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I. Executive Summary 
In this report, we present the successful completion of the 2006 Q1 milestone, namely: an 
n=0 steady-state near the 2005 700 eV equilibria was found. Because the H-mode 
equilibria used in the ELM studies are the most challenging equilibria ever used by 
nonlinear initial-value, extended MHD codes, details on the numerical challenges faced 
by both NIMROD and M3D are presented. This quarterly milestone motivated new 
development of the NIMROD code: namely more flexibility in source specification and 
run time operation.  These developments will allow NIMROD more flexibility in meeting 
the challenges of subsequent milestones.  We also present progress in 2-fluid modeling of 
ELMs with the M3D code, of generating an adaptive mesh that can adequately resolve 
the large gradients in the pedestal region, and discuss the implementation of a technique 
for transferring steady state “stationary” equilibrium from a free boundary transport 
code to an Extended MHD code. 
 
II. Statement of Problem 
At the conclusion of the 2005 ELM milestone, the NIMROD [1] code successfully ran an 
ELM simulation far into the nonlinear regime allowing for the study of heat flux on the 
wall.  Even in those successful simulations, numerical difficulties occurring at the 
separatrix occurred well beyond where a “separatrix” could be clearly defined.  Because 
of NIMROD’s “separation of equilibrium variables” (to be discussed in Section III.B.), 
these problems were believed to be associated with how the n = 0 steady-state fields are 
initialized.  The M3D [2] code observed similar numerical problems when using the 
equilibrium as given.  Because of these problems, the first quarterly milestone was 
chosen to investigate the n = 0 solutions and determine a more appropriate initialization – 
one that would prevent numerical issues.  The ability to have an appropriate n = 0 state as 
the initial condition will prepare the codes for the more challenging milestones in the 
coming year. 
 
III. Technical Background 
A. Equilibrium Definition 
In tokamaks, the plasmas are often quiescent with very little non-symmetric components 
of the fields.  It is the low-frequency, long-wavelength deviations away from this 
symmetry that is studied with nonlinear, initial-value, extended MHD codes.  To study 
the deviations, extended MHD simulations of large tokamaks generally start with 
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symmetric fields coming from a Grad-Shafranov equilibrium.  As discussed below, the 
Grad-Shafranov equilibrium is a subset of the steady-state MHD equations.  Considerable 
effort has gone into experimentally reconstructing the symmetric fields based on the 
Grad-Shafranov model.  The most widely-used code for performing this reconstruction is 
the EFIT code from General Atomics.  Because we are interested in nonlinear simulations 
of ELMs, the equilibrium code used to initialize the code must include the separatrix; i.e., 
it must be a free-boundary GS solver.  Beyond EFIT, a widely-used code for this purpose 
is the TEQ code from LLNL.  
 
To place the initial conditions of the nonlinear initial-value codes in context, we briefly 
review the extended MHD equations.  The extended MHD equations that we are solving 
are: 

Continuity:  
      
∂n
∂t

+ ∇ ⋅ V = 0    , (1a) 

Momentum:  Mn dV
dt

= −∇p + J × B − ∇ ⋅ Πvisc − ∇ ⋅ Πgv − ∇ ⋅ Π||    , (1b) 

Gen. Ohm’s Law:  E = −V × B +
1
ne

J × B − ∇pe − ∇ ⋅ Πe[ + ηJ    .]  (1c) 

Energy:  nα
∂Tα

∂t
+ Vα •∇Tα

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = γ −1( ) ∇ • qα + ...[ .]  (1d) 

where J is the plasma current density, and p is the plasma pressure (total unless 
subscripted for the species). To form the complete set of evolution equations, we use the 
“pre-Maxwell equations”; i.e., Maxwell’s equations without the displacement current. 

Div(B):  ∇ ⋅ B = 0   , (2a) 
Ampere’s Law:  ∇ × B = µ0J   , (2b) 

Faraday’s Law  ∂B
∂t

= ∇ × E    , (2c) 

The lack of displacement current (and concomitant disregard of Gauss’s Law) is the 
“quasineutrality” approximation, which is | qe | ne = qini. This approximation is valid for 
the low frequencies (ω2 << c2k2) studied in extended MHD.  

The form of the generalized Ohm’s law (Eq. 1.c) generally distinguishes the 
commonly used extended MHD.  In this document, we will make reference to three 
models: ideal MHD, resistive MHD, and extended MHD.  These are: 

Ideal MHD:  E = −V × B (3a) 
Resistive MHD:      E = −V × B + ηJ   .  (3b) 

Extended MHD:  E = −V × B +
1
ne

J × B − ∇pe − ∇ ⋅ Πe[ + ηJ    .]  (3c) 

In addition to neglecting the resistivity, ideal MHD ignores all other dissipative terms 
(i.e., no viscosity and all terms on right-side of Eq. 1.d. are neglected).  Resistive MHD 



traditionally has neglected all terms on right-side of Eq. 1.d. although there is no standard 
nomenclature in the literature. 
 
To derive the “steady-state” solutions of the extended MHD equations, two assumptions 
are usually made: (1) the diffusive terms operate on time-scales much longer than the 
“steady-state” and can be neglected, and (2) we consider n = 0.  The first assumption 
allows the definition of “steady-state” to be the transport time scale, which is generally 
much slower than the time scales of the instabilities we wish to study.  This is discussed 
further in Section III.B. Using these assumptions, the relevant equations are: 

Continuity:  ∇ ⋅n0V0 = 0   , (4a) 

Momentum:  mn0V0 •∇0V0 = −∇p0 + J0 × B0 , (4b) 

Gen. Ohm’s Law:  E0 + V0 × B0 =
1

n0e
J0 × B0 − ∇pe0 − ∇ ⋅ Πe 0[   .]  (4c) 

Energy:  nα 0 Vα 0 •∇Tα 0( )+ γnα 0Tα 0∇ • Vα 0 = 0 (4d) 

In addition to the two assumptions above, two other assumptions are commonly made: 1) 
No equilibrium flow, and 2) Neglect the two-fluid terms (right side of Eq. 4c); i.e., only 
consider ideal MHD. 
The first assumption allows the momentum equation (Eq. 4b) to decouple from all other 
equations.  The momentum equation can then be written in a form called the Grad-
Shafranov Equation.  All linear MHD codes use this as their input.  Note that in this case, 
the Ohm’s law can be solved independently of the Grad-Shafranov equation to determine 
the current sources.  Separate codes are usually used to determine what fraction of the 
current comes from Ohmic drive, bootstrap current (from the stress tensor term in Eq. 
4c), Pfirsch-Schluter currents, and current drive. 
Removing the first assumption, but keeping the second, allows the derivation of a 
modified Grad-Shafranov equation [3].  For purely toroidal flow, the modifications are 
rather trivial and implemented by several codes.  While more accurate, these 
modifications are generally not included in equilibrium reconstructions because the 
characteristic flows in experiment are generally a quarter of the Mach speed, which gives 
corrections that are small compared to other uncertainties in the equilibrium 
reconstruction.  It is hoped that as diagnostic improve, especially in determining the flow 
profiles, the inclusion of this term will become more routine.  For flows that are both 
poloidal and toroidal, the modified Grad-Shafranov equation includes a singularity when 
the poloidal flow reaches the poloidal Alfven Mach number.  Because of poloidal flow 
damping, poloidal flows are generally unimportant, although they may be significant near 
the edge.  With the exception of a recent code written by a student of Betti, [4], no code 
in present use includes poloidal flow. 
Removing all assumptions regarding equilibrium solutions has been done only recently.  
Inclusion of the two-fluid terms automatically requires the inclusion of the inertia term in 
the momentum equation to have the proper treatment of the drift flows.  No code 
currently solves for the two-fluid equilibrium equations, nor are any initial value codes 



prepared to accept two-fluid equilibria.  In the future, including this capability may be 
important for the extended MHD codes. 
 
B. Separation of Variables and Diffusive Sources 
For the technical discussion below, we will discuss two separate modes of operation for 
the NIMROD code: “separated equilibrium mode” and “n = 0 mode”.   The general 
prescription for deriving the form of the equations solved in NIMROD is to separate the 
quantities into a “steady-state component” and a dynamic component: 
Q(r,t) = Qss(r) + ˜ Q (r,t) .  In all subsequent equations, the terms that contain purely 
steady-state factors are not explicitly included; rather, they are assumed to satisfy the 
constraints given by Eq. 4 and hence do not appear in the dynamical equations.  The 
dynamical component thus represents the deviation from the steady state solution given 
in Eq. 4; it does not represent the total plasma state.  This has implications on the 
interpretation of the equations.  To understand this, we consider this prescription for a 
purely diffusive pressure equation: 

∂p
∂t

= χ∇ 2 p  (5) 

where we assume a constant diffusivity.  With homogeneous Dirichlet boundary 
conditions, the steady-state solution of this is p=0.  Separating into dynamic and steady 
state solutions, the dynamic equation is: 

∂˜ p 
∂t

= χ∇ 2 ˜ p  (6) 

The steady state solution is .  The total pressure is ˜ p = 0 p = pss + ˜ p = pss.  Note that here 

  pss  is assumed to exist and be maintained by some external mechanism.  The implication 
is that a source has implicitly been added to the equation.  This has been the default 
manner in which NIMROD has run – in particular, the successful ELM milestone was 
performed using this method. 
 
To understand the implications better, we want to rewrite our equation with an explicit 
source: 

∂p
∂t

= χ∇2 p + Sp  (7) 

To derive Eq. (7), the cancellation is Sp = −χ∇2 pss; that is,   

∂p
∂t

= χ∇ 2 p − χ∇ 2 pss (8) 

so that     ∂p /∂t = 0 when   p = pss .  We term this type of source a “diffusive source” and it 
is can be present in all of the equations that have a diffusive term.  The physical effect of 
the source is to maintain the equilibrium profiles.  (This assumes the diffusivity is fixed.  



Temperature-dependent diffusivities will have slightly different behavior).  The 
advantage of using the sources is that for tokamak runs they approximate the real sources 
within a tokamak for the time-scales under consideration. 
 
The point is that Eq. (6) (for the “dynamical” component) and Eq. (8) (for the “total” 
component) are mathematically equivalent.  The default way for NIMROD to run 
tokamak simulations has been to use Eq. (6).  We can solve Equation (5), which is the 
equivalent of Eq. (8) (informally called the “transfer eq mode” on the NIMROD team) 
without the sources.  The M3D team uses the equivalent of Eq. (8).   
 
C.  M3D experience with Plasma Configurations with Strong Density Variations: 
 
In a realistic plasma/vacuum situation, the plasma (charged particle) density is relatively 
small in the ``vacuum'' region outside the last closed flux surface that defines the 
confined plasma.  In the edge of the plasma, the electron density falls off steeply, as does 
the plasma pressure.  Both gradients are consistently measured in experiments. Since the 
pressure (or temperature) and the density evolve separately in MHD (both electron and 
ion temperatures in the two-fluid model), this adds to the difficulty of sustaining the 
original ideal MHD plasma configuration obtained from experimental reconstruction. 
 
In the fluid model the 'vacuum' is modeled as a region of very high resistivity, which 
implies very low current.  If the resistivity is high enough, the density in the `vacuum' can 
have similar magnitude to the interior density. Since the high resistivity region must also 
be tied to the low vacuum density in a self-consistently evolving fashion, most 
simulations choose to neglect the density variation altogether, as a first approximation. 
 
We have made some preliminary trials with M3D to see what effects an edge density 
gradient has on the equilibrium configuration and its nonlinear stability in the resistive 
MHD and two-fluid descriptions.   The results were limited by available computational 
resources, since the vacuum model was only available in an OMP (rather than MPP) 
version of M3D, limiting it to run on about 16-32 processors.  One of the other projects 
of the period has been to port this to the MPP version so that it can run on hundreds or 
thousands of processors on Seaborg, etc. 
 
The 2005 Q3 configuration was used as background. The full plasma, with a low 
resolution central region, was simulated, using 2nd order triangular finite elements. The 
results showed that a density profile with a relatively low density 'vacuum' region is 
indeed difficult to sustain. The density profile is not specified in the ideal MHD 
equilibrium, only the total pressure, so it was chosen to be a function of magnetic flux 
surface with a relatively flat central profile, falling steeply over the edge region where the 
pressure falls, reaching a value of 0.1 to 0.3 times the peak value outside the plasma.  
This is high compared to measured electron densities. 
 
Neither the MHD nor the two-fluid equilibrium configurations could be sustained in 
M3D with simple sources of current and pressure, i.e., the force balance that existed in 
the original ideal MHD equilibrium was not maintained when the resistivity varied from 



small to large over the plasma edge, as some function of plasma parameters.  (A number 
of different resistivity schemes were tried, starting with the resistivity η proportional to     
Te

-3/2). The large current spike at the edge in the steep pressure gradient region became 
unstable and, with the background density variation, resulted in fast movement of the 
plasma edge away from the equilibrium configuration. Part of the imbalance is 
presumably due to lack of sufficient spatial resolution, despite increasing packing of the 
plasma edge and vacuum region, but it appears to be worsened by having a density 
variation.  
 
The usual simple sources used to maintain an ideal MHD equilibrium are not physically 
correct in the edge region, where strong neoclassical viscous stresses of both ions 
(momentum equation) and electrons (Ohm's law) actually produce the current.  Their 
forms are not known for the time-evolving case.  Applying simple forms of the 
neoclassical stresses, as previously used for interior plasmas, helped a little but were not 
sufficient.  In addition, two-fluid plasma edge regions probably have strong plasma flows 
that are ignored by the standard MHD equilibrium reconstruction. Other kinetic effects 
may also contribute. 
 
The two-fluid and MHD equilibria showed rather different instabilities. The MHD 
plasma edge tended to balloon toward the outboard side, strongest at the horizontal 
midplane. The two-fluid one tended to distort the plasma X-point, (there was a single, 
lower X-point).  The difference is consistent with the existence of diamagnetic effects in 
two-fluids. The two-fluid plasma pressure perturbation tended to become large on the 
inboard side of the X point, where the inboard divertor is located in the experiment.  This 
is where energy loads are observed in experimental ELM crashes, suggesting that two 
fluid effects may play a role once the ELM instability has distorted the plasma edge and 
the actual source processes enough to cause the equilibrium to change. 
 
An example of the unstable behavior that develops when a two-fluid calculation is 
initialized in M3D is shown in Figure 1. 
 



 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Contours of plasma flux (left), toroidal current density (center) and electron 
temperature for a M3D two-fluid run with inconsistent or inadequately resolved 
equilibrium. 



IV. Technical Approach  
A.  Characterization of the Equilibrium 
In this work, we only investigate the “Pedestal Te=700 eV” equilibrium because it was 
the case used in the 2005 Milestone case.  The results and implications of this study are 
generic to H-mode equilibria in general. 
 

 
Figure 2.  The equilibrium used in the 2005 Milestone report has a large localized 
toroidal current gradient near the separatrix, and a strong poloidal variation in the 
current, despite the fact that the flux surface average of the parallel current is 
constant. 
The equilibrium is shown in Fig. 2.  As shown, the current density is localized near the 
separatrix.  Although the equilibrium was constructed such that the flux surface average 



of parallel gradient (<J.B/B2> ) is zero, there are large local poloidal variations in the 
poloidal current.  The toroidal gradient is defined to be exactly zero beyond the 
separatrix.  Although the experiment has some finite current in the scrape-off-layer 
(SOL) region, at this time there is no satisfactory method to obtain those currents in such 
a way that the equilibrium conditions are exactly satisfied. 
 
The effect of the sharp current gradient can be seen in the cylindrical components of the 
poloidal magnetic field shown in Figure 3.  The sharp discontinuities at the separatrix are 
readily apparent.  Also apparent are the rapid variations of magnetic field on the inboard 
side.  This is caused by the existence of the poloidal magnetic field coils on the inboard 
side.  The equilibrium codes numerically handle the coil fields using a Greene’s function 
technique which allows them to avoid the difficulties of the fields near the coils.   
 

 
Figure 3.  The cylindrical components of the magnetic field show the sharp 
discontinuities due to the sharp current gradients as well as the effect of poloidal 
field coils on the inboard side of the plasma. 
 
As discussed in Section II.B., the 2005 Milestone simulations were run with “implicit 
sources”. i.e., the form given by Eq. 6.  Because we had no equilibrium flow, there were 
no momentum sources.  Because we evolved only the total temperature, there was no 
electron pressure source.  The sources were thus are a current source and a pressure 
source.  As the equilibrium parameter plots of Figure 2 suggests, these implicit sources 
are highly localized.  In addition to the large, localized gradients, the temperatures are 
low leading to large diffusivity parameters (when using Braginskii coefficients).  In 
Figure 4, the source for the resistive Ohm’s law and temperature equation are shown 
when Braginskii coefficients are used (for the 2005 Milestone case, the Braginskii 
resistivity was used for the resistive Ohm’s law.).  Clearly these fixed sources play an 
important role in the ensuing dynamics 
 
The NIMROD runs to date have used these sources in the “separated equilibrium mode” 
( Q(r, t) = Qss(r) + ˜ Q (r,t) ) and have generally been successful.  The simulations are 
difficult, and in this work we will investigate the extent to which the sources can cause 



problems.  The M3D code has performed their initial simulations by reaching a nearby 
steady-state using the code itself, i.e, solving Eq. 8.  Our goal is to reach a similar state.  

 
Figure 4.  The diffusive sources in H-mode equilibria are very large near the 
separatrix when using Spitzer values.  The low temperatures lead to large diffusivity 
values and H-mode equilibria have sharp edge pressure and current gradients. 
 
B.  Comparison of  NIMROD modes of operation at low diffusivity  
We are ready to discuss the n = 0 behavior of the ELM equilibria.  We wish to study 
investigate the n = 0 behavior of the 2005 Milestone case with parameters similar to the 
results presented in the final report.  The case has 36x40 cells with polynomial degree of 
3.  The temperature-dependent resistivity is evolved with a realistic S = 1x108.   The peak 
resistivity is constrained to be 243 times the lowest resistivity.  The viscosity is constant 
throughout the domain with a Prandtl number in the core of 6,250, and a Prandtl number 
in the vacuum region of 26.  The viscous diffusivity and perpendicular thermal diffusivity 
are 25 m2/s, and the parallel thermal diffusivity is 105 times larger. 
 
We present two types of simulations: a “separated equilibrium” simulation that has 
implicit diffusive sources (i.e., Eq. (6)), and a “transferred equilibrium” simulation that 
has no source to maintain the fields (i.e., Eq. (5); in this case the “steady state” 
component of the solution appears only as an initial condition) .  The time histories of the 
kinetic energy of the two runs are shown in Figure 5.  As shown, after one microsecond, 
the energies differ by more than 13 orders of magnitude.  Since we do not believe the 
n = 0 mode is inherently unstable, we conclude that the initial “steady state” solution, as 
given by the Grad-Shafranov reconstruction from the experimental data, is not in 
sufficient force balance.  



 

 

        
Figure 5.  A comparison of two modes of NIMROD operation show a dramatic 
difference in behavior.  The top assumes that the steady state is in exact force 
balance.  The bottom uses the steady state as initial conditions.  In one microsecond, 
the resultant kinetic energies differ by 13 orders of magnitude. 
To explore the cause of the difficulties in the transferred equilibrium simulation (with the 
steady state used as initial conditions), we examine the behavior early in the time history.  
In Figure 6, we show plots of the radial (using major radius of the tokamak) of the 
velocity (because it is the largest component), and the toroidal current density (not the 
contravariant component).  After the first time step, the current density has significant 
inboard current fluctuations.  The reason for this is that the “equilibrium current” in this 
case is computed from using Faraday’s law (Equation 2(b)) using the finite-element 
representation of the magnetic field shown in Figure 3.  Because of the transfer of fields 
from one discretization scheme (in this case finite difference and spectral Greene’s 



functions) to another (a finite-element mesh), the errors manifest themselves as large 
toroidal current fluctuations.  These toroidal current fluctuations then act to drive large 
flows.  This is because the reconstructed solution is not in steady state on a sufficiently 
long time scale when transport effects are taken into account. 

 

 
Figure 6.  On the first time step, the toroidal component of the current density 
shows significant fluctuations on the inboard side near the poloidal flux coils.  These 
fluctuations drive large flows on the inboard side within the first time step. 
 
 The same quantities are shown in Figure 6 after 90 time steps later (tsim=9.4 x 10-7 
sec).  At this time, one can see that the induced numerical noise is beginning to broaden, 
and is not dominant at the edge.  From both Figures 5 and 6 we note the separatrix 
location is clearly identified.  Two sources of difficulties can be seen in these initial 
studies: 1) the equilibrium fields on the inboard midplane are difficult to numerically 



simulate because the rapidly varying magnetic fields there, and 2) the separatrix presents 
its own source of difficulties. 

 

 
Figure 7.  The velocity field begins to broaden although the difficulties with the 
current density still remain. 
 
C.  Development of an n = 0 steady-state solution in NIMROD 
The typical method for developing an n = 0 steady-state solution for subsequent 
initialization is to add large diffusivities to the equations and just evolve the n = 0 
solution to a time asymptotic steady state (referred to as “equilibrium relaxation”).  This 
method is used by the M3D code, the TSC [5] transport code, and the HINT [6] code for 
three-dimensional equilibria.  The advantage of this approach is that it is a robust method 
for finding suitable equilibria for subsequent simulation.  The disadvantage is that it can 
complicate the analysis of the simulations when the parameters depend sensitively on the 
equilibria used.  (The equilibria obtained from “relaxation” may differ in local detail from 
the original Grad-Shafranov equilibrium.) 

The NIMROD code has not extensively performed simulations of this type (i.e., 
“relaxation”) for tokamak equilibria.  The goal of this work is to not only perform these 
types of simulations, but take advantage of NIMROD’s separated equilibrium 
functionality and investigate its role in the development of a steady-state solution; i.e., 



why do separated equilibria work so well?  The discussion of Section III.B suggests that 
it is because the toroidal current, which is inconsistent with the magnetic field 
representation in the equilibrium reconstruction, is more accurate on the inboard 
midplane.  However, the difficulties at the separatrix also point to the existence of 
problems there.  Do the implicit diffusive sources help in these cases? 

To answer these questions, the NIMROD code was programmed to add to new 
capabilities: running in the transferred equilibrium mode with diffusive source (i.e., Eq. 
(8)), and running with the separated equilibrium mode with no sources.  This gives us 4 
cases to compare: with and without separated equilibrium, and with and without sources.  
Because of the difficulties with the current discussed above, the simulations are run at 
S = 1.354E+03 in the core, to be able to have the transferred equilibrium cases run and 
allow accurate comparisons.  The viscosities are run at values of 25, 250, 2500, and 
25000 m2/s as shown in Fig 8.  The thermal diffusivities are held to the same values as 
the cases discussed in Section III.B.  Although anisotropic thermal conduction is 
generally considered unimportant, it was included in the simulations to ensure a proper 
equilibration of the n = 0 steady-state. 

 

 
Figure 8.  Time history plots for the transferred equilibrium case with sources for 
kinematic viscosities of 25, 250, 2500, and 25,000 m2/s. 



We first discuss the transferred equilibrium cases.  The time history plots for the cases 
with and without sources are quantitatively similar.  For simplicity, only the time history 
plots for the case with sources are shown.  The peak kinetic energy and decay time 
corresponds to the magnitude of the viscosity as one would expect.  The two highest 
cases have clearly reached an n = 0 steady-state as shown. 

The types of steady state reached are different.  Considering only the largest 
viscosity for simplicity, we compare the toroidal current and magnetic field in Figure 9.  
As expected, the case that has a source acting to maintain the equilibrium has a steady-
state that is closer to the original equilibrium.  The case without sources has smoother 
fields. 

 

 
Figure 9.  A comparison of the transferred equilibrium cases with sources (top) and 
without sources (bottom).  The magnetic field for the case with sources looks similar 
to the magnetic field shown in Fig. 2 unlike the case without sources. 
 The separated equilibria cases have much different behavior.  We first consider 
the typical NIMROD run which has the implicit diffusive sources.  All of the cases with 
the various viscosities have a similar time history plots with the kinetic energy never 
rising above 10-10 Joules.  With such small changes, there are essentially no discernible 
differences in the equilibria from what has been shown in Figures 2 and 3, so they will 
not be shown. 



 The case of separated equilibria with no sources shows some interesting 
differences from the equilibrium cases.  As one would expect, the plasma evolves to 
move away from the having the sharp gradients, with the time scale corresponding to the 
viscosity time scale.  The time history plots of the kinetic energy are shown for two 
viscosity cases in Figure 10. After relatively fast transients, the plasma evolves on a 
transport time scale as expected.  For the highest viscosity case shown in Figure 11, the 
current density peak is slightly broader than previous cases as one would expect.  The 
overall magnetic field differs a little from the equilibrium magnetic field, but not 
significantly.   
 

 
Figure 10.  The time history plots of the kinetic energy for the separated equilibrium 
case with no sources for the viscosities of 250 (left) and 25,000 (right).   

 
Figure 11.  The torodial current density and magnetic field are very similar to the 
equilibria, but slightly broader.  The current extends into the open field region 
slightly. 



D. Resolution Requirements for Two Fluid ELM Simulations with M3D: 
Background and new Developments 
In FY05, two-fluid ELM  
simulations with M3D focused on 
the stabilizing effect of gyro-
viscosity. The size of the two fluid 
effects is measured by the Hall 
parameter H, the ratio of the ion skin 
depth to the major radius. Two fluid 
stabilization provides a cutoff scale 
below which MHD modes are stable. 
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should be even more poloidal resolution to resolve the nonlinear structures shown in 
Figure 14. The first part of the figure shows the equilibrium pressure gradient. To the 
right are pressure contours in a nonlinear simulation. This simulation has toroidal modes 
n = 4, 8, … 20. In this particular simulation H = 0, but other simulations are being done 
with nonzero H, to assess its effect. 
 
In the above cases, the initial equilibrium was taken from a DIII-D equilibrium (the tq3 
case). In future work, we will try to use initial pressure profiles calculated by the XGC 
neoclassical kinetic code [7]. 
 
E. Development of Self Consistent Stationary H-Mode Equilibrium with TSC 
 
Another approach for obtaining stationary steady state equilibrium is to use the 
axisymmetric TSC code [3] to simulate the free-boundary resistive time scale evolution 
of an H-mode discharge into the “stationary” part of the discharge when the magnetic 
fields are not changing in time.  This should provide an equilibrium state with density, 
pressure, and current profiles that are consistent with an Ohmic current profile with a 
self-consistent bootstrap current imposed. 
 

 
 
 
In the TSC code, the plasma 
evolves through a series of 
equilibrium states in which the 
Grad-Shafranov equation is 
satisfied.  The rotational 
transform ι (the inverse of the 
safety factor q) evolves relative 
to the toroidal flux Φ according 
to the one dimensional evolution 
equation: 
 

  LV
t
ι∂ ∂

=
∂ ∂Φ

            (9) 

 
Where the local loop voltage, a 
surface quantity, is given by: 
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Figure 15: Current and flux contours in the 
stationary phase of the proposed FIRE experiment
B φ∇i

Here  and E
G

B
G

 are the local electric and magnetic fields, and φ is the symmetry angle.  
The parallel electric field is given by a parallel Ohm’s law, and is of the form: 
 

( BS RF NBE B J J J J Bη= − − −&

G G G G G G G
i )i .                                     (11) 



Here, the current terms in the bracket refer to the total current density, the bootstrap 
current density, the RF driven current, and the neutral-beam driven current.  In the 
stationary phase of a discharge, Equation (9) has come to a steady state, and the current 
density is determined by different source terms in Equation (11), which are transport 
model dependent. 

 
Figure 16: Total and Electron pressure (left) 

and temperature profiles in FIRE 
 
The stationary equilibrium we have been examining corresponds to the end of the flattop 
phase of the proposed FIRE experiment.  The flux and current contours are shown in 
Figure 15.   We show the corresponding pressure and temperature and current density 
profiles in Figures. 16 and 17. 

 
Figure 17:  Total (T) and Bootstrap (B) 
current densities in a FIRE simulation 

 
We have developed techniques to converge these stationary equilibrium to high-accuracy 
stationary equilibrium, which can then be transferred to M3D and/or NIMROD.  An 
advantage of this technique is that the TSC code treats the vacuum region near the plasma 
as a high-resistivity region, as do NIMROD and M3D.  This implies that all quantities are 
continuous across the separatrix boundary, a fact which should facilitate the transfer of 
equilibrium quantities.  This technique will also be used in the SWIM project.  We are 
presently obtaining detailed shot information on a typical stationary H-mode shot on 
DIII-D for which to apply this method. 
 
We expect that the stationary equilibrium, so obtained, will be very close to equilibrium 
in the NIMROD and M3D code if the sources are transferred accurately as well, and if 
the resistive MHD model is used.   However, it is predicted that for the 2-fluid Extended 
MHD model, these zero-velocity stationary equilibrium will be unstable to a poloidal 
spin-up, but that there will be a nearby stable stationary equilibrium with flow.  Our 
present focus is to obtain this nearby stable equilibrium with a relaxation technique as 
described in Section C above. 
 



V.  Conclusions  
It is clearly shown that there are difficulties in the standard way of constructing initial 
equilibrium for ELM studies for both NIMROD and M3D.  Nearby, n = 0 steady state 
solutions for the NIMROD code have been found using two different numerical methods 
under two different simulation conditions: with and without sources.  The quality of the 
“separated equilibrium mode” greatly surpasses that of the “transferred equilibrium 
mode”, and in the near term is likely to be the preferred method of running NIMROD.  
The development of the code to allow for each mode of operation to include or neglect 
the sources is beneficial to performing these types of studies and has greatly increased the 
flexibility of the code. 
  
In this work, the primary focus was on creating an n = 0 steady-state that can be used to 
create a well-posed initial condition for the nonlinear simulations.  The larger question is 
what is the right initial condition for studying the physics we want.  To date, the 
equilibria have primarily been chosen based on its linear MHD stability properties.  As 
we move forward, we will need more information from transport codes so that all of the 
profiles can simultaneously satisfy the steady-state condition as discussed in Section IV-
E above. 
 
Although we state transport code information is needed, we note in passing that the 
ability to work with high-quality free-boundary equilibria is crucial.   To date, the 
NIMROD and M3D codes have been getting free-boundary equilibria from the EFIT and 
TEQ codes without much regard for the transport properties.  A method for transferring 
the equilibrium information from TSC (or other free-boundary transport codes) needs to 
be further developed and interfaces from those codes to NIMROD and M3D will need to 
be defined. The question of the axisymmetric stability of the zero-velocity stationary 
equilibrium needs to be explored, as discussed in Ref. [8] below.  
 
The M3D code has demonstrated the stabilizing effect of gyroviscous terms for the ELM, 
and also the need for extreme resolution near the plasma boundary, which they obtain 
with mesh packing. 
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