintained to order 

 This is conventional neoclassical banana dynamics for both species 

 Assume stationary, axisymmetric equilibria 



Resulting DKE 
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 Given these assumptions, it is convenient to write 

 

     where          and          have analytic forms 

 Then, the DKE for      can be reduced to 

 
 
where 

We’ll come back to this form later 



Source Terms 
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 Electron source contains Ohmic drive, interaction 
with ion flow, and pressure and temperature 
gradient bootstrap drive 

 

 

 

 

 

 Ion source has only temperature gradient drive 



Solvability Condition 
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 Standard solution method for neoclassical theory 

 

 

 DKE becomes 

 Solvability condition: 

 Contour integrals taken along one poloidal turn of 
magnetic field line 



Integral over Collision Operator 
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where 



Expansions 
11 

 Expand Rosenbluth Potentials in Legendre and 
Fourier series 

 

 

 Then expand       ,          , and           in finite 
elements in     and     , as necessary 



Galerkin Method 
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 Take the inner product of the previous equations with 
each finite element 

 Use linear tent functions: 
 Only overlap with their  

two nearest neighbors 
and themselves 

 DKE becomes tridiagonal 
in both     and 

 Rosenbluth Potential eqs.  
are tridiagonal in     and 
dense in  

0 

1 

i-2 i-1 i i+1 i+2 



Block Tridiagonal Algorithm 
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 Since all equations are tridiagonal in    , we rewrite 
the coupled set as a block tridiagonal matrix eq. 

 

 Size of each block matrix is  

 Given appropriate boundary conditions, there exists 
a straightforward algorithm to solve for 

 Computation time required is O(                                    )  



Boundary Conditions 
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 For 

   

   

    

 For 

     

   

                             requires boundary layer 



Example Distribution Functions (1) 
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Example Distribution Functions (2) 
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Electrons Ions 



Convergence 
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JSOLVER Equilibria Used 
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Large Aspect 
Ratio 

NSTX 



Calculating Current 
19 

 One can show that 

 Current can be calculated from  

Large Aspect 
Ratio 

NSTX 



Sauter Analytic Fits [(1999) Phys. Plasmas: 6,7] 
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 Fits numerical solutions for a wide variety of equilibria 

 

 

 

 

 

 

 

 

                where 



Bootstrap Current Coefficients 
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Ion Flow Coefficient 
22 

where 



Summary of Completed Work 
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 A code has been written to solve for the 
component of the non-Maxwellian ion and 
electron distribution functions necessary to 
compute the current in an axisymmetric toroidal 
plasma 

 Results for all sources have been benchmarked 
against the Sauter analytic fits 



Future Work 
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 Calculate radial fluxes (See Jesus’s talk to follow) 

 Allow distribution function to vary poloidally 

 Generalize to 3D Geometry 

 Develop ion theory to appropriate ordering 

 Implement fully 3D, coupled ion-electron code 

 Couple with MHD code (e.g., M3D-C1) 

 Perform NTM and sawtooth studies 

 

 



Towards a Nonaxisymmetric Code 
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 The spatially 3D drift-kinetic equation is quite 
complex, even to first-order in  



Path 1 – Build Up From Existing Code 
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 Currently we calculate lowest order collisionality 
distribution function (constant on flux surface) 

 Instead of using the solvability condition, we can 
solve the 3D (i.e., 1 spatial + 2 velocity) equation 

 

 

 New expansions 

       ,       , and        in Fourier series in both sines and 
cosines 

        in finite elements in              (BCs in     too difficult)  

 



Pros/Cons of Path 1 
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 Advantages 

 Relatively simple:  code is largely the same 

 Extends current code to higher collisionality 

 Disadvantages 

 Several codes already do something like this, typically 
with more features (e.g., NEO, CQLP) 

 It is unclear what we would learn from this step that 
could be directly applied to the spatially 3D equation 

 



Path 2 – Start Working on 3D Eq.  
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 First look at largest terms in the spatially 3D eq. 

 

 Further assume a small parallel density gradient 

 Requires only balancing three terms 



Possible Solution Method 
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 Iterative solution to steady-state for given equilibrium 

 Semi-Lagrangian method* 
 Implicit algorithm 

 Method of characteristics  
for convective terms 
 Requires high-order interpolation 

at time step n 

 Operator splitting to handle all other terms 

 Use M3D-C1 finite elements 
 High-order basis elements already provide necessary 

interpolation 

 Allows for easy integration with the M3D-C1 code 

n 

n+1 

* E. Sonnendrücker, ICNSP 2011;  C.Z. Cheng and G. Knorr, J. Comp. Phys. 22, 330-351 (1976).  



Pros/Cons of Path 2 
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 Advantages 

 Directly applicable to full nonaxisymmetric code 

 Provides experience working w/ 3D fields and meshes 

 Simple checks 

 μ conservation 

 If collision operator is included, should provide identical 
results to Path 1 (assuming axisymmetric field is given) 

 Disadvantages 

 Will require careful development of algorithm 

 Too big of a step? 

 



Conclusion 
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 Work thus far has been promising 

 Still a long way to go 

 Likely path forward is along both Paths 1 & 2 

 Any thoughts on those paths? 


