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1 Introduction

These rough notes are a result of my attempts to gain a rudimentary understanding
of sawtooth oscillations in general, and giant sawteeth in particular. I have always
learned best by writing down what I read: in going from printed page through
brain to hand, perhaps some of it sticks. Simultaneousy, I decided to learn a little
LaTeX. The result is what you have here.

The initial motivation was to do simulations of the giant sawtooth crash with
the NIMROD code. I quickly found that I was groping in the dark (still am), and
in need of some background. Why am I so ignorant? Why wasn’t I taught this
stuff in graduate school? Actually, it turns out that much of the work on the topic
was done after I left grad school and was involved in other endeavors. Ignorance is
bliss, and, yes, I should have paid more attention at those endless APS meetings.
In any case, I need some self-education, and these notes are a summary of most of
the important papers regarding the topic of the internal kink mode in tokamaks,
and its stabilization by energetic particles. I make no pretense at mastery or
expertise or completeness. The fundamental MHD is difficult, I know very little
about kinetic theory, and I have found the mathematics to be a stretch. As the
mouse said: “Mine is a long and sad tail.”

Here is a quick summary of what I’ve learned so far:
Sawteeth are the experimental manifestation of the m = 1, n = 1 internal kink

mode in a torus. The sawtooth crash occurs when q(0) < 1. The ideal internal kink
mode has completely different properties in a torus than in a periodic cylinder; it
becomes pressure, rather than current, driven. Resistivity is required to account
for the experimentally measured amplitude and growth rate of the sawtooth crash.
In modern tokamaks, and in ITER, extended MHD or kinetic theory must be used
to describe the singular layer; nonetheless the linear theory has been worked out.
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Extended sawtooth-free periods with q(0) < 1 can be induced by the pres-
ence of an energetic ion population, from neutral beams and/or acceleration by
RF radiation. These periods exhibit improved confinement properties and signif-
icant increases in stored energy. They are usually terminated by large sawtooth
crashes, exactly like normal sawteeth except with much larger amplitude. These
are “monster”, or giant, sawteeth. They can result in a rapid loss of stored energy
and energetic particles, and can induce other MHD activity, like NTMs or ELMs.
They may have serious negative implications for ITER.

The stabilization of the internal kink is due to an interaction between the
toroidal precessional motion of the energetic trapped particles and low frequency
MHD perturbations. The precessional motion of the banana centers of the trapped
particles preserves the third adiabatic invariant, which is the magnetic flux linked
by the precessing orbits. This can stabilize the kink mode if the particles complete
many toroidal transits in an MHD growth time, i.e., γI ≪ ωp. If γI and ωp are
not widely separated, a resonance between the MHD and the toroidal drift can
destabilize fishbone mode. The trick is to have enough particles with enough
energy to stabilize the kink without destabilizing the fishbone.

The theory of sawtooth stabilization by energetic particles is long and complex
(if not actually sad). It has been synthesized into a simple analytic model, called
the Porcelli model, that can be used to predict the triggering of a sawtooth crash.
The Porcelli model uses zero-dimensional formulas based on a combination of
theory and curve fitting to estimate the terms in the potential energy. The model
has been tested by direct comparison with more extensive theory and experiment.
The approximations used in the Porcelli model significantly underestimate the ideal
MHD drive for the instability. When used with a more accurate (and expensive)
computational estimate for the ideal MHD potential energy, the Porcelli model
can be a useful guide to the prediction of the onset of a giant sawtooth crash.

Neither linear theory nor the Porcelli model can be used to predict accurately
the state after the crash: e.g., what are the relaxed profiles?; what is the coupling
to other MHD activity?; how much stored energy is lost?; where does it go?, and,
what is the fate of the energetic particles? Addressing these questions requires
nonlinear computations that employ self-consistent coupling between nonlinear
extended MHD and a kinetic treatment of hot particles. These studies are begin-
ning using the NIMROD code.

The presentation is organized as follows. Section 2 briefly reviews the first
experimental observations of both normal and giant sawteeth. The development
of the theory of the internal ink mode and its stabilization by energetic particles is
discussed in Section 3. Section 3.1 is concerned with cylindrical geometry, including
both linear and nonlinear ideal MHD theory, linear resistive and extended MHD
theory, the ion-kinetic regime, and nonlinear computations. Section 3.2 discusses
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the kink mode in toroidal geometry. The MHD behavior of the kink mode is
completely modified. This is described in Section 3.2.1. The complicated theory
of the effects of trapped particles, both thermal and energetic, on MHD activity
is very briefly reviewed in Sections 3.2.2 - 3.2.6. A consolidated picture of linear
kink mode behavior in a torus is described in Section 4, including a comprehensive
theory of kink stabilization by energetic particles, Section 4.1, and a review of
the Porcelli model for predicting the sawtooth trigger, Section 4.2. Comparison of
both general theory and the Porcelli model with experiment is described in Section
4.3, and some thoughts on future directions, including some preliminary results
from NIMROD, are presented in Section 4.4.

The presentation is rough and uneven (even redundant grammatically!). This
is because the composition was done in a stream-of-consciencness fashion as I was
trying to work through the papers. The notation is inconsistent because I have
used the notation in the original papers; it changes from section to section. The
papers are difficult, and I had more background (and patience) for some than for
others.

Of course, I am looking for feedback, not in style but in content. There are
several places where I admit ignorance and plead for assistance. I would sincerely
appreciate comments and suggestions for improving both the accuracy and my
understanding. Some examples are:

How do you derive Eq. (56), which is a critical step in the theory of the resistive
internal kink?

Is there an easy way to understand the ion-kinetic regime, Section (3.1.5), or
is it all just an endless series of approximations to gamma- and confluent hyper-
geometric functions?

Ditto for Kruskal-Oberman theory, Section 3.2.3. I can’t see any connection
between the original paper and the formulas used in the Porcelli model. And how
would you include these effects in NIMROD?

How did White, Romanelli and Bussac work out all those formulas (see Section
4.1)? I am in awe!

Where does Eq. (121) come from?
Where does Eq. (133) come from?
Is a tail of high energy ions necessary for internal kink stabilization, or can it

be achieved with a slowing down distribution (see Section 4.3)?
And, last but far from least, What are we going to do without Marshall Rosen-

bluth?
Anyway, even if you don’t have the answers, I hope you find the notes useful.
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2 Experiment

Sawtooth oscillations seem to occur naturally in all toroidal confinement configu-
rations: tokamaks, RFPs, and spheromaks. They consist of quasi-periodic signals
appearing in the data from a variety of experimental diagnostics. These signals are
characterized by a slow rise followed by a fast “crash”. They were first reported
in tokamaks (with which we are concerned here) in the early 1970’s, and have
been seen in every tokamak since. Later, in the 1980’s, tokamak experimentalists
learned how to stabilize these oscillations, leading to long “sawtooth-free” peri-
ods of improved confinement. Unfortunately, these were inevitably terminated by
large sawtooth crashes (called “monster”, or “giant” sawteeth) that had adverse
implications for the operation of a fusion reactor.

In this section the early experimental evidence for both normal and giant saw-
teeth is briefly reviewed. (It should be noted that an excellent review of sawtooth
data and results has been given by Jardin [1].)

2.1 Sawtooth Oscillations

The first published report of sawteeth was in 1974 by von Goeler, Stodiek, and
Sautoff [2] in the ST tokamak. They reported “sawtooth-like” oscillations in the
x-ray signal from the core of the discharge, which is primarily a measure of the
electron temperature. On the magnetic axis (r = 0), these oscillations had a
slow rise phase and a rapid crash phase. At r = 3.9 cm. the oscillations were
“inverted”, with a rapid rise followed by a slow decay. A sketch of the experimental
arrangement and the x-ray signals are shown in Fig. 1. The sawteeth are the
relatively rapid oscillations imposed upon the overall signal. Note that this span
of < 100 mseconds represents the total duration of the discharge, illustrating the
progress in tokamak confinement over the last 35 years. Apparently this type
of oscillation had also been seen in the T-4 tokamak in Russia, and on the ATC
tokamak at Princeton, but had not been reported in the open literature. (Reference
[2] cites an unpublished Kurchatov Institute report by Vershkov, et al., and an
unpublished PPPL report by R. R. Smith.) At the time, sawteeth were also called
“internal disruptions”, which were disturbances limited to the core of the plasma.
This is to distinguish them from “major disruptions”, which resulted in premature
termination of the discharge.

In a tokamak like ST, the “safety factor” q(r) ∼ rBz/RBθ (to use the cylindrical
approximation) is a monotonically increasing function of the minor radius r. Prior
to the crash the value of q(0), the value of the safety factor on the magnetic axis,
was estimate to be ∼ 0.8, with q = 1 occurring at r ∼ 2 cm. Measurements showed
that the sawtooth amplitude had a node at the q = 1 surface: inside this surface
the temperature behaves like the lower trace in Fig. 1; outside, it behaves like the
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upper trace (i.e., it is “inverted”). Thus, at the crash, the temperature inside the
q = 1 surface exhibits a rapid decrease, while outside that surface it exhibits a
rapid increase: the temperature profile flattens “outward” in minor radius. After
the crash the temperature within the q = 1 surface slowly increases, while outside it
slowly decreases, becoming more peaked until another crash and flattening occurs.
The oscillations were also measured to be associated with helical perturbations
having poloidal mode number m = 1 and toroidal mode number n = 1, which
were theoretically known to be characteristic of the internal kink mode [3, 5], an
ideal MHD instability that occurs in the vicinity of the q = 1 surface.

The following theoretical picture sawtooth oscillations was given. The termper-
ature profile begins the cycle relatively flat, and q(0) > 1, as required for ideal
stability. The plasma is heated ohmically (i.e., by collisions that resist the plasma
current). Since the current density is peaked on axis (q(r) is monotonic in r), the
core of the plasma is preferentially heated, causing the temperature to peak in the
core. Since the resistivity decreases with increasing temperature (η ∼ T−3/2 for a
collisional plasma), the core becomes a relatively better electrical conductor than
the edge, and the current density further peaks at r = 0, causing q(0) to decrease.
This leads to a further increase in the the local heating rate, a further peaking of
the temperature, and a further decrease in q(0). Finally q(0) < 1, and the internal
kink instability (m = 1, n = 1) is triggered. Its nonlinear evolution leads to a
rearrangement of the magnetic flux and a flattening outward of the temperature,

Figure 1: Experimental setup and x-ray signals showing sawtooth oscillations in
the ST tokamak [2].
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until the original state with relatively flat temperature and q(0) > 1 is restored.
The cycle then repeats.

A theoretical picture of the linear and nonlinear properties of the ideal MHD
internal kink mode was given in Ref. [5]. (It is interesting that Ref. [5] was
actually published before the experimental results reported in Ref. [2]. Is this a
case, unusual for plasma physics, of theory leading experiment?) In particular,
Ref. [5] provided an estimate of the saturated amplitude of the mode (see Section
3.1.2, below). In the ST tokamak [2], the growth rate of the mode responsible for
the sawtooth oscillations was estimated to be smaller (by a factor of 8) and the
amplitude of the mode larger by about an order of magnitude than the estimates
of Ref. [5]. “It should be pointed out that resistivity is not included in the present
theory and that it is likely that a tearing-mode version of this instability exists
which might lead to smaller growth rates and larger displacements.”[2] This is
indeed the case, as will be seen in subsequent sections.

A more detailed model of sawtooth oscillations, including the rearrangement
of the flux due to magnetic reconnection, was given by Kadomtsev [6].

Of course, it has since become known that sawtooth oscillations, or “internal
disruptions”, are a characteristic and ubiquitous part of tokamak operation. As
was pointed out by Furth (see the discussion section of Ref. [7]): “Disruptive
instabilities are of great physical interest, but tokamak experiments can readily be
operated in a way that avoids gross disruptions, and this is the normal operating
mode. Furthermore ... there are regimes that are entirely free of both major
and minor disruptions, and indeed of any kind of marked MHD activity. From a
theoretical point of view, this can be explained by introducing finite-temperature
stabilizing terms into resistive MHD theory. In addition, it has been shown recently
that there exist altogether stable special tokamak profiles, even without the benefit
of finite-temperature stabilizing terms.” It all seems so simple.

2.2 Giant Sawteeth

We have seen that sawtooth oscillations are a ubiquitous signature of tokamak
operation. As might be expected (and in spite of Furth’s remarks [7]), the repeated
collapse of the central electron temperature and the resulting mixing of the plasma
between the core and the outer regions has an adverse effect on plasma confinement
(during the crash the core is, by deninition, unconfined), and, in a fusion reactor,
may lead to ejection of the energetic charged particles (α-particles) that result
from fusion reactions and are an integral part of the energy balance requirements.
These adverse effects on tokamak performance led to attempts to find ways to
control, and possibly stabilize and eliminate, sawtooth oscillations.

The first reported progress in this regard was on the JET tokamak [8]. They
reported the inducement of extended sawtooth-free periods in response neutral
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Figure 2: Data from the JET tokamak showing the onset of a sawtooth-free period
at 9.6 seconds in response to neutral beam injection and ICRF heating. The stable
period lasted 1.05 seconds. [8].
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beam injection followed by RF (ICRH) heating. The RF accelerates the beam
ions to energies of several hundred KeV. An example is shown in Fig. 2. The
stable period starts at 9.6 seconds, and lasts 1.05 seconds. The preceding and
subsequent oscillations are normal sawteeth. During the sawtooth interregnum,
the temperature and stored energy approximately doubled, the confinement time
improved by up to 20 percent, and q(0) was maintained well below unity. During
this time there was little or no detectable MHD activity.

The sawtooth-free period was terminated by an m = 1, n = 1 instability,
followed by m = 2, n = 1 and m = 3, n = 1 activity; q(0) was returned to
greater than one. It is in all respects a “normal” sawtooth crash, except with
much larger amplitude. This is the first report of what later became known as a
“monster”, or ”giant” sawtooth. One might think that a large amplitude MHD
event that results in the loss of half the stored energy and stimulates other MHD
activity throughout the discharge might be cause for some concern, although Ref.
[8] does not seem to find it remarkable. The paper stresses the stabilization and
the improved confinement, minimizes (or ignores) the implications of the crash,
and seems (to me) to be naively (or, perhaps, politically) optimistic about the
results. Subsequent experience (see, for example, Ref. [9], and references therein)
showed that giant sawteeth could trigger both ELMs and neo-classical tearing
modes (NTMs), dump large amounts of energy to the walls, and cause significant
loss of energetic particles (such as α-particles in a fusion reactor). Normal sawteeth
are like a slow leak in a tokamak. If they are eliminated it allows energy to build
to the point where its sudden release could have serious consequences for both
confinement and structural integrity. A giant sawtooth could be a significant
event for ITER.

Of course, the physics question is: what causes the stabilization of the m =
1, n = 1 kink mode? Experimentally their stabilization (and, as we shall see,
other unexpected MHD-like activity) is associated with a minority population
of energetic ions that, in the low collisionality regime of modern tokamaks, can
become “trapped” on the outboard side of the torus. These ions can come from a
neutral beam, or from fusion reactions. They can be accelerated to higher energy
by RF radiation. It turns out that the interaction between these ions and low
frequency MHD activity can completely alter the MHD stability properties of a
toroidal plasma. The analysis is extremely complex, and requires a fusion (pardon
the pun) of MHD and kinetic theory. However, smart people were eventually
able to show that, under the proper circumstances, the presence of these energetic
particles can, indeed, lead to complete stabilization of the internal kink mode.
This will be described in the following sections.

All of the theoretical progress has been made with the goal of understanding
the linear theory of kink stabilization, thereby determining the so-called “trigger
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mechanism” for the giant sawtooth. As stated, and as we shall see, this is a
difficult task. However, it cannot address the real, practical consequences of a giant
sawtooth crash: the loss of stored energy, the load on the walls and supporting
structure, the triggering of other unstable MHD modes, the fate of the energetic
ion population, etc. These are all determined by the nonlinear evolution of the
internal kink mode in a torus in the presence of an energetic ion population, and
ultimately can only be addressed by large scale numerical simulation. Initial steps
in this direction are briefly described in Section 4.4.

3 Theory

We now proceed to review the linear and nonlinear theory of the internal kink
mode, which is responsible for the sawtooth crash. The simplest geometry in
which to study this mode is a periodic cylinder, and there are two principal results.
First, in ideal MHD the growth rate is small (γ ∼ ǫ2, where ǫ = r/R ≪ 1 is the
cylindrical equivalent of the aspect ratio of a torus). The second is that, in the
absence of resistivity, the saturation amplitude of the kink is also small (ξ ∼ ǫ2),
so that the ideal internal kink cannot account for the observed sawtooth crash.
This later restriction is removed in resistive MHD theory, and the resistive kink
mode can completely rearrange the flux in the core. This is described in Section
3.1.

Unfortunately, tokamaks are tori, not cylinders, and the toroidal corrections to
the theory are also ∼ ǫ2, which is the same order as the growth rate. It turns out
that the linear stability properties of the kink are not just modified by toroidal
geometry, but are completely changed, so that the cylindrical theory cannot be
used to make reliable predictions. But that all gets worked out, and is desecribed
in Section 3.2. It is the toroidal resistive internal kink (and its modifications when
the collisionality becomes very small) that is responsible both normal and giant
sawtooth crashes.

As suggested in Section 2.2, the stabilization of the internal kink mode in a
torus is the result of an interaction between MHD and energetic trapped particles.
This complex theory is described briefly in Sections 3.2.4 and 3.2.6.

Of course, all of what follows is to be considered in the context in which it
is presented: notes written following a brief perusal of some of the most difficult
papers in plasma physics. Have patience.
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3.1 Cylindrical Geometry

3.1.1 Linear Ideal MHD

We first consider the case of ideal MHD linear stability in cylindrical geometry. In
this case, Ohm’s law is

E = −V ×B , (1)

where E is the electric field, B is the magnetic field, and V is the fluid velocity.
Equation (1) is a statement that a fluid particle moving with velocity V sees no
electric field. Equivalently, in a frame at rest in the laboratory, the electric field
parallel to B vanishes. In either case, the interpretation is that the fluid and the
magnetic field are co-moving.

Perturbations behave as eγte(imθ+kzz). For kink modes, the poloidal mode num-
ber is m = 1, and the axial wave number kz = n/R, where n is an integer and R is
the major radius of the “equivalent” torus. The so-called internal kink mode has
n = −1, so the axial mode number is kz = −1/R. The first complete analysis of
the stability of this mode seems to be by Shafranov [3]. It is reviewed by Rosen-
bluth, Dagazian, and Rutherford[5]. They state that the analysis is “well known”,
but they do not give a reference. It is also discussed in some detail in Freidberg’s
book [10].

In Freidberg’s notation[10, pp 289ff., 340ff., 419ff.], the potential energy per
unit length of a periodic cylindrical plasma with conducting wall at radius a,
subject to a perturbation ξ, is

δW

2πR
=

π

µ0

∫ a

0



f

(

dξ

dr

)2

+ gξ2



 dr, (2)

where

f =
rF 2

k20
, (3)

g = 2
k2z
k20

(µ0p)
′ +

(

k20r
2 − 1

k20r
2

)

rF 2 +
2k2z
rk40

(

kzBz −
mBθ

r

)

F , (4)

k20 =
m2

r2
+ k2z , (5)

and

F = k ·B =
mBθ

r
+ kzBz. (6)
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For the internal kink, k20 = k2z + 1/r2 and

F =
Bθ

r
(1− q) , (7)

where q = rBz/RBθ is the safety factor. The resonant (or “rational”) “surface”
(or radius) r0 is defined as the root of F (r0) = 0, or q(r0) = 1. On this surface
the wave fronts of the perturbation are parallel to the magnetic field. The internal
kink occurs if r0 lies within the plasma, i.e., 0 < r0 < a. If q(r) is a monotonically
increasing function of r, as is the usual case for a tokamak, the we have F > 0
for r < r0, and F < 0 for r > r0. The appearance of the internal kink resonance
requires q(0) < 1 and q(a) > 1.

We will use the “tokamak ordering”, which can be expressed as r/R ∼ Bθ/Bz ∼
kzr ∼ ǫ where ǫ ≪ 1 is a small parameter. The pressure can be ordered either as
ǫ2 (the standard ordering) or ǫ (the high-β ordering). For the internal kink mode
(m = 1, kz = −1/R), Equation (4) can be written in terms of q to O(r2/R2) ∼ ǫ2

as

g =
r2

R2

[

(1− q)2 − 2 (1 + q) (1− q)
]

. (8)

Clearly, g = 0 at the rational surface q = 1. It is easy to show that g < 0 for
r < r0 and g > 0 for r > r0.

We now consider the minimization of the potential energy, Equation (2). The
first term in the integrand is positive definite, and the second term depends on the
sign of g. A trial function that minimizes δW is therefore

ξ =

{

ξ0 for r < r0,
0 for r > r0.

(9)

The subscript 0 refers to the fact that ξ0 is to be considered O(1). This function,
and typical current and safety factor profiles, are shown in Figure (3), which is
taken from Ref [5]. The ideal MHD potential energy for this trial function is

δWc =
2π2Rξ20
µ0

∫ r0

0
gdr. (10)

Since g < 0, δW < 0 and the internal kink is unstable. Note, however, that
δW ∼ ǫ2, so that the growth rate is expected to be correspondingly small.

The trial function given by Equation (9) has a singular derivative at r = r0.
This singularity is resolved by inertia at O(ǫ2). Since the growth rate is O(ǫ2), we
expect the plasma to be in quasi-equilibrium everywhere except near the rational
surface. That is, the inertia can be neglected everywhere except in a small region
of width r − r0 = x ∼ ǫ2 about r = r0. In that region the full equations must
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Figure 3: Tokamak profiles and the minimizing trial function

12



be solved. The growth rate is obtained by matching the solutions in the inner
and outer regions at r = r0. The correction to the displacement that resolves the
singularity is O(ǫ2).

The total energy is E = K+ δW , where K is the kinetic energy in the poloidal
flow. (In the tokamak ordering, the magnetic field is almost axial, and the parallel
flow can be ignored[5].) Minimizing the total energy for incompressible displace-
ments leads to the Euler equation

d

dr

[

(

µ0ργ
2 + F 2

)

r3
dξ

dr

]

− gξ = 0 (11)

where γ is the growth rate.
As mentioned above, the solution is divided into two parts: an “outer” solution

away from the rational surface where inertia can be ignored, and an “inner” solu-
tion valid near the rational surface where inertia must be included. The solution
in the outer region is then further divided into two parts: one valid for 0 ≤ r < r0
and denoted as ξ<, and one valid for r0 < r ≤ a, denoted as ξ>. To obtain the
outer solution, we set γ = 0 and integrate over the two parts of the outer region.
We use the ansatz ξ = ξ0+ ǫ

2ξ2 (where ξ0 is given by Equation (9)), and note that
g ∼ O(ǫ2). Integrating from 0 to r, where r < r0, we have

dξ2<
dr

=
ξ0
F 2r3

∫ r

0
g(r′)dr′ , (12)

This gives the slope of the outer solution in the region 0 ≤ r < r0. Similarly, the
slope of the outer solution in the region r0 < r ≤ a is found by integrating from
r0 to r, where g = 0:

dξ2>
dr

=
C

F 2r3
, (13)

where C is a constant of integration, and we have used the fact that F (r0) = 0.
The “inner” solution ξin is found by substituting x = (r− r0)/ǫ

2 into Equation
(11) and retaining terms up to O(ǫ2). The result is

d

dx

[

(

µ0ργ
2 + F ′2x2

)

r30
dξin
dx

]

= 0 , (14)

where we have written F (x) = F ′x. (The term gξ is O(ǫ6) and is dropped.)
Integrating twice, we have

ξin(x) =
C1

r30γ|F ′|√µ0ρ
tan−1 |F ′|x

γ
√
µ0ρ

+ C2 . (15)

The integration constants are found by requiring ξin → ξ0 as x→ −∞, and ξin → 0
as x→ ∞. The result is
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ξin =
1

2
ξ0

[

1− 2

π
tan−1 |F ′|x

γ
√
µ0ρ

]

, (16)

which is Equation (12) of Ref. [5].
The growth rate γ is found by requiring the slope of Equation (16) as x→ −∞

to match Equation (12) as r → r0. The result is

γ = − π

|F ′(r0)|r30
√
µ0ρ

∫ r0

0
gdr , (17)

which is O(ǫ2), as aniticpated. Since g < 0, γ > 0 and the mode is unstable. In
light of Equation (8 ), γ ∼ (VA/L)ǫ

2, or γτA ∼ ǫ2. Using Equation (10 ), the
growth rate can be written in terms of the potential energy as

γ = −
√

µ0

ρ

δWc

2π2Rξ20r
3
0|F ′| . (18)

The system is unstable if δWc < 0 for given pressure and current profiles.
I remark here on a peculiarity in this calculation. In the usual formulation of

the energy principle (as in Freidberg [10], for example), the growth rate is given
by γ2 = −δW/δK, where δK is the kinetic energy functional; thus δW ∼ γ2.
However, in this and all subsequent theory of the internal kink and its relation to
the sawtooth, δW ∼ γ, which implies K ∼ γ−1; see Eq. (18). This relationship
can be deteremined as follows [4].

With time dependence of eγt, the kinetic is

Ek = πρR0γ
2
∫ a

0
|Ξ|2rdr = πρR0γ

2δK . (19)

Here Ξ is the vector displacement Ξ = ξêr+ ξθêθ+ ξzêz. In the tokamak ordering,
ξz ≃ 0, and using incompressibility with m = 1, ξθ ≃ id(rξ)/dr. For the internal
kink, the slope of the radial displacement dξ/dr is very large near the singular
radius r0; it is infinite for the “top hat” trial function. The kinetic energy is
therefore dominated by ξ2θ in the “inner” layer near the singular surface. Then the
integral in Equation (19) is then approximately

δK ∼
∫ a

0
|ξθ|2rdr ∼

∫ a

0
|idξ
dr

|2r3dr ∼ r30

∫ ∞

−∞
|dξin
dx

|2dx . (20)

Using ξin(x) from Equation (16), the last integral is found to be ∼ γ−1, so that
Ek ∼ γ and is consistent with Equation (18).

Some literature [12, 11] defines a non-dimensional growth rate as λH = γr0/VA0,
where
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VA0 =
Bθ√
µ0ρ

r0
q′(r0)

q(r0)
. (21)

Then using Equation (7) and q(r0) = 1, we have

λH = − µ0

(Bθ0q′0r0ξ0)
2

δWc

2πR
, (22)

which is the equivalent of Equation (II.20) of Ref. [12].
The procedure for finding the growth rate by matching the slope of the inner

solution as x → −∞ to the slope of the outer solution as r → r0 is similar to
the method of matched asymptotic expansions[13] that is used in the analysis of
resistive instabilities[14]. In that case, a small parameter (e.g., the resistivity)
multiplies the highest derivative in the equation, and this term can be ignored
everywhere except near the rational surface. The solution is again divided into
“inner” and “outer” parts. The lower order differential equation is solved in the
outer region, the higher order equation (with rescaled independent variable) in
the inner region, and the solutions are asymptotically matched to find the growth
rate. The procedure used here is different in that the equation in the outer region,
Equation (11) with γ = 0, is of the same order (in derivative) as the equation
in the inner region, Equation (14). A possible justification of this approach is as
follows.

We have seen that, away from the rational surface r0 (i.e., in the outer region) ,
the parameters of the problem scale as F ∼ 1, γ ∼ g ∼ ǫ2, and ξ = ξ0+ ǫ

2ξ2 where
ξ0 ∼ 1 is the trail function given by Equation (9). The term in Equation (11) that
is proportional to γ2 is therefore ∼ ǫ4, and can be ignored compared with F . At
O(ǫ2), the equation in the outer region is therefore

d

dr

[

F 2r3
dξ2
dr

]

− gξ0 = 0 . (23)

Integration from 0 to r < r0, where ξ0 is constant, yields Equation (12), and
integration from r > r0 to a, where ξ0 = 0, yields Equation (13).

In the inner region, defined by F ∼ ǫ2, γ2 and F 2 are of the same order, and
both terms must be retained. The term gξ2 would seem to be the same order
(∼ ǫ4), but becomes ∼ ǫ6 when the rescaled variable x = (r− r0)/ǫ

2 is introduced.
The result is Equation (14). Asymptotic matching of the slopes of the inner and
outer solutions produces the growth rate.

The comment that “inertia rsolves the singularity” refers to the fact that r0
is a singular point of Equation (11) when ργ2 = 0, i.e., F (r0) = 0. When ργ2 is
retained, r0 reverts to an ordinary point.
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3.1.2 Nonlinear Ideal MHD

The rigid shift of the interior of the plasma column that results from the ideal
internal kink mode displacement in a cylinder makes it a candidate for the cause
of sawtooth oscillations in a tokamak. The relevant question then relates to its
nonlinear saturation amplitude. The solution of this problem was reported in
Ref.[5]. The result is that the saturation level is to small to account for the
experimental observations.

The approach is to find a “neighboring” helical equilibrium that satisfies force
balance, has the same magnetic flux as the original cylindrical equilibrium, and
matches smoothly with the linear solution given in Section 3.1.1, above. The
calculation is complicated and tedious, and only the general approach is outlined
here.

Since the displacement for the internal kink mode varies as ξ(r)eiτ , where
τ = kz + θ, we look for equilibrium solutions that are also functions r and τ ; τ
is called the helical coordinate. In addition to force balance, these states must
be dynamically “accessible” within the context of ideal MHD. This means that
they must have the same values of toroidal and poloidal magnetic flux. It can be
directly verified that, in ideal MHD with helical symmetry, the helical flux function
ψ = krAθ − Az satisfies dψ/dt = ∂ψ/∂t +V · ∇ψ = 0, so that ψ is a constant of
the motion for any fluid element. Further, B · ∇ψ = 0, so that the equations for
the helically distorted flux surfaces are ψ = constant. Since ψ is a constant of the
motion of a fluid element, it can be determined by its value ψ0(r) in the circular,
undistorted state. Evaluating the constant at θ = 0, we conclude

ψ(r, θ) = ψ0(r − ξ) , (24)

for all θ. [Here, ξ = ξ(r, θ)] These arguments assume that the displacement of
the flux surfaces inside the singular surface is “rigid”. They assure that flux is
conserved, and that the neighboring helical state is “accessible”. Further, since
near the singular surface ∂ψ0/∂r = Fr, where F = k · B, Equation (24) can be
expanded in a Taylor series to yield

ψ = ψ0 − ξrF +
1

2
ξ2(rF )′ + · · · . (25)

Force balance is expressed as

J×B = ∇p . (26)

In the helical state, the magnetic field is given in terms of the helical flux as

B =
eζ ×∇ψ√
1 + k2r2

, (27)
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where

∇ψ = êr
∂ψ

∂r
+ êτ

√
1 + k2r2

r

∂ψ

∂τ
, (28)

where êτ = (êθ + rkêz)/
√
1 + k2r2 and êζ = (êz − rkêθ)/

√
1 + k2r2 are “helical”

unit vectors, and êr, êθ, and êz are the usual cylindrical basis vectors. This
formalism can lead to complicated expressions. Instead, we work with the tokamak
ordering Bz/Bθ ∼ kr ∼ ǫ ≪ 1. Then to O(ǫ2) the expression for the current
density J = ∇×B reduces to

∇2ψ = Jz(ψ) , (29)

where ∇2 is the two-dimensional cylindrical Laplacian operator, but ψ(r, θ) is the
helical flux.

Finally, we must assure that the displacement of the flux surfaces is approx-
imately incompressible. This is accomplished by requiring that the area of the
displaced helical flux surface be the same as the area of the corresponding undis-
placed circular flux surface, i.e.,

∫

τH
rdrdθ =

∫

τc
rdrdθ , (30)

where the helical and cylindrical flux surfaces τH and τc are defined by the flux
function ψ.

Equations (29) and (30) form the basis of the theory. The approach will be to
find a solution of these nonlinear equations in the vicinity of the singular surface,
and then require that these match smoothly to the linear solution in the outer
regions. This will yield a value for the displacemet amplitude ξ0; see Equation (9).

Now we start the heavy lifting, and we will do as little of it as possible. Within
the thin boundary layer surrounding the singular surface, the radial variation of
ψ is much faster than the angular variation, and Eq. (29) can be written approx-
imately as d2ψ/dr2 = J(ψ). This will be developed into an equation for r(ψ), the
position of the helical flux surface with label (value) ψ. Multiplying by dψ/dr, we
have

dψ

dr

d2ψ

dr2
= J(ψ)

dψ

dr
, (31)

or

1

2

d

dr





(

dψ

dr

)2


 = J(ψ)
dψ

dr
. (32)

Integrating, we have, symbolically,
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(

dψ

dr

)2

= F (ψ) +G(θ) , (33)

where F (ψ) =
∫ ψ J(ψ′)dψ′ is a function of ψ and G(θ) is an integration function.

Both are to be determined. (Do not confuse F with k ·B.) From Equation (33),
the equation for r(ψ) is

dr

dψ
=

±1
√

F (ψ) +G(θ)
. (34)

The choice of sign will be discussed later.
As in the linear theory, when working within a thin boundary layer it is useful

to introduce a new variable x, the radius of the flux surface ψ relative to s, the
radius of the singular surface. It is related to the displacement by

r − x = ξ . (35)

Further, from the form of Equation (25), ψ and x are related by ψ ∼ x2s (k ·B)′,
or dψ ∼ xdx. We can use this ansatz in Eq. (34) to express ξ in terms of x as

∂ξ (x, θ)

∂x
= ± x

√

f(x) + g(θ)
, (36)

where f and g are functions related to F and G, above, and are not to be confused
with Equations (3) and (4). (Ref. [5] is quite loose with notation, using f and g for
different functions. Unless they really are the same functions, which is certainly
not clear to me!) The integration for x is given in Ref [5] as

ξ(x, θ) =
∫ x

0
dx′





x′

±
√

f(x′) + g(θ)
− 1



+ h(θ) . (37)

I don’t know why this form was chosen.
Now the incompressibility condition, Equation (30) is applied. The argument

is somewhat mysterious, and the entire thing is given in three lines of Ref [5].
Using Equation (37) the result is that

∮

dθ

±
√

f(x) + g(θ)
=

1

x
, (38)

where
∮

dθ ≡ ∫ 2π
0 dθ/2π.

Now we start the asymptotics. (Let the asymptotics begin!) As usual, x → ∞
implies r ≫ s and x → −∞ implies r ≪ s. Further, Equation (38) requires that
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we choose the positive sign for x > 0 and the negative sign for x < 0. According
to Ref. [5], “this guarantees that the flux surfaces remain intact”.

The change of sign at the singular surface is important. Since Bθ ∼ dψ/dr,
and in light of (the reciprocal of) Equation (34), Bθ must incur a jump at the
singular surface x = 0, i.e., a current sheet arises at the singular surface[5]. This
has important implications that will be discussed shortly.

Continuing, we must match the asymptotic forms of Eq. (37) to the linear
solutions given by Eqs. (12) and (13), After what appears to be a calculation of
Herculean proportions, one arrives at [5]

∫ ∞

0
df

{
∮

dθ(f + g)−3/2

[
∮

dθ(f + g)−1/2]
3

[

(f + g)−1/2 −
∮

dθ(f + g)−1/2
]

}

= −ξ0 cos θ . (39)

This is the “fundamental integral equation for g(θ)” [5]. Wow!
If one makes the scale transformations g → αg and f → αf , one finds

ξ0 → α1/2ξ0, so that g/ξ20 ∼ 1. Further matching to the linear solution yields
the additional relation

∮

dθg(θ) cos θ

ξ0
= −

∫ s

0

g1dr

s3
[

(k ·B)′
]2

s

, (40)

where now g1 refers to the function g used in Section 3.1.1. Since g1 ∼ ǫ2, Equation
(40) implies g/ξ0 ∼ ǫ2. Taken together with our previous result, this implies
ξ0 ∼ ǫ2, i.e., the saturated amplitude of the ideal internal kink mode is very small,
too small to account for the observed sawtooth oscillations.

Reference [5] states that to “actually solve” Equation (39) “is, of course, an
almost impossible task”. Complety impossible for most mortals, but apparently
only “almost impossible” for Rosenbluth. For, in fact, it is show in Ref. [5] that
Eq. (39) can be derived from a variational principle that can be approximately
“solved” for ξ0 using a trial function for g(θ). The result is

ξ0 = −13
∫ s

0

g1dr

s3
[

(k ·B)′
]2

s

. (41)

Since g1 ∼ ǫ2, the scaling of the displacement is displayed explicitly. Further,
since

∫

g1dr ∼ δW < 0, obtaining the helical solution requires that the cylindrical
equilibrium be linearly unstable.

The important point is that the saturated nonlinear helical state of the ideal
internal kink mode in a tokamak has insufficient amplitude to account for experi-
mental observations. However, Ref [5] goes on to show that the transition to the
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helical state is accompanied by voltage spikes and major radius shifts of the cor-
rect sign. So the trends are right even if the magnitude is too small. A possible
solution lies in the current sheet that occurs at the singular surface in the non-
linear state. Perhaps in the presence of finite resistivity, reconnection or tearing
modes can occur that can allow the distortion of the column to continue to finite
amplitude. That is the next topic for discussion.

3.1.3 Linear Resistive MHD

We now consider the linear stability of the internal kink mode in cylindrical ge-
ometry when electrical resistivity is included, i.e., Ohm’s law is

E = −V ×B+ ηJ . (42)

It is well known that this modification of the ideal equations allows the field to
move relative to the fluid, and magnetic reconnection to occur at singular surfaces.
This process often occurs in the presence of current sheets of the type associated
with the ideal internal kink, and therefore may allow for larger nonlinear distortions
of the plasma column. The solution of the problem of the resistive internal kink in
a cylinder was first reported by Coppi, et. al., Ref [11], and was reviewed in Ref.
[12]. The calculation is tedious but standard (although not simple), and we only
report the outline here.

The procedure is based on the method of matched asymptotic expansions [13],
and was first used on this type of problem in slab geometry by Furth, Killeen, and
Rosenbluth (FKR), Ref. [14]. In ideal MHD the displacement satisfies a second
order differential equation [see Eq. 11)]. When finite resistivity is included, the
the equation becomes fourth order, with the resistivity multiplying the highest
order derivative. Since the growth rate of resistive instabilities is expected to
scale as some power of the resistivity, and the resistivity is relatively small (i.e.,
the resistive diffusion time is much longer than the Alfvén time), the bulk of the
plasma is ideal and is almost in equilibrium (γ = 0), and it is governed by Eq. (23).
This is called the “outer equation”. In a small region near the singular surface
r = s, which is a singular point of Eq. (23), both inertia and resistivity must be
included, and the full fourth order equation must be solved. This is called the
“inner equation”. For this purpose, the independent variable is rescaled so that it
runs fron −∞ to +∞. The solution of the inner equation, in the limit x → ±∞,
must be matched to the solution of the outer equations as r → s. In slab geometry,
the outer solution behaves as e−α|x| as |x| → ∞, and the dispersion relation results
from matching the logarithmic derivatives of the inner and outer solutions at r = s
while assuming that ψ, the perturbed flux, is constant in the inner region. The
procedure is similar for the internal kink mode in cylinder, except the limiting
forms for the outer solution that must be matched by the inner solution are given
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by Eqs. (12) and (13), and one can no longer use the “constant-ψ approximation”.
This leads to some complications that do not arise in slab geometry.

For the case of the kink mode in cylindrical geometry, the inner equations are
[11, 12]

d2ξ

dx2
=

x

λ2
d2ψ

dx2
, (43)

and

ψ = −ξx+ ǫ

λ

d2ψ

dx2
, (44)

where x = (r − s)/s, ψ = iB1r/(F
′s2), F ′ = (dq/dr)Bθ/s, λ = γτH , and ǫ =

τH/τR ≡ 1/S is the inverse of the Lundquist number. The last term on the right
hand side of Eq. (44) contains the effects of resistivity. The scaling for which all
terms in these equations are comparable is

ψ

ξ
∼ x ∼ λ ∼ ǫ1/3 . (45)

This is called the “resistive ordering”.
Equations (43) and (44) can be combined into a fourth order equation that has

four solutions. The physically interesting solutions behave as dξ/dx → 1/x2 as
|x| → ∞. This must match to the solution of the ideal outer equations. From Eq.
(12) we have that, as r → s,

lim
r→s

dξs
dr

= s lim
x→0

dξ2
dx

=
ξ0µ0

(F ′sx)2
δWc

2πR
, (46)

or

[

1

ξ0

dξ

dx

]

r→s

= −1

π

λH
x2

. (47)

where

λH ≡ − πµ0

s2F ′2

δWc

2πR
(48)

is related to the expression in Eq. (22 ). Equation (47) is the expression that must
be matched to the behavior of the inner solution as x→ −∞.

In slab geometry the inner solution is even about x = 0. In cylindrical geometry,
the inner solution must be matched to the “top hat” solution in the outer region,
i.e., ξ → ξ0 as x → −∞, and ξ → 0 as x → ∞. This is facilitated by writing
ξ = ξ0/2+ξodd, where ξodd(−x) = −ξodd(x). We then require that the inner solution
satisfy
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x2

2

d

dx
ln ξodd = −λH

π
(49)

for x/λ→ −∞ as ξodd → ξ0/2.
We further introduce the even function [11]

χ(x) = x
dψ

dx
− ψ = λ2

dξ

dx
+ χ∞ , (50)

where χ∞ is a constant. We use these to express ξ and ψ in terms of the new
variable χ. The second equality of Eq. (50) gives immediately

ξ = − 1

λ2

∫ ∞

x
dx′(χ− χ∞) . (51)

The first equality is a differential equation for ψ, dψ/dx−ψ/x = χ/x2, which has
an integrating factor 1/x. Then d/dx(ψ/x) = χ/x2, and integrating from x to ∞
yields the solution

ψ

x
= −

∫ ∞

x

χ(x′)

x′2
dx′ . (52)

The desired expression [11] is found by integrating the right hand side by parts.
The result is

ψ = −χ− x
∫ ∞

x

dχ

dx′
dx′

x′
. (53)

Now comes some hand waving. From Eqs. (43) and (44),

ξ = −ψ
x
− ǫλ

x

d2ξ

dx2
. (54)

Then using Eq. (52),

1

2
ξ0 + ξodd =

∫ ∞

x

dχ

dx′
dx′

x′
+
χ

x
− ǫλ

1

x

d2ξodd
dx2

. (55)

We now take the limit as x → 0. First, ξodd(0) = 0. Then, one could possibly
argue that limx→0(1/x)d

2ξ/dx2 = d3ξodd/dx
3 ∼ O(ǫ) ≪ 1, which can be ignored.

However, I cannot find an argument to ignore limx→0 χ/x, which seems to diverge.
[See Eq. (50).] In any case, there must be some argument to this effect, because
a crucial equation of Ref [11] is

ξ0 ≃ 2
∫ ∞

0

dχ

dx

dx

x
. (56)
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(I am very interested in learning the origin of this equation.) Further. when
x → ∞, from the first of Eq. (50), dψ/dx ≃ χ/x, and from Eq. (44), ψ ≃ −ξx.
Then, as x→ ∞,

dξ

dx
→ −χ∞

x2
. (57)

We can then use Eqs. (56) and (57) in Eq. (49) to yield the condition

χ∞ =
2λH
π

∫ ∞

0

dχ

dx

dx

x
. (58)

The plan is now as follows. Substitute the ansatz of Eq. (50) into Eqs. (43)
and (44). This will yield a second order inhomogeneous differential equation for
χ(x)/χ∞, with parameters λ and ǫ. Solve this equation to give χ(x;λ, ǫ)/χ∞.
Then the integral on the right hand side of Eq. (58) will be a function of λ and
ǫ, multiplied by χ∞, which cancels. Equation (58) is then the dispersion relation;
in principle it can be solved for the growth rate λ in terms of the resistivity ǫ and
the ideal MHD growth rate λH . Now we just have to do it!

The second order differential equation for χ is

ǫλ

(

d2χ

dx2
− 2

x

dχ

dx

)

−
(

x2 + λ2
)

χ = −x2χ∞ . (59)

Introducing x̂ ≡ x/δ, where δ4 = ǫλ, and defining λ̂ = λ/ǫ1/3, we have

d2χ

dx̂2
− 2

x̂

dχ

dx̂
−
(

x̂2 + λ̂3/2
)

χ = −x̂2χ∞ . (60)

Equation (60) can be solved by expanding in Laguerre polynomials and using many
of their mathematical properties[12, Appendix A]. The result is

χ

χ∞

= 1− 2−5/2λ̂3/2
∫ 1

0
dyy(λ̂

3/2−5)/4 (1 + y)1/2 exp

[

− x̂
2

2

(

1 + y

1− y

)]

. (61)

That this is a solution can be verified by direct substitution into Eq. (60).
We now substitute Eq. (61) into the matching condition, Eq. (56). The result

is

1 =
2λH
πδ

∫ ∞

0
dx̂
λ̂3/2

25/2

∫ 1

0
dyF (y)α(y)e−αx̂

2/2 , (62)

where F (y) = y(λ̂
3/2−5)/4(1 + y)1/2, and α(y) = (1 − y)/(1 + y). Exchanging the

order of integration, and noting
∫∞
0 e−αx̂

2/2dx̂ =
√

π/2α, we have
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1 =
λH λ̂

3/2

4δ
√
π

∫ 1

0
dyy(λ̂

3/2−5)/4(1− y)1/2 . (63)

This integral can be evaluated with the help of the Beta function (Ref.[15, Section
6.2]; see also Ref.[16, pp. 467 ff], and Ref.[17, pp. 254 ff]), which is defined as

B(p, q) =
∫ 1

0
dyyp−1(1− y)q−1 =

Γ(p)Γ(q)

Γ(p+ q)
, (64)

where Γ(z) is the Euler gamma function. Here we have p = (λ̂3/2 − 1)/4, q = 3/2,
and Γ(3/2) =

√
π/2. Using all the definitions of the non-dimensional variables,

the final result is the dispersion relation[11, 12]

λ̂ = λ̂H





λ̂9/4

8

Γ
((

λ̂3/2 − 1
)

/4
)

Γ
((

λ̂3/2 + 5
)

/4
)



 , (65)

where λ̂H = λH/ǫ
1/3.

For finite λ̂, marginal ideal stability, λ̂H = 0, requires Γ
((

λ̂3/2 − 1
)

/4
)

→ ∞,

or λ̂3/2 = 1. This corresponds to λ = ǫ1/3, or γτH = S−1/3. This is the resistive
internal kink growth rate. For ǫ → 0, (S → ∞), we have λ̂ ≪ 1. In that case it
is easy to show that the large amplitude expression for the Gamma-functions [15,
6.1.39] yields the expression δWc − iω/ωA = 0 [see Eq. (48)], which is the ideal
kink dispersion relation. We also note that, for 0 < λ̂≪ 1, we have approximately

λ̂ ≃
[

1

λ̂H

Γ(5
4
)

Γ(−1
4
)

]4/5

, (66)

which, since Γ(−1/4) = −π/(4Γ(1/4) sinπ/4) < 0, can be positive even when λ̂H
is negative; the resistive kink can be unstable even when the ideal kink is stable.
This is sometimes called the “reconnecting mode”[12]. We will see in Section 3.2.1
that toroidal effects can stabilize the ideal internal kink mode. Therefore, the
reconnecting mode is a candidate for sawtooth oscillations in a tokamak.

In light of Eq. (22), Eq. (65) can be written as

δWc + 8S−1/3λ̂−5/4Γ((λ̂
3/2 + 5)/4)

Γ((λ̂3/2 − 1)/4)
= 0 , (67)

where some constants have been absorbed into δWc. This is a form of the dispersion
relation that we will see again.
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3.1.4 Extended MHD Effects

In extended MHD, Ohm’s law is written as

E = −V ×B+ ηJ+
1

ne
[J×B−∇pe] , (68)

where pe is the electron pressure. Since V ≃ Vi and J = ne(Vi −Ve), Eq. (68)
can be written as

E = −Ve ×B− 1

ne
∇pe + ηJ , (69)

which is the inertialess electron equation of motion (i.e., with me = 0). Extended
MHD is thus a model in which electrons and ions are treated as separate fluids,
with (in this case) neglect of the electron mass. They introduce the effects of
separate ion and electron drifts. These are sometimes called “kinetic effects”,
although kinetic theory is not involved. We can use the (center of mass) equation
of motion to rewrite Eq. (68) as

E = −V ×B+ ηJ+
mi

e

dV

dt
+

1

ne
∇pi , (70)

where the total pressure is p = pi + pe.
In ideal MHD, the dispersion relation can be written symbolically as ω2 +

γ2MHD = 0, where the time dependence is eiωt, and γMHD is the ideal MHD growth
rate, related to δW as described in Section 3.1.1. In the analysis using extended
MHD, the term dV/dt in Equation (70) introduces a factor of iω that does not
occur in ideal MHD. It is well known that this modifies the dispersion relation
to be of the form ω(ω − ω∗) + γ2MHD = 0, where ω∗ = B × ∇pi/(neB2) is the
ion drift frequency. The frequency ω becomes complex. It is not surprising that
the extended MHD modifications to the resistive internal kink mode appear in a
similar fashion.

Since we expect the growth rate to remain small compared with the Alfvén
frequency, the plasma away from the singular surface remains governed by ideal
MHD and is in quasi-equilibrium. Modifications to the dispersion relation all arise
from the inner layer.

The analysis[12] is similar to that of Section 3.1.3. In dimensionless form, the
inner layer equations are

λ (λ− iλi) = xψ′′ , (71)

ψ = −xξ + ǫ

λ− iλe
ψ′′ . (72)

Here, λ = −iωτH , λe,i = −ω∗e,i, ψ = iBr1/(rdF/dr)s, ǫ = 1/S, prime denotes
differentiation with respect to x = (r − s)/s, and all quantities are evaluated at
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the singular surface r = s. The solutions of these equations must be matched to
the ideal MHD outer solution. The matching condition remains Eq. (56).

Again introducing the ansatz [see Eq. (50)]

χ(x) = xψ′ − ψ = λ (λ− iλi) ξ
′ + χ∞ , (73)

we find [12] that χ satisfies the differential equation

d2χ

dx̂2
− 2

x̂

dχ

dx̂
−
(

x̂2 + Λ3/2
)

χ = −x̂2χ∞ , (74)

where x̂ = x/δ, δ4 = ǫλ(λ− iλi)/(λ− iλe), Λ = [λ̂(λ̂− iλ̂e)(λ̂− iλ̂i)]1/3, λ̂ = λ/ǫ1/3,
and λ̂e,i = λe,i/ǫ

1/3. Equation (74) is identical in form to Eq. (60), and the ensuing
analysis proceeds exactly as in Section 3.1.3. The result is the dispersion relation

[

λ̂
(

λ̂− iλ̂i
)]1/2

=
λ̂H
8
Λ9/4Γ((Λ

3/2 − 1)/4)

Γ((Λ3/2 + 5)/4)
. (75)

Note that when λe,i = 0, Eq. (75) reduces to Eq. (65).

3.1.5 The Ion-kinetic Regime

The extended MHD model of Section 3.1.4 accounts for the effects of finite ion skin
depth ( di/L > 0). (If gyro-viscosity and ion diamagnetic heat flux are included,
lowest order corrections in k⊥ρi are also captured.) It remains a fluid model.
However, for some JET discharges, and for expected ITER parameters, the ion
gyro-radius is expected to be larger than the width of the resistive layer about the
rational surface r = r1 (the subscript referring to them = 1 mode). While the fluid
model (in fact, equilibrium ideal MHD) remains valid in the outer region, the ions
in the inner layer must now be treated with kinetic theory. The ordering of length
scales ρi > δη > de, where ρi = Vthi/Ωci is the ion gyro-radius, δη = s

−1/3
1 S−1/3r1

is the resistive layer width, s1 = r1q
′(r1) is the “shear parameter”, and de = c/ωpe

is the electron inertial skin depth, is called the ion kinetic regime. The width of
the singular layer is now set by the ion gyro-radius.

The analysis of this regime is reported in Refs. [18] and [19]. Within the inner
layer the electrons are treated as a fluid, while the ion dynamics are described
by the Vlasov equation. These papers present the most involved and complex
asymptotic gymnastics that I have ever seen, and I certainly cannot follow it in
any detail. They use a ballooning formalism applied to low-m and -n modes (e.g.,
m = 1, n = 1), which they claim to justify on the on the basis of the thinness of the
inner layer. This allows the use of Fourier (or “Fourier-like”, my quotes) transforms
in the radial direction, and results in a second order differential equation for the
perturbed current density as a function of z, the transform variable conjugate to
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the radial coordinate; z has units of L−1. As usual, the dispersion relation result
from matching the solution of this inner equation to the ideal MHD solution in
the outer region. (The inner solution involves combinations of the ever-popular
confluent hypergeometric function.) For later reference, we give the approximate
dispersion relation in the large ion gyro-radius regime [Eq. (15) of Ref. [19]]:

zAλH =
π

2

(

gz2ρ
µz2A

)1/2

, (76)

where g = 1− iλ∗/λ, λ = −iωτH , λ∗ = −ω∗τH , µ = (1+τ)/(τ+ iλ∗/λ), τ = Te/Ti,
λi = −λ∗(1 + ηi)/τ , ηi = d lnTi/d lnn, z

2
A = 1/[λ(λ− iλi)], z

2
ρ = λ/[τρ2i (λ− iλi)],

and λH is given by Eq. (48). Of course, this is to be solved for the growth rate λ.
[Several remarks are in order. First, the more accurate version of the dispersion
relation (Eq. (11) of Ref. [19]) involves 14 gamma-functions, so Eq. (76) is an
improvement. Second, I suspect the factor of π/2 is a better approximation of 1
than the solution of Eq. (76) is of the actual growth rate. Finally, while Eq. (76)
appears to be relatively simple, I am reminded of Feynman’s caution regarding
simplifying notation [20]: First, write down in a long column all the known laws
of physics; say there are N of them. Then, move everything to the left hand
side, so that only zeros appear on the right. Then define a vector A of length
N that contains all the left hand sides as its elements. The laws of physics are
now expressed in the elegant and compact form A = 0, which is simultaneously
accurate and completely devoid of content. Nonetheless, we will have occasion to
refer back to Eq. (76) in Section 4.2.]

3.1.6 Nonlinear Evolution

The work of RDR (Ref. [5]; see Section 3.1.2, above) showed that the ideal internal
kink mode saturates with a low amplitude. The work of Coppi, et. al., Ref. [11],
suggested that, in the presence of resistivity, the mode may continue to grow to
finite amplitude due to magnetic reconnection. Kadmontsev [6] speculated, but
did not prove, that the reconnection may continue until the magnetic island at the
rational surface expels the original magnetic axis from the plasma, thus rendering
q(0) > 1 and stabilizing the plasma.

Kadomtsev envisioned a sequence of events that begin with q(0) > 1. As the
core of the plasma heats (Ohmically or otherwise) the current density becomes
more peaked on axis, driving q(0) lower, eventually becoming less that unity. This
occurs on a relatively slow time scale governed by the heating rate. Then the
q = 1 singular surface appears in the plasma, and the resistive internal kink is
destabilized. As the nonlinear evolution expels the original magnetic axis, the
q = 1 singular surface disappears, and q(0) is restored to greater than unity. This
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process occurs on a faster time scale governed by the dynamics of the nonlinear
resistive kink. The process can then repeat, leading to a series of relaxation oscil-
lations with slow “rise time” and fast “crash time”, as observed during sawtooth
oscillations in experiments.

Obtaining the full nonlinear evolution of the internal kink mode in a cylinder
requires numerical solution of the resistive (or extended) MHD equations. For the
resistive equations, this was first reported by Waddell, et. al. [21], and Sykes and
Wesson [22]. Of necessity, these calculations were limited to relatively low S (high
resistivity). (No value of S is cited by Sykes and Wesson [22], but the grid was
reported as 14×14×10! It is unfortunate that the online archive of Nuclear Fusion
do not go back as far as 1976, so I do not have access to Ref. [21].) The time evolu-
tion of the helical flux surfaces during the nonlinear evolution of the internal kink
mode, taken from Ref. [22], is shown in Fig. 4. Note the expulsion of the original
magnetic axis by the magnetic island, confirming Kadomtsev’s intuitive picture
[6]. The calculation even produced sawtooth-like relaxation oscillations, as shown
in Fig. 5. This demonstrates the potential power of even coarse computational
models to reveal important nonlinear dynamics.

Figure 4: Evolution of the helical flux surfaces during the nonlinear evolution of
the resistive internal kink mode [22].
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These results, even at relatively large S, have been confirmed by many nu-
merical simulations over the ensuing decades. The problem with these results is
that the reconnection rate (a measure of the time for the sawtooth crash phase) is
longer that is observed in experiments.

In the higher temperature, nearly collisionless regimes, as may be expected in
modern tokamaks, the extended MHD model of Section 3.1.4 must be employed. A
“reduced” version of extended MHD is contained in the so-called four-field model
[23], which is in the spirit of reduced MHD but contains FLR and two-fluid (drift)
effects. Aydemir [24] applied this model to the nonlinear evolution of the m = 1
mode in a cylinder. For S ≃ 106, the internal kink mode was found to have an
accelerated growth rate in the nonlinear regime that was large enough to possibly
account for the experimentally observed fast sawtooth crash time.

The evolution of the helical flux surfaces for this case, taken from Ref. [24], is
shown in Fig. 6. The fast reconnection is due to two-fluid effects. The decoupling
of the ions and electrons in the inner layer leads to the formation of a Y-point
instead of an X-point, as is usual in resistive MHD. This allows the fluid to evacuate
the reconnection region more efficiently, resulting in an enhanced reconnection rate.
This is illustrated in Fig. 7 [24], which shows the evolution from an X-point to a
Y-point later in the nonlinear evolution.

Figure 5: Sawtooth-like relaxation oscillations in the on-axis values of the pressure
(top) and q (bottom) during the nonlinear evolution of the internal kink mode [22].
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Figure 6: Evolution of the helical flux surfaces during the nonlinear evolution
of the resistive internal kink mode using the “four-field model” (extended MHD)
[23, 24].
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Figure 7: Evolution of the toroidal current density during the nonlinear evolution
of the resistive internal kink mode using the “four-field model” (extended MHD)
[23, 24].
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3.2 Toroidal Geometry

Linear theory and nonlinear numerical simulation in cylindrical geometry indicate
that the resistive internal kink, suitably modified with two-fluid and FLR effects
as might occur in a high temperature tokamak, remains a viable candidate for
sawtooth oscillations. However, it is well known that the toroidal, as opposed to
cylindrical, geometry of a tokamak plays an important role in determining the
plasma dynamics. Two effects are primary. The first is that the magnetic well
induced by the toroidal geometry can cause the almost collisionless particles to be
become trapped on the outboard side of the torus. This leads to non-Maxwellian
velocity distributions and modifications of the moment equations that describe
the fluid plasma. The second is that the poloidal mode number m is no longer
a good “quantum number”; the toroidal geometry induces a coupling between all
the m-numbers for a given n. Since the m = 2, n = 1 ideal mode is stable in a
straight system [10, p. 420], one expects the overall effect to be stabilizing for the
m = 1 internal kink mode.

We will deal with both of these effects in the following sections. We take the
second effect first.

3.2.1 Linear Ideal MHD

The analytic modifications to the linear ideal MHD stability analysis of the internal
kink (the m = 1, n = 1 mode) in circular cross section toroidal geometry were
reported by Bussac, et al. [25], and summarized by Freidberg [10, pp. 419ff]. They
recognized that, for low toroidal mode n, the toroidal correction to the cylindrical
potential energy, Eq. (10), due to poloidal mode coupling is O(ǫ2) (here ǫ = s/R
is the aspect ratio of the singular surface), which is the the same order as δWc

itself. In particular, after “a rather involved calculation that is too complicated to
reproduce here” [10, p. 419], they found the ideal MHD δW in toroidal geometry
to be

δW

W0
=
(

1− 1

n2

)

δW̃c +
1

n2
δW̃T , (77)

where δW̃c is the normalized cylindrical δW (i.e., the integral in Eq. (10)), δW̃T

is the toroidal correction, and W0 contains all the normalization constants. When
n → ∞, the cylindrical results apply. However, the stability properties of the
n = 1 internal kink mode are strongly affected.

The toroidal correction δW̃T is in general a complicated expression [25]. How-
ever, for the case of a parabolic current profile, with |q0 − 1| ≪ 1 and q0 < 1, one
finds
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δŴT ∼ 3n2s4

R2
0

(1− q0)
(

13

144
− β2

p

)

, (78)

where

βp = − R2
0

n2s2

∫ s

0
r2β ′dr , (79)

is the “poloidal beta” inside the singular surface, and β ′ = 2µ0r
2p′/(R2

0q
2B2

θ ) is the
normalized pressure gradient [10, p. 413]. Note that, when n = 1, the cylindrical
contribution to δW vanishes (see Eq. (77)), and stability is given by Eq. (78).
Therefore, in a torus (of circular cross section), the internal kink mode is ideal
MHD stable in the limit βp → 0. Instability requires βp >

√
13/12 ∼ 0.3. Thus,

the statement is often made that, in a torus, the internal kink is pressure driven
rather than current driven.

Of course, the preceding analysis has been based on circular cross section
toroidal geometry, and Eqs. (78) and (79) were derived for a parabolic current
profile. In the latter case there is strong shear, and therefore strong coupling be-
tween the m = 1 and m = 2 contributions, leading to stabilization. We might
expect that weaker shear might lead to weaker coupling, and therefore weaker
stabilization. This and other generalizations of the analysis require a numerical
solution of the ideal equations. These calculations [26, 27, 28, 29] confirm the
general trend toward stabilization in toroidal geometry. However, for profiles with
very low shear, the stabilization disappears and q0 > 1 is required regardless of βp
[10, p. 420].

The toroidal stabilization of the ideal internal kink was anticipated in Section
3.1.3, Eq. (66), where it was shown that the resistive kink can be unstable even
when the ideal kink is stable. This is the case in toroidal gemoetry. However,
note from Eq. (66) that the magnitude of resistive growth rate can be a relatively
strong function of the ideal growth rate (even if the latter is negative).

3.2.2 Trapped Particles

The orbits of individual charged particles can be quite complicated a toroidal
plasma. Of course, their most rapid motion consists of spiraling about the magnetic
field. This gyro-motion can be “averaged out” of the equations of motion, and the
resulting “gyro-averaged” dynamical model refers to the motion of the particle’s
“guiding center”. The motion of these centers is governed by a set of Hamiltonian
equations, which, in addition to the usual constants of the motion, admit several
further quantities that are “almost” conserved if the conditions seen by the moving
particle vary only slowly. These are called adiabatic invariants [30, 31, 32]. These
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play an important role in determining the motion of the guiding centers in a
toroidal plasma.

In a torus, the equilibrium magnetic field strength is a function of the major ra-
dius R, with the field larger on the inboard side than the outboard side. Because of
the adiabatic invariants, if the collision frequency is sufficiently low, some charged
particles can become trapped in this magnetic well, and “bounce” between the
mirror points of the magnetic field with frequency ωb. The trapping of particles
depends primarily on their kinetic energy parallel to the magnetic field; particles
with lower parallel energy can become trapped. In addition to the bounce motion,
the guiding centers also experience several slow “drift” motions that cause them
to move off a given magnetic field line. One of these, given in the large aspect
ratio approximation as [30, p. 131]

vd = −
v2 + v2‖
2ΩφR

ẑ , (80)

where Ωφ = ZeBφ/mi is the ion cyclotron frequency, is in the vertical direction
and causes the orbits of the trapped particles to trace out banana-like trajectories
when projected on the poloidal plane; this region of parameter space is called the
“banana regime”. Another drift effect causes the banana orbits not to close exactly
upon themselves, but rather drift slowly in the toroidal direction. Again at large
aspect ratio, this precessional frequency ωp is given approximately by [30, p. 145]

ωpτb ≃
qǫ1/2ρθ
r

≪ 1, (81)

where ǫ = r/R is the inverse aspect ratio, ρθ = Vthi/Ωθ is the ion Larmor radius
calculated with the poloidal field Bθ, and τb ≡ 1/ωb is the bounce frequency of the
banana orbit [30, p. 132]. Of course, all of these concepts have a rigorous basis in
Hamiltonian dynamics [30, 31, 32].

We (I) surmise that the drift given by Eq. (80) does not survive so-called
“bounce averaging”, i.e., averaging over time long compared with the bounce time.
However, the drift given by Eq. (81) represent a secular increase in the toroidal
location of the center of the banana orbit, i.e., φ(t) = φ0 + ωp(t − t0), so that it
survives bounce averaging. It is this drift, sometimes called just the “magnetic
drift”, that is important in the theory of trapped particle modification of the
internal kink mode.

The presence of these trapped particles alters the plasma distribution function,
and hence the specific form of the fluid equations that determine the dynamics of
the bulk of the plasma (specifically, the pressure tensor of the fluid equations is
modified). Global plasma stability can be affected.

For our purposes, trapped particles can be classified as “energetic” or “ther-
mal”. Energetic trapped particles have a distribution function that is distinct from
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the bulk of the plasma. They may arise from the injection of a mono-energetic
beam of ions, or (optimistically) as α-particles resulting from fusion reactions.
Their distribution function is strongly non-Maxwellian, and are sometimes consid-
ered as a distinct plasma “species” (electrons, ions, energetic ions). In contrast,
thermal trapped particles represent the high energy tail of the bulk (Maxwellian)
plasma. (Technically speaking, once these particles become trapped they no longer
have a Maxwellian distribution. So, what is really meant is the fraction of the par-
ticles making up the ”core” fluid that become trapped. (∼ ǫ1/2)) In Section 3.2.3
we will deal with the effects of thermal trapped particles on MHD stability. Effects
due to energetic trapped particles will be discussed Section 3.2.4 and following.

3.2.3 Thermal Trapped Particles

When the plasma is collisional (i.e., the collision frequency is the fastest “micro-
scopic” frequency), the distribution function becomes a “local” Maxwellian, i.e.,
a Gaussian distribution with a different characteristic temperature, density, and
velocity at each point is space. In this case, MHD theory is well justified and the
well-known energy principle [33, 10] can be applied to determine stability. (We
remark that MHD is often useful even when this assumption is not valid [10].)
However, the theory should be revisited when the distribution function deviates
from Maxwellian, for example in the case of thermal trapped particles.

This was first done in 1958 by Kruskal and Oberman [34]. They derived an
energy principle for a plasma with a general distribution function, and established
several theorems relating to necessary and sufficient conditions for stability. They
derived an expression for the potential energy δW = δWD + I (in their notation),
where δWD is the hydrodynamic potential energy for the case of an anisotropic
pressure [33] and I is a complicated expression containing velocity space integrals
of the distribution function. They showed that I is positive, so that δW ≤ δWD,
i.e., if the plasma is stable with the particle (kinetic) theory, it is stable under
(anisotropic) fluid theory. However, for the case of isotropic pressure, δW ≥ δWH

(where δWH is the “hydrodynamic” potential energy), i.e., hydrodynamic stability
implies kinetic stability for isotropic pressure.

The paper is typical of its era: terse, complicated, with just little enough infor-
mation to be understandable only by experts who already know the result. (There
is also an interesting footnote and acknowledgement suggesting that Rosenbluth
may have arrived at the same result independently.) For our purposes, the paper it-
self is almost worthless, other than to recognize that trapped thermal particles can
alter the potential energy, and hence the picture of MHD stability. In later work
[35, 36], their contribution is summarized as δW = δWMHD+ δWKO, where δWKO

(for “Kruskal-Oberman”) represents the contribution from the thermal trapped
particles, i.e., the complicated integral over velocity space. Ref. [36] gives the

35



terse expression

δŴKO = 0.6
cpǫ

1/2
1 βi0
s1

, (82)

where δŴ is a normalized potential energy, cp is an integral depending on the

pressure profile, ǫ1 is the aspect ratio at the q = 1 surface (ǫ
1/2
1 is the fraction

of trapped particles within this surface), βi0 is the peak ion toroidal beta, and s1
is the “shear parameter” at the q = 1 surface: s1 = r1q

′(r1). The origin of this
expression, and its relationship to the contents of Ref. [34], elude me. (According
to Ref [46], it is “... obtained analytically from integrating the trapped thermal
ion distribution over the zeroth-order model displacement obtained by Bussac,
et al., in the limit ǫ → 0.”) With regard to stability, “ ... the trapped thermal
particles contribute to both δWMHD and δWtrapped” (δWKO?). ”Their contribution
to δWMHD is destabilizing but is nearly cancelled by their contribution to δWtrapped.
The net result appears to be stabilizing since only the circulating particles, which
experience predominantly favorable curvature contribute to the potential energy.”
[35] If you say so!

3.2.4 Energetic Trapped Particles: Ideal Fishbones

The early theoretical work on the effect of trapped energetic particles on plasma
stability indicated that they were stabilizing for ballooning modes, but that they
might also be associated with recently observed “fishbones” oscillations [37]. Large
scale sawtooth-like oscillations were reported on the PDX experiment, with growth
rate consistent with the internal kink mode. Additional high frequency oscillations
were associated with the sawteeth during neutral beam injection; see Fig. 8 [38].
The real frequency of these oscillations was approximately the precession rate of
the injected particles [see Eq. (81)]. The magnetic signals were primarily m =
1, n = 1, with a significant m = 2 component. These “fishbone” oscillations were
accompanied by losses of energetic beam particles, which degraded the efficiency
of neutral beam heating. It was speculated [38] that these losses “could have
serious consequence for neutral beam and other auxiliary heating methods” in
fusion reactors. This unstable activity is a result of a resonant interaction between
some aspect of the orbital motion (likely the precessional motion) of the energetic
particles of the beam and the MHD properties of the bulk plasma.

The velocity distribution function f(v) (or, equivalently, F (E), where E =
miv

2/2 is the particle energy) for the bulk plasma is locally a Maxwellian, i.e.,
a Gaussian distribution characterized at each point in space by local values of
temperature, density, and mean flow velocity. In contrast, energetic particles
generally begin their lives with a single value of energy E0, so that, when they
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Figure 8: “Fishbone” oscillations associated with sawteeth as measured in the
PDX tokamak [38].
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first appear, their distribution function is f(E; t = 0) ≃ δ(E − E0). (The initial
energy E0 may be the energy of the beam ions, or, in the case of fusion from
D-T reactions, α-particles with E0 = 3.5 MeV.) In any case, these ions are gen-
erally faster than the background (bulk) Maxwellian ions, but slower than the
electrons, i.e., Vthi ≪ vE ≪ Vthe, where Vths is the thermal speed for species s,

and vE =
√

2E0/mE is the initial velocity of the energetic ions (see Ref. [30, pp.

35ff] for a thorough discussion). They subsequently undergo collisions with the
background ions and electrons, and their distribution function is modified.

For the parameter regime just described, the initial “slowing down” of the en-
ergetic species is due to collisions with the electrons. As they lose energy and
get slower, they eventually begin to interact with the bulk ions. This occurs
at a critical speed vC corresponding to an energy of approximately mEv

2
C/2 ≃

[mE/(m
2/3
i m1/3

e )]Te, where Te is the electron temperature. For α-particles, this
energy is approximately 50 Te. Above vC , the energetic ions are slowed by the
electrons, but are not significantly deflected (like a bowling ball moving through
ping pong balls). Below vC , collisions with ions cause deflection to become com-
parable to drag (as when the bowling ball begins to interact with other bowling
balls). This information can be used to define a collision operator for this process
[30]. If energetic particles are born isotropically with velocity vE at a rate S per
unit volume, the resulting kinetic equation for the energetic particle distribution
function is

∂fE
∂t

=
1

v2τS

∂

∂v

[(

v3 + v3C
)

fE(v)
]

+
Sδ(v − vE)

4πv2E
, (83)

where τS is the “slowing-down time”, defined in Ref. [30, p. 40]. In steady state,
the solution is

fE(v) = fS ≡ SτS
4π(v3 + v3C)

, (84)

for v < vE , and 0 for v > vE . Equation (84) is called (creatively!) the “slowing-
down distribution”.

The fluid equations for each species s in the plasma are derived from successive
velocity moments of the species’ plasma kinetic equation dfs/dt = C(f) [30, 32],
where C contains the effects of collisions. The MHD and extended MHD equations
are appropriate combinations of these moment equations [32]. It is not surprising,
then, that the presence of a non-Maxwellian species, such as energetic ions, can
alter the form of the fluid equations. The calculation of these modifications is
daunting in general, and is no less so in the case of a single energetic (or hot)
ion species [39]; the calculation is extremely complicated and only the results are
given here.
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The modification to the fluid equations appears additively in the form the
divergence of a pressure tensor in the equation of motion. For species s, the
pressure tensor is defined as

Ps ≡
∫

d3vfsms (v −Vs) (v−Vs) , (85)

where Vs is the mean (fluid) velocity, and fs the distribution function, of species s.
For our case, s → h, the hot (energetic) ion species. The linearized perturbation
of the hot ion pressure tensor can be written in terms of the displacement as [39]

δPh = −ξ · ∇ ·
[

P⊥I+
(

P‖ − P⊥

)

b̂b̂
]

h
+ δP̂⊥I+

(

δP̂‖ − δP̂⊥

)

b̂b̂ , (86)

where P⊥ and P‖ refer to the (CGL) perpendicular and parallel (to B) pressures,

and b̂ is a unit vector in the direction of B. The perturbed pressures are to be
calculated from moments of the perturbed distribution function for the hot particle
species.

The plasma displacement ξ will also affect the evolution of the hot particle
distribution function. The calculation of P‖ and P⊥ for the hot particle species
requires solving for the perturbed distribution function δfh from the linearized
kinetic equation. Since the unperturbed orbits of the energetic particles are the
mathematical characteristics of the collisionless linearized kinetic equation, the
parameters that characterize these orbits appear in the solution. The analytic
solution is further enabled by again assuming large aspect ratio, i.e, ǫ = a/R≪ 1,
along with the ordering βpc ∼ O(1), βph ∼ O(ǫ), Tc/Th ∼ O(ǫ2), and nh/nc ∼
O(ǫ3), where the subscripts c and h stand for core (bulk) and hot (energetic)
species, respectively. Additionally, for PDX, |ω/ωA| ∼ |ω̄dh/ωA| ∼ O(ǫ2), where
ω ∼ γ is the internal kink growth rate, ωA is the Alfvén frequency, ω̄dh is the hot
particle precession frequency [see Eq. (81)], and ωd ∼ vd/a is the “magnetic drift
frequency” [see Eq. 80]. Under these assumptions the gyro-kinetic approximation
can be used. The result is (in CGS units) [39]

δfh =
e

m

[

δφ
∂

∂E
− µ

ωc

δB‖

c

∂

∂µ

]

f0h + δHh , (87)

where f0h is the equilibrium hot particle distribution function, and δHh satisfies

[

v‖
∂

∂l
− i (ω − ωdh)

]

δHh = i
e

m
Qδψ , (88)

with E = v2/2, µ = v2⊥/2B, ωc is the cyclotron frequency, ∂/∂l ≡ b̂ · ∇, δψ =
δφ − v‖δA‖/c + v2⊥δB‖/2ωcc, Q ≡ (ω∂/∂E + ω̂∗h) f0h, ω̂∗h ≡ −(i/ωc)b̂ ×∇ ln f0h,
ωdh ≡ −ivd · ∇, and vd is the “magnetic drift velocity” [see Eq. (80)]. Note
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that Q, ω̂∗h, and ωdh are differential operators, so that Eqs. (87) and (88) are
quite complicated. The perturbed scalar and vector potentials are related to the
displaement ξ by Ohm’s law, c∇δφ = −iωξ ×B, and the Lorentz gauge condition
ωδA‖/c = −i∂δφ/∂l.

As noted, Eqs. (87) and (88) are formidable. However, “when one notes
that the frequencies are much smaller than the hot particle transit and bounce
frequencies, Eq. (88) can be solved readily for both trapped (t) and untrapped
(u) particles” [39]. The resulting expressions can be used to evaluate the trapped
particle contributions to the perturbed pressure tensor. The result is Eq. (86),
with

δP̂⊥ = 27/2πmhB
∫ B−1

B−1
max

dα (1− αB)1/2
∫ ∞

0
dE

E5/2Q

ω − ω̄dh
J̄

αB

2(1− αB)
, (89)

and

δP̂‖ = 27/2πmhB
∫ B−1

B−1
max

dα (1− αB)1/2
∫ ∞

0
dE

E5/2Q

ω − ω̄dh
J̄ , (90)

where α = µ/E = v2‖/(v
2B),

J =
1

2
αB∇ · ξ⊥ −

(

1− 3

2
αB

)

ξ⊥ · κ , (91)

κ is the field line curvature, and Ā ≡ (
∮

Adl/|v‖|)/(
∮

dl/|v‖|) denotes the bounce
average. The integral over α is an integral over the region accessible by the en-
ergetic trapped particles, 1/Bmax is the “turning point” (or mirror point) of the
bounce orbit. Note that Eqs. (89) and (90) contain resonant denominators, so we
may expect some “activity” associated with ω ∼ ω̄dh, the bounce average toroidal
precession frequency of the energetic trapped particles.

Sorting through all of the above complexity, it can be seen that the resulting
expression for ∇ · P is linearly proportional to the displacement ξ, so that the
presence of energetic particles results in an additive term to the ideal MHD dis-
persion relation. Dotting this with ξ∗ and integrating yields the energy principle
δWMHD+ δWk+ δI = 0, where δI is the inertial term (only important in the inner
singular layer), and the energetic particle contribution can be written as [39]

δWk = −29/2π3mh

∫

RBrdr
∫ B−1

B−1
max

dα
∫ ∞

0
dEE5/2KbJ̄

∗ Q

ω − ω̄dh
J̄ , (92)

where (*) denotes the complex conjugate, Kb ≡
∮

(dθ/2π)(1−αB)−1/2, and δWMHD

is the toroidally modified MHD potential energy; see Eq. (77). (The ξ-dependence
enters through J .) We note the possibilities that the presence of energetic particles
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may destabilize (δW < 0) a system that is ideal MHD stable (δWMHD > 0, δWk <
0), or vice versa.

For PDX parameters, the dispersion relation for the m = 1, n = 1 internal
kink mode can be written approximately as [39]

−i ω
ω̃A

+ δŴf + δŴk = 0 , (93)

where ω̃A = VA/(3
1/2Rsq′s), δŴf is given approximately by Eq. (78), and

δWk

2πR
≃ π2mh2

3/2 |ξr0|2
R2

∫ s

0
rdr

∫ 1+r/R

1−r/R
d(αB)

∫ ∞

0
dEE5/2K

2
2

Kb

[

Q

ω̄dh − ω

]

1,1

≡ |ξr0|2
(

sB0

2R

)2

δŴk (94)

whereK2 =
∮

(dθ/2π) cos θ(1−αB)−1/2, and B ≃ B0(1−r cos θ/R). “By substitut-
ing into δŴk a monoenergetic, single magnetic moment distribution F0h we find a
thresholdless [sic] unstable solution with ωr ≃ ω̄dh and ωi increasing with 〈βht〉 (the
average trapped particle β within the q = 1 surface), with ω∗h/ω̂dh > 0.” [39]. The
primary physics is identified as “coupling between a negative-energy/dissipation
trapped-particle precession mode and a core-plasma MHD mode, which is posi-
tively dissipated because of the ωr ∼ k‖VA resonance” [39].

So, as I read it so far, with PDX parameters and a “delta-function” hot particle
distribution function, there is always an unstable mode (it is “thresholdless”). The
mode has a real frequency ωr that is on the order of the bounce averaged hot
particle “magnetic drift frequency” ω̄dh ∼ vd/r [see Eq. (80), and the discussion
following Eq. (88); it is clear from later context that ωdh refers to the precessional
drift frequency]. This real frequency is also ∼ k‖VA, so that there is strong coupling
to the MHD branch, which gives it an “internal-kink-like” character.

For a slowing-down distribution f0h = cE−3/2δ(α − α0) for E < Em, see Eq.
(84), with a single magnetic moment α0, the dispersion relation is

−iΩ ω̄dm
ω̃A

+ δŴfc + 〈βhtÎ0〉Ω ln
(

1− 1

Ω

)

= 0 , (95)

where Ω = ω/ω̄dm, 〈y〉 ≡ (2/s2)
∫ s
0 yrdr is an average inside the singular surface,

δŴfc corresponds to the contribution to δŴf from the core plasma inside the

singular surface, the subscript m refers to evaluation at E = Em, and Î0 is a
complicated expression involving complete elliptic integrals. This equation can be
solved for (complex) Ω with 〈βhtÎ0〉 and δŴfc as parameters. A “simple analysis”
[39] of Eq. (95) reveals that the internal kink mode is destabilized if βht exceeds
a certain value, even if δŴfc > 0, i.e., if the discharge is ideal MHD stable. The
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critical value is 〈βhtÎ0〉crit = ω̄dm/πω̄A. The growth rate is peaked near δŴfc ≃ 0,

and drops sharply as δŴfc increases (becomes more MHD stable). “This may
account for the predominance of fishbones near marginal [MHD] stability” [39].
With some further approximations, the growth rate can be written approximately
as [39]

ωi ≃
π2

4
ω̃A

[

〈βhtÎ0〉 − 〈βhtÎ0〉crit
]

. (96)

The analysis of Chen, et al. [39] is terse and complicated. I have not been
able to follow it step-by-step, as in (for the most part) MHD. I have only tried to
parrot the important points, the most important of which is that the interaction
between energetic trapped particles and MHD can lead to significant modifications
of the stability properties of a toroidal plasma (in particular, a tokamak). For the
present parameters (i.e., PDX) the result is destabilizing; ideally stable plasmas
become unstable, and new overstable modes (fishbones) appear near the marginal
ideal MHD point. We will see that, in different parameter regimes, the result can
be stabilization of otherwise unstable MHD configurations.

As an interesting aside, the form of Eq. (96) suggests a simple low-dimensional
non-linear model that reproduces many of the characteristics of fishbones [39].
Equation (96) suggests that the amplitude of the magnetic perturbation of the
mode satisfies an equation of the form

dA

dt
= AΓ (βh − βcrit) , (97)

with Γ = ω̃A(π
2/4)〈Î0〉, and βh is the hot particle β withn the q = 1 surface.

We expect βh to change due to energetic particle loss across the q = 1 surface,
i.e., beam loss induced by the m = 1, n = 1 perturbation. If one assumes that
this loss occurs on a time scale much shorter than the beam deposition time, and
that the rate of particle loss is approximately constant until a significant faction
of the particles have been lost, then we can surmise that βh may be governed by
an equation of the form

dβh
dt

= D −AZβmaxθ (βh − βmin) , (98)

where D is the net deposition rate of trapped particles within the q = 1 surface,
Z is a measure of the particle loss rate, and θ(x) is a Heaviside function that
introduces the nonlinearity into the model. (Chen, et. al. [39] note that m =
2 perturbations, which arise from the toroidal coupling, extend to the plasma
boundary, and are observed in the experiment, are necessary for complete loss
of the beam particles.) The real frequency of the mode is given by ωr ≃ ω̄dh;
see the discussion in the paragraphs following Eq. (94). (I remark that, in their
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results, Ref. [39] continually refers to ω̄dh as the “toroidal precession frequency”,
whereas in their preliminary discussion this quantity is called the “magnetic drift
frequency”.)

The simultaneous solution of Eqs. (97) and (98) with ωr = ω̄dh is shown in Fig.
9 for parameters similar to PDX. Note the similarity to the observed fishbones,
shown in Fig. 8. This is quite a synthesis!

3.2.5 Energetic Trapped Particles: Resistive Effects on Fishbones

The effects of resistivity can be included by adding the hot particle contribution,
δŴk, to the resistive dispersion relation, Eq. (67), and replacing δWMHD with
its toroidal version. This was first done by Biglari and Chen [40]. The resulting
dispersion relation can be written schematically as

δŴc + 〈 ω

ω̄dh − ω

ω̂∗h

ω̂dh
βht〉 = −8S−1/3Ω−5/4

Γ
[(

Ω3/2 + 5
)

/4
]

Γ [(Ω3/2 − 1) /4]
, (99)

where δŴc is the “normalized version of the usual core plasma ideal MHD potential
energy” [40], Ω = −iS−1/3ω/ωA, and 〈...〉 denotes velocity space average over the
trapped region. Ref. [40] is clear and unambiguous that ω̄dh is the “energy depen-
dent, bounce-averaged precessional drift frequency”; modes “become destabilized
when the wave structure starts to resonate with the precessional drift of the hot
particle banana centers (ω ≃ ωdh)” [40]. A detailed calculation [40] shows that, in
the presence of resistivity, the value critical of βht for the onset of fishbones is modi-
fied to 〈βhtI0〉resistivecrit ∼ (ωr/|ω̄dm|)9/4〈βhtI0〉idealcrit , where 〈βhtÎ0〉idealcrit = ω̄dm/πω̄A [see

Figure 9: Fishbone oscillations from the solution of Eqs. (97) and (98) for PDX
parameters.[39].
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discussion following Eq. (96)]. This is valid for ω̄dm/ωR < 1 (here ωR = S−1/3ωA
is the “resistive interchange frequency”). Above this value the ideal results hold.
The dependence of the critical β on the precessional frequency is shown in Fig. 10
[40].

The primary physical conclusion is that “the resistive correction to the ideal
dispersion relation affects the growth rate only as an effective δŴ and this contri-
bution is a stabilizing one. Physically, the instability mechanism has the character
of a negative-energy/dissipation trapped particle precession mode in the ideal re-
gion which becomes positively dissipated in the inertial layer. The inclusion of
resistivity acts to enhance this sink mechanism so that it becomes harder to drive
the instability” [40]. In this case, resistivity is stabilizing. Further, for JET pa-
rameters ω̄dm/ωR ∼ 10−2 ≪ 1, so the ideal theory would indicate that JET should
be “virulently unstable” [40] to fishbones (see Fig. 10). However, because of resis-
tivity, the threshold for the onset of fishbones “is actually raised by dissipation to
such an extent that it becomes prohibitive for these ‘resistive fishbones’ to assert
themselves” [40].

3.2.6 Energetic Trapped Particles: Sawteeth

The stabilization of the fishbones at high-S (high temperature and strong mag-
netic field) was encouraging, and the observation of long sawtooth-free periods

Figure 10: Critical hot particle β for the onset of fishbones using resistive theory
[40].
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on JET [41] during minority ion heating was suggestive of a stabilization mech-
anism for the resistive internal kink mode. This was first investigated by White,
Rutherford, Colestock and Bussac [42], who found that ”the presence of a high-
energy trapped particle population introduces a stabilization of the sawtooth in a
tokamak”. However, they cautioned that, while “the stabilization of the sawtooth
mode in low-β discharges is encouraging, at higher β the same ... population should
destabilize the fishbone branch ... [which] should then be expected to limit the
trapped-particle population to a value too low to provide sawtooth stabilization”
[42].

Ref. [42] presents both numerical and analytic results. The numerical results
use δWk of Ref. [39] and the extended MHD inner layer modifications as shown
in Eq. ( 75), while the analytic results neglect these “ω∗” effects, as “they have
the effect of decreasing the growth rate and giving the mode a real frequency;
but they complicate the algebra, and the qualitative behavior of the solution can
be understood without them” [42]. So, while the analytic results include toroidal
ideal MHD, resistive inner layer physics, and energetic trapped particle physics,
they ignore 2-fluid effects. We will only discuss the analytic results here.

Neglecting 2-fluid effects, the dispersion relation is [42]

δWc + δWk + 8S−1/3Ω−5/4
Γ
[(

Ω3/2 + 5
)

/4
]

Γ [(Ω3/2 − 1) /4]
= 0 , (100)

where, as usual, Ω = −iω/ωR, ωR = S−1/3ωA, and ωA = VA/
√
3Rsq′, and all

expressions are evaluated at the singular surface r = s where q(s) = 1. The
energetic particle contribution is expressed as

δWk =
23/2

B2
mπ2





∫

d(αB)
∫ dEE5/2K2

2

(

ω ∂
∂E

+ ω̂∗

)

F0h

Kb (ωd − ω)



 , (101)

where, again as before, [y] ≡ (2
∫ s
0 yrdr)/s

2, α = v2⊥/v
2, K2 and Kb are “elliptic

integrals arising from bounce averaging”, and ω̂∗ is “a differential operator associ-
ated with the drift frequency” [42]. The dependence only on the region inside the
singular surface is because of the use of the cylindrical internal kink trial function,
Eq. (9), which vanishes for r > s. In a torus, of course, there will be higher-m
components that will introduce dependence on the entire plasma radius.

We are interested in the hot particle effects on the resitive kink mode. There-
fore, in light of the discussion following Eq. (65), we set δWc = 0. Specific stability
predictions depend on the choice of the hot particle equilibrium distribution func-
tion, F0h. For the case of the slowing-down distribution [see Eq. (84)]

F0h(E, µ) = n(r)E−3/2δ(µ/E − α0) , E < Em , (102)
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where E is the energy , µ is the magnetic moment, and dn/dr ∼ 1/ǫ, one finds
[42]

δWk = i
βh
ǫ
ΩA ln

(

1 +
i

AΩ

)

, (103)

[see Eq. (95)] where βh is the trapped hot-particle β, and A = ωR/ωdm, the ratio
of the resistive growth rate to the maximum toroidal precession frequency, which
is given (for deeply trapped particles) by (approximately)

ωdm =
Emq

mrRωc
, (104)

where ωc is the cyclotron frequency of the energetic ions. The dispersion relation
for the resistive internal kink is therefore [42]

8
Γ
[(

Ω3/2 + 5
)

/4
]

Γ [(Ω3/2 − 1) /4]
+ i

βh
ǫ
S1/3Ω9/4A ln

(

1 +
i

AΩ

)

= 0 . (105)

According to Eq. (105), trapped particles only become important when (βh/ǫ)S
1/3A =

(βh/ǫ)ωA/ωdm > 1 (this statement is not entirely clear to me), independent of S.
This is within a factor of π of the fishbone threshold [see the discussion follow-
ing Eq. (95)]. Note that (using Eq. (104) with E = nT , and recalling that ωA
refers to the background plasma and not the hot particles) this quantity is pro-
portional to the hot trapped particle density nh and magnitude of the charge, and
is independent of its mass and energy.

Two limits are of interest. The first occurs for small βhAS
1/3, which cor-

responds to the onset at small βh. This suggests expanding Eq. (105) about
Ω = 1, which is the solution for βh = 0. Using Γ(3/2) =

√
π/2 [15, 6.1.9] and

1/Γ(3δ/8) ≃ 3δ/8, with δ ≪ 1 [15, 6.1.3], we find

Ω ≃ 1− 2iA
βh
ǫ

S1/3

3
√
π
ln
(

1 +
i

A

)

. (106)

For very energetic particles (consistent with the initial assumption that Th/Tc ∼
1/ǫ2), A≪ 1, ln(1+ i/A) ≃ iπ/2− lnA, so that the imaginary part of ω increases
and the growth rate increases. The effect becomes more pronounced for A ≃ 1,
i.e., when the precession of the energetic particles resonates with the resistive
frequency ωR [42]. Therefore, at small βh (really βhωA/ωdm) energetic particles
become destabilizing to the resistive internal kink.

The second limit is (not surprisingly!) βhS
1/3A ≫ 1. In that case there are

two roots: Ω → ∞ and Ω → 0. The first root yields a mode that is “strongly
stabilized” [42]. The second root is given asymptotically as Ω = (βh/ǫ)S

1/3. “As
long as 〈ωd〉 > ωR,” (brackets undefined) “the first root ... is the tearing-mode root,
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and [the second] describes the fishbone. If instead 〈ωd〉 < ωR, the trapped particles
destabilize the tearing mode and its asymptotic limit is given by [the second root]”
[42]. That is, for the case of very energetic particles and “large enough” βh,
there is a stabilizing effect on the sawtooth, and the stabilization increases with
βh. However, at larger βh the fishbone becomes destabilized. Although it is not
obvious, according to Ref [42] “... to stabilize the tearing mode it is necessary
to produce a trapped particle density which is large enough to destabilize the
fishbone”.

This is very dense stuff. The conclusion [42] is that “... the presence of a
high-energy trapped ion population introduces a stabilization of the sawtooth in
a tokamak. ... at higher β the same ... population should destabilize the fishbone
branch ... The fishbone should then be expected to limit the trapped-particle
population to a value too low to provide sawtooth stabilization.”

4 Consolidation

4.1 General Stability in a Torus

The results of Section 3.2.6 indicated that, within the context of trapped-particle
modified resistive MHD, complete stabilization of the sawtooth may be difficult
or impossible to achieve. The problem is that, in order to stabilize the resistive
internal kink mode, the hot particle β must be so high as to destabilize the fishbone.
A more complete analysis of the problem was first briefly reported by White,
Bussac and Romanelli [43], and later in much more detail by White, Romanelli
and Bussac [44].

There are two primary differences with the previous analysis [42]. The first
is the inclusion of extended MHD effects (see Section 3.1.4). The second is ac-
counting for the possibility that δWc, the ideal MHD potential energy, may not
vanish. (Recall that in Ref. [42], δWc = 0.) Indeed, an important and seemingly
contradictory conclusion of Refs. [43] and [44] is that complete stabilization of
the sawtooth (resistive internal kink mode) with energetic particles requires that
δWc < 0, i.e., that the ideal internal kink be unstable. The analysis is thorough and
complex, and includes many limiting and special cases. We will only summarize a
few of the basic results here.

The dispersion relation, including ideal MHD, resistive MHD, extended MHD,
and energetic particle effects is the consolidation of the results of the previous
sections. In the notation of Ref. [44],

− γI
ωA

+ δWk −
8iΓ

[(

Λ3/2 + 5
)

/4
]

[ω (ω − ω∗i)]
1/2

Λ9/4Γ [(Λ3/2 − 1) /4]ωA
= 0 , (107)
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where Λ = −i[ω(ω− ω̂∗e)(ω−ω∗i)]
1/3/γR, γR = S−1/3ωA, ω∗i = −(c/neBr)dPi/dr,

ω∗e = (c/neBR)dPe/dr, ω̂∗e = ω∗e+0.71(c/eBr)dTe/dr, δWk is given by Eq. (101),
and γI ≡ −ωAδWc is the ideal MHD growth rate in a torus, given by Eq. (78).
Note that, in this analysis, γI is treated as a parameter. The dispersion relation
depends on the energetic trapped particle equilibrium distribution function, F0h,
and the six frequencies ωA, ωd, ω∗i, ω̂∗e, γI , and γR. Ref. [44] examines many of
these combinations. We will only look at a few.

We first examine the case of the slowing-down distribution in the ideal limit.
Then δWk = (βh/ǫ)(ω/ωdm) ln(1−ωdm/ω). Taking γR → 0, the dispersion relation
is [44]

− γI
ωA

− i
[ω(ω − ω∗i)]

1/2

ωA
+
βh
ǫ

ω

ωdm
ln
(

1− ωdm
ω

)

= 0 . (108)

The threshold condition for instability is that ω be real. Making this assumption
along with the condition ω < ωdm, and taking the real and imaginary parts of Eq.
(108), yields the equations

− γI
ωA

+
βh
ǫ

ω

ωdm
ln
(

ωdm
ω

− 1
)

= 0 (109)

and

− [ω (ω − ω∗i)]
1/2

ωA
+
βh
ǫ

ω

ωdm
π = 0 . (110)

These can be solved for βh,

βh =
ǫωdm
πωA

(

1− ω∗i

ω

)1/2

, (111)

which has real values only when ω > ω∗i. Substituting Eq. (111) into Eq. (109)
results in a transcendental equation for ω,

γI =
[ω(ω − ω∗i)]

1/2

π
ln(

ωdm
ω

− 1) . (112)

which is a monotonic function of ω. For γI > 0 we require ω∗i ≤ ω ≤ ωdm/2.
A detailed analysis [43] shows that the roots of Eq. (112) contain both fishbone

and kink modes, their appearance and stability depending on the relative values of
the parameters. The instability thresholds for these branches (modes) are widely
separated when ω∗i ≪ ωdm/2 and γI < γM , where

γM =
1

π
max{[ω (ω − ω∗i)]

1/2 ln
(

ωdm
ω

− 1
)

} . (113)
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This is the maximum value of γI , the ideal MHD growth rate, for which a solution
of Eq. (112) is possible. The smaller root is near ω∗i, and is given by

ω1 =
ω∗i

2
+

[

(

ω∗i

2

)2

+
π2γ2I

ln2(ωdm/ω1)

]1/2

. (114)

The second root is near ωdm/2, and if γI/ωdm ≪ 1/π, it is to a good approximation
ω2 = ωdm/2 ≫ ω1.

Therefore, under the conditions stated, for any positive value of γI < γM there
are two frequencies, ω1 ≪ ω2, between which the plasma is stable. Each of these
frequencies corresponds to a value of βh; see Eq. (111). For βh < βh1 the kink mode
is destabilized. For βh > βh2, the fishbone is destabilized. This is summarized in
the (γI , βh) plane in Fig. 11 for the case of a slowing-down distribution with
ω∗i/ωdm = 0.05.

For the stable gap to continue to exist for resistive modes, it is necessary and
sufficient to require that the arguments of the gamma functions in the dispersion
relation be large (ideal limit) at the thresholds ω1 and ω2 [44]. This condition
requires [44]

γI ≫ γR
ln(ωdm/γI)

π
, (115)

i.e., the internal kink must be strongly ideal MHD unstable. The limits on the
ideal growth rate are given by Eq. (115) and the maximum value that permits a

Figure 11: Stability regime in the (γI , βh) plane for the case ω∗i/ωdm = 0.05. For a
given γI > 0, the lower limit is the kink mode and the upper limit is the fishbone
[44].
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solution of Eq. (112). The result is

γR
ln(ωdm/γI)

π
≪ γI ≪ γM . (116)

The range of βh for which both modes (resistive internal kink and fishbone) are
stabilized is given approximately by [43, 44]

1

π

(

1− ω∗i

ω1

)1/2

<
βh
ǫ

ωA
ωdm

<
1

π
. (117)

The lower limit is the stabilization of the internal kink. The upper limit is the
destabilization of the fishbone. For our purposes, this is the principal result. We
remark that in the absence of extended MHD effects ω∗i = 0 and the stability
gap disappears. (In that case, ω1 is the solution of the trancendental equation
obtained from Eq. (114) with ω∗i = 0.) However, it should be remembered that
Eq. (117) was derived under the assumption that the threshold frequencies ω1 and
ω2 are widely separated, so that this conclusion must be tested by a more detailed
analysis.

The result also depends on S, the Lundquist number, being sufficiently large.
This condition is approximately [43]

S ≫ ln3 (ωdm/γI)ω
3
A

π2γ3I
. (118)

Note that a condition on S not being “too large” is that γI be large, but still small
compared with ωdm/4π [43]. A more detailed analysis reveals that S > Scrit, where
critical value is [44]

Scrit =

(

ωA
γM

)3

. (119)

There is also a critical value of βh, given by

βhc =
5ǫ

4π

ω∗i

ω̂∗e

ωdm
ωA

(

γR
ωI

)2

. (120)

Stabilization requires βh > βhc.
The stability as a function of the hot particle density is summarized in Fig 12

for two values of S [43]. These data were produced from a numerical solution of
the full dispersion relation, Eq. (107), for parameters approximating a hydrogen
minority species in JET, using a slowing down distribution and assuming γI =
1.4 × 104 / sec. The horizontal axis is the hot particle density, and the vertical
axis is the growth rate. For S = 106 the growth rate of kink mode is reduced but
not completely stabilized; presumably the fishbone appears at higher hot particle
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density. However, for S = 107 a stable gap for 1.4 × 1011 < nh < 1.95 × 1011

appears between the kink and fishbone modes. This is the “sawtooth-free gap”.
“Perhaps it seems stange that to achieve stabilization using trapped particles

the kink mode must be above its ideal threshold (γI > 0), but this is understand-
able in that it is precisely this instability that preserves the ideal character of the
mode. In the resistive limit the mode cannot be stabilized and for small valus of
S the gap ... vanishes” [44].

The stabilization of the kink and the destabilization of the fishbone come about
because of the toroidal precessional drift of the energetic trapped particles. As dis-
cussed briefly in Section 3.2.2, individual charged particle motion in a magnetic
field displays several characteristic, “almost periodic” motions relative to the mag-
netic field, and each is associated with an “adiabatic invariant”; these are quantities
that do not change, or change only slowly, in response to perturbations that are
slow on the scale of the frequency of the periodic motion.

The highest frequency motion is the so-called gyro-motion about the magnetic
field. Averaging over this gyro-motion yields equations that are valid on time scales
long compared with the gyro-frequency and describe the motion of the “guiding
center” of the particle. The adiabatic invariant associated with the motion guiding
centers is the magnetic moment α = v2⊥/2B, which is “almost” conserved during
the period of a singly gyration. As a result of this invariant, and the conservation
of energy and momentum, the motion of the guiding centers can become trapped in
regions of relatively weak field, as in the outboard side of a tokamak; the guiding
center bounces between the so-called mirror points of the field. The remaining
drifts cause the guiding center trajectory to depart from its original field line in
such a way as to trace out a banana-like shape when projected in the poloidal plane.
This bounce frequency is low compared with the gyro-frequency. Averaging over
this bounce motion yields equations that describe the motion of the centroid of

Figure 12: Growth rate vs. hot particle density for two values of the Lundquist
number S using JET parameters [43].
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the banana orbit. The adiabatic invariant associated with the bounce motion is
called the “second adiabatic invariant”, or longitudinal invariant, J =

∮

mv‖ds,
where the integral taken over one period of the bounce motion. The remaining
periodic motion is the slow precessional drift of the banana centroids around the
torus. Associated with this motion is the “third adiabatic invariant”, which is
proportional to the magnetic flux linked by the orbit of the centroid as it circles
the torus in the toroidal direction. This is adiabatically invariant with respect
to lower frequency perturbations. The precessional frequency is the lowest of the
three frequencies, and is therefore most likely to interact with MHD waves.

Now consider an MHD-like disturbance, which can have a wide range of fre-
quencies. If the MHD frequency is near the precessional drift frequency we might
expect a resonant interaction between the MHD wave and the precessing particles,
which appear stationary in the frame of the wave. This is borne out by the reso-
nant denominators appearing in Equations (89), (90). (92), (94), (99), and (101).
The wave draws energy from the particles and, if there are enough particles, it ap-
pears as a growing oscillation. This is the fishbone instability. At lower frequency,
such as characterized by the growth of the internal kink mode, the disturbance is
too slow to interact directly with the precessing trapped particles. However, the
kink attempts to rearrange the flux within the discharge, thus perturbing the third
adiabatic invariant of the precessional motion. This is perturbation resisted by the
energetic particles, thus lowering the growth rate of the mode. If there are sufficient
energetic trapped particles, the internal kink can be completely stabilized.

If the characteristic frequencies are not sufficiently separated, or other param-
eters are not optimum, the number of trapped particles required to completely
stabilize the internal kink (measured, for example, by βh or nh) is greater than the
number required to destabilize the fishbone, and the discharge is always unstable
to one mode or the other. However, there are parameter regimes applicable to
present and future experiments where the internal kink can be completely stabi-
lized by the hot particles before the onset of the fishbone. This accounts for the
observation of extended sawtooth-free periods, terminated by ”giant sawtooth”
crashes.

4.2 The Porcelli Model

We now have a fairly complete picture of the linear stability of the internal kink
mode in a high temperature plasma in the presence of an energetic ion population.
In principle, the onset of a sawtooth crash can be predicted. In practice, the dis-
persion relations are complicated, and determining the stability of any particular
discharge remains daunting. What is required, and would be useful, is a relatively
simple way of testing a given set of equilibrium profiles (e.g., q and p) for stability
with respect to the n = 1 mode. This could be used in conjunction with a 1−1/2-
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dimensional transport model to predict the onset of a sawtooth crash, and if a
sufficiently accurate model for the subsequent profile relaxation were available, a
series of sawtooth crashes (or lack thereof) could be modeled.

Such a model was proposed by Porcelli, Boucher, and Rosenbluth [36], and
is commonly called “the Porcelli model”. They proposed a model for both the
sawtooth crash “trigger” and the profile relaxation. The trigger is based on the
value of the potential energy δW , which is written as δW = δWMHD + δWKO +
δWfast; δWMHD includes the effects of toroidicity (modified for plasma shaping,
which we have not discussed), δWKO is the Kruskal-Oberman correction for the
effects of trapped thermal particles, and δWfast represents the contribution of
collisionless fast ions. These have been discussed in detail in the previous sections.
The latter two contributions are stabilizing (i.e., positive), at least for standard
tokamak profiles [36]. As we have seen, theoretically the relevant contributions
come from inside the q = 1 surface, which is called the “core”; its potential energy
is defined as δWcore = δWMHD + δWKO. The normalized potential energy is
defined as δŴ ≡ −4δW/(s1ξ

2ǫ21RB
2), where s1 = r1q

′(r1) is the shear parameter,
and ǫ1 = r1/R is the inverse aspect ratio, at the q = 1 surface. The discharge is
assumed to be in the ion-kinetic regime (see Section 3.1.5), and the Porcelli model
takes the internal kink growth rate (in the absence of diamagnetic or trapped
particle effects) to be

γρ = Cρ(τ)ρ̂
4/7S−1/7s

6/7
1 τ−1

A , (121)

where Cρ depends on the temperature ratio τ = Te/Ti, and ρ̂ = ρi/r1 is the
normalized ion gyroradius. (Porcelli, et.al. [36] cite Ref. [19] for this expression.
Unfortunately, I cannot find anything in Ref. [19] that vaguely resembles Eq.
(121). My assumption is that it derives from Eq. (76) of Section 3.1.5, but I
cannot be sure. In any case, this is what is used in the model. Further note the
typo in Eq. (6) of Ref. [36], where the exponent of ρ̂ is given as 47. I have assumed
that the correct value is 4/7 but, again, I can’t be sure.) Note the very weak S
dependence in this regime.

Analytic formulas that can be applied to “arbitrary” equilibrium profiles are
used, although their origin is a bit fuzzy, at least to me. The normalized potential
energy is

δŴ = δŴBussac + δŴel + δŴKO + δŴfast , (122)

where the ideal MHD potential energy is δŴMHD = δŴBussac+ δŴel; the toroidal
expression is approximately [see, for example, Eqs . (78) and (79)]

δŴBussac = −cMHDǫ
2
1

(

β2
p1 − β2

pc

)

, (123)
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with

cMHD =
9π

s1

(

li1 −
1

2

)

, (124)

li1 is the plasma internal inductance at the q = 1 surface (see [10, p. 122] for
the cylindrical version), βp1 is the poloidal beta of the core + energetic particle
pressure within the q = 1 surface, and

βpc = 0.3
(

1− 5r1
3a

)

, (125)

where a is the “average” minor radius; the “elongation” term is

δŴel = −cel
(

κ1 − 1

2

)2

, (126)

where κ1 is the geometric elongation of the q = 1 surface and

cel =
18π

s1

(

li1 −
1

2

)2

; (127)

the Kruskal-Oberman term (see Eq. (82), Section 3.2.3, and the following discus-
sion) is

δŴKO = 0.6
cpǫ

1/2
1 βi0
s1

; (128)

and the fast (or energetic) particle term is

δŴfast = cf
ǫ
1/2
1 β∗

pf

s1
, (129)

where

β∗
pf = − 8π

B2
p(r1)

∫ 1

0
dxx3/2

dpf
dx

, (130)

with x = r/r1 is a measure of the fast particle pressure gradient within the q = 1
surface. (According to Ref. [46], these expressions for δŴfast are obtained “... us-
ing a simplified isotropic distribution function with zero orbit widths, appropriate
for ITER α-heated discharge scenarios”.)

For a given equilibrium profile, a sawtooth crash is triggered (i.e., the profile
becomes unstable to the internal kink mode) whenever any one of the following
conditions is met:

−δŴcore > chωdmτA , (131)
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−δŴ > 0.5ω∗iτA , (132)

or

−cρρ̂ < −δŴ < 0.5ω∗iτA and ω∗i < c∗γρ , (133)

along with the auxiliary condition ωdm > ω∗i. Here, the expressions for the various
contributions to δŴ are given by Eqs. (123) - (130), γρ by Eq. (121), ωdm is the
precessional drift frequency of the energetic ions, and ch, cρ, and c∗ are “constants
of order unity”.

Equation (131) is the condition for loss of energetic particle stabilization; δŴcore

includes the effects of the fluid and thermal trapped particles, but not fast particles.
“The stabilizing influence of high energy ions is a consequence of the third adiabatic
invariant, i.e., the magnetic flux linked through the fast trapped ion precessional
drift orbits. This non-MHD constraint becomes relevant when the high energy
trapped particles complete many orbits within a characteristic perturbation time
of order |δŴ−1

core|τA.”[36]. Equation (131) follows.
Equation (132) is equivalent to ω∗ > 2γ, which is the well known condition for

stability in the presence of two-fluid (ion diamagnetic) effects (see Section 3.1.4).
(In this case, γ refers to the growth rate of the mode including all contributions
to δŴ , not just MHD.) According to Ref. [46], it “represents the destabilization
of the ideal mode modified by including trapped fast ion stabilization but where
finite ion diamagnetic frequency effects are insufficient to stabilize the mode.”

I do not understand the origin of Eq. (133). Again, according to Ref. [46],
it “represents the destabilization of the nonideal resistive or ion-kinetic mode”.
The best I can do is to quote from what I think is the relevant passage of Ref.
[36]: “In the asymptotic limit −δŴ > max[ρ̂, ωdiτA/2] ≡ −δŴcrit” (ρ̂ = ρi/r1
is the nondimensional ion Larmor radius) “where layer physics effects become
unimportant, the internal kink growth rate normalized to the Alfvén time reduces
to γτA ≈ −δŴ .

“Layer physics plays an important role when |δŴ | ≤ |δŴcrit|. In particular,
when |δŴ | < ρ̂, the m = 1 mode structure changes its nature from that of a global
internal kink to that of a drift-tearing mode localized near the q = 1 surface, which
is normally stable because of kinetic layer effects at high plasma temperatures. In
this context, the electron drift frequency near the q = 1 surface, ω∗e, also plays a
role, and we shall assume that ω∗e ∼ −ω∗i. In the interval −ρ̂ < −δŴ < −δŴcrit,
the m = 1 mode can be stabilized by ion diamagnetic and electron drift wave
frequency effects, allied with effective plasma viscosity (a sink of momentum). The
stabilization criterion requires values of ω∗i a few times larger than the growth rate
evaluated at ω∗i = 0.”

I couldn’t have said it better myself!
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Using Eq. (121), the inequality ω∗i < c∗γρ in Eq. (133) can be transformed into
a critical shear condition for instability, s1 > scrit, where scrit is given by Eq. (15a)
in Ref. [36]; it is of no detailed interest to us. However, it is important to note
that the shear at the q = 1 surface, s1, appears in the denominator of both δŴfast

and δŴKO, which are the stabilizing terms. We thus expect that the stabilization
of the internal kink will be strongly influenced by this parameter; increases are
destabilizing. This will be borne out in Section 4.3.

The Porcelli model is based on simple analytic approximations to detailed linear
stability results. In principle, the relevant terms in δŴ could be computed with a
linear MHD stability code. It is interesting that this approach is rejected in Ref.
[36]: “However, even though feasible, it is impractical to interface such a code with
a transport code”, the primary reason being the uncertainties in the integrity of
the profiles produced by the transport code itself (see [36, pp. 2168ff]). Since this
is precisely one of the goals of the proposed Fusion Simulation Project, one hopes
the state of computing has advanced significantly since 1996!

Of course, once instability is triggered, neither linear theory nor transport
modeling can tell us anything about the final state. As mentioned previously,
Kadomtsev [6] proposed a model for the final state based on complete reconnec-
tion. Reference [36] states that ”Kadomtsev’s model is not always consistent with
experimental data, even though observations from different tokamak experiments
are somewhat conflicting”, and they propose a a model based on “incomplete re-
laxation”. Fortunately, we are approaching a time when we can not only couple
linear stability and transport codes, but also nonlinear MHD and gyrokinetic mod-
els with the potential to produce a self-consistent picture of sawtooth stabilization,
destabilization, and nonlinear relaxation.

4.3 Validation of the Sawtooth Model

The Porcelli models makes predictions of the onset of a sawtooth crash for a given
plasma configuration. As we have seen, these predictions are based on approximate
analytic estimates of various terms in the plasma potential energy δŴ . If it is
accurate, it would be extremely useful for both design scenarios and performance
evaluation in ITER.

In order to assess the efficacy of this model, its predictions need to be compared
directly with better estimates of the various terms in δŴ for a real experimental
discharge for which accurate and high frequency equilibrium resonstructions are
available. Such a discharge is DIII-D shot 96043 [45]. This is a tokamak discharge
with neutral beam injection and fast wave (RF) heating. It exhibits both “nor-
mal” and “giant” sawtooth oscillations. The time history of several experimental
parameters is shown in Fig. 13. A 2.7 MW neutral beam that produces 80 KeV
ions is initiated at t ≈ 1.25 seconds; 1250 milliseconds. This produces an energetic
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ion population having a slowing-down distribution with Em = 80 KeV. The re-
sulting heating induces a series of relatively small sawtooth oscillations, which can
be seen in the electron temperature in the range 1.5 < t < 1.8 seconds. These are
the “normal” sawteeth. At t = 1.8 seconds, 60 MHz fast wave (RF) heating was
applied. This accelerated some of the energetic ions to energies of several hundred
KeV, much higher than the injection energy. As seen in the electron tempera-
ture, the interval between the sawtooth crashes lengthened, and their amplitude
increased; there are noticeable drops in the stored energy at each crash. These
are the “giant” sawteeth. Presumably, the increase in δŴfast due to the more
energetic RF-accelerated beam particles stabilizes the internal kink mode in the
intervals between sawtooth crashes.

Reference [46] reports a detailed study of one the the extended stable periods
between giant sawtooth crashes. The particular interval chosen was 1800 < t <
2040 msec., as shown on Fig. 14. Equilibrium reconstructions providing details
of the evolving plasma and magnetic field profiles are available throughout this
period. These can be used to compute the contributions to δŴ by several different
methods, and compare the predictions of the Porcelli model with the actual onset
of the sawtooth crash in the experiment.

For example, values of δŴmhd, the MHD or fluid contribution, at various times

Figure 13: Time history of experimental parameters for DIII-D discharge 96043.
Top: Input power. Center: Electron temperature and D-D reaction rate. Bottom:
Density and stored energy. [46].
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Figure 14: Blow up of the specific sawtooth interval (1800 < t < 2040 msec.)
chosen for detailed study. Equilibrium reconstructions are available throughout
this period (at the vertical lines in the lower two plots) [46].
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in the quiescent interval are shown in Fig. 15. The curve labeled δŴBussac is
from Eq. (123), which is part of the original Porcelli model. The curve labeled
δŴMartynav ([sic]; it should be “Martynov”) is from a different, and supposedly

more accurate, analytic model [47]. The curve labeled δŴGATO are results from the
linear stability code GATO [48] applied to the reconstructed equilibrium profiles at
each time. While all three models predict an MHD unstable plasma, δŴMHD < 0,
the computational (and presumably more accurate and realistic) result from GATO
indicates significantly more instability drive than either of the analytic models.

Presumably, the stabilization of the unstable MHD mode comes from the con-
tributions δŴKO and δŴfast. For all cases, δŴKO, the contribution of the thermal
trapped particles, is computed using Eq. (128), as in the Porcelli model. It is
found to be small and positive. The contribution from the fast trapped particles,
δŴfast, is computed from Eqs. (129) and (130). The fast particle pressure is deter-
mined by accelerating test particles with the ORBIT-RF code [49] using the fast
wave fields computed by the TORIC code [50]. The resulting distribution function
for the fast particles consist of a slowing down distribution for E < Em = 80 KeV,
and a high energy tail extending to several hundred KeV. It is this high energy
tail that provide for the stabilization of the mode. (Reference [9] states unequiv-
ocally: “Apparently, tail formation is a necessary, but not sufficient, condition for

Figure 15: MHD contribution to the potential energy using three different models
during a period between giant sawtooth crashes) [46].
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enhanced sawtooth stability.” However, we have seen in Section 4.1 that, at least
in theory, stabilization can be achieved with a slowing down distribution.)

In Fig. 16 are plotted the time history of the various contributions to δŴ
during the period leading up to the sawtooth crash. In the upper figure, δŴMHD =
δŴGATO, and in the bottom figure δŴMHD = δŴMartynov. In the top figure, δŴ

Figure 16: Evolution of the total potential energy leading up to the sawtooth
crash, Top: δŴMHD = δŴGATO. Note that δŴ approaches 0 at the sawtooth
crash. This is due to large MHD drive and a decrease in fast particle stabilization.
Bottom: δŴMHD = δŴMartynov. Here δŴ remains positive throughout because of
insufficient MHD drive. [46].
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approaches 0 at the sawtooth crash due to the large MHD drive and a decrease in
fast particle stabilization. In the bottom figure δŴ remains positive throughout
because of insufficient MHD drive. This indicates that an accurate estimate of
the MHD (or fluid) drive for the instability is essential for the prediction of the
sawtooth onset.

The destabilization of the internal kink and the onset of the sawtooth crash is
due to a decrease in δŴfast. The time histories of δŴfast, βph, the poloidal beta of
the hot particles as determined by the ORBIT-RF code, and the shear parameter
s1 = r1q

′(r1), are plotted in Fig. 17. The critical value of shear is also plotted
(see Section 4.2). The particle β saturates as the distribution function reaches
steady state, after which δŴfast displays a steady decrease. This is primarily due
to the steady increase in the shear at the q = 1 surface, which appears in the
denominator of δŴfast (see Eq. (129)). It is this increase in shear, as opposed to
an increase in βph, that is responsible for the loss of energetic particle stabilization
and the triggering of the sawtooth crash.

Finally, the specific criteria in the Porcelli model for triggering a sawtooth
crash can be evaluated. This is shown in Fig. 18 using δŴMHD = δŴGATO. The

Figure 17: Fast particle potential energy, fast particle β, and the shear parameter
during the period before the sawtooth crash [46].
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Figure 18: Evaluation of the three sawtooth triggers in the Porcelli model. Top:
The fast ion effect, Eq. (131). Middle: The diamagnetic effect, Eq. (132). Bottom:
The kinetic effect, Eq. (133). Note that some of the curves are mislabeled [46].
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fast ion effect, Eq. (131), can be the trigger if the purple curve lies above the
blue curve. (Note that the blue curve should be labeled ωdmτA.) The diamagnetic
effect, Eq. (132), can be the trigger if the red curve lies about the blue curve (which
should be labeled 0.5ω∗iτA). The kinetic effect, Eq. (133), can be the trigger if
the red curve lies between the green and blue curves (which should be labeled
ω∗iτA). Clearly, the onset of the crash corresponds to the trigger −δŴ > −cρρ̂,
the first of Eq. (133). “This result implies that fast wave accelerated trapped
beam ions are crucial to stabilizing the sawtooth instability and extending the
period. Nevertheless, eventually, at the end of this cycle, the sawtooth crash is
triggered by the resistive internal kink mode in the ion-kinetic regime.”[46]

Therefore, the Porcelli model provides a guide as long as the individual terms
are computed with sufficient accuracy. This likely implies that the application of
integrated plasma simulation models will be essential to gaining an understanding
of the sawtooth behavior of modern tokamaks. Of course, this only addresses the
trigger mechanism, which relies on linear theory. The state of the relaxed equilib-
rium after the crash, and the fate of the energetic particles (be they beam ions or
α-particles) require coupling of nonlinear computational models of extended MHD
and particle dynamics. This is The Future.

4.4 Future Directions

While the results of Ref. [46] suggest that something like the Porcelli model [36]
may provide a guide to the onset of the sawtooth crash in modern tokamaks, they
also clearly show that using it blindly within the context of a transport model can
lead to faulty predictions. First, the MHD (or fluid) contribution to the poten-
tial energy must be computed accurately, accounting for the local details of the
profiles, the non-circular poloidal geometry and the boundary conditions. Second,
the details of the energetic trapped particle distribution function must be known
accurately. These are not possible within the context of analytic or semi-analytic
models for δŴMHD and δŴfast. At a minimum, the low order dimensional trans-
port model must be directly and intimately coupled with a linear MHD stability
code, such as GATO, and perhaps even an RF/kinetic computational model such
as TORIC/ORBIT-RF. This is a challenging prospect, and, even if successfully
implemented, it would remain silent on the nonlinear aspects of the crash, such
as the state of the relaxed profiles, the loss of stored energy and its deposition
on the walls, and the fate of the energetic particles. Addressing these important
issues will eventually dictate abandoning the transport approach and employing
a three-dimensional nonlinear extended MHD code, such as NIMROD [51, 52] as
the core computational component.

The NIMROD code solves the three-dimensional nonlinear extended MHD
equations [52]. The geometry must have one periodic dimension (such as the
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toroidal direction in a tokamak), but is otherwise arbitrary. The plasma can ex-
tend to the wall, or be surrounded by a vacuum with an enclosing conducting
boundary. (Resistive wall boundary conditions are being implemented.) It can be
run in a linear mode, so linear MHD and extended MHD stability can be assessed
efficiently. An important issue for the extended MHD model is that of closures [52],
i.e., expressions for the higher order velocity moments of the distribution function
in terms of the lower order moments. NIMROD incorporates the full Braginskii
(collisional) closure model [53] as a default, and models for neo-classical closures
(valid for low collisionality) are being developed [54], and NIMROD is being cou-
pled to RF power deposition models to simulate the stabilization of resistive and
neo-classical tearing modes with ECCD [55].

Of importance to the study of giant sawteeth, NIMROD contains a gyrokinetic
model for a minority, non-Maxellian (energetic) ion species [52, 56]. The evolution
of the perturbed distribution function is computed by integrating the gyrokinetic
equations in the evolving magnetic field of the background plasma, and its effect
on the evolution of the fluid is captured by computing their contribution to the
ion stress tensor (see Eq. (86), Section 3.2.4) by direct velocity space integration.
This model has been benchmarked against previous known results [57], and has
already demonstrated complete stabilization of the internal kink mode [56].

A systematic study of the effect of an energetic trapped particle population
on the stability and evolution of the internal kink mode and resulting sawtooth
crash has begun. Because of the availability of both experimental and theoretical
(computational) results, the sequence of equilibrium reconstructions from DIII-
D discharge 96043 [45, 46] is being used. The results of this study will provide
excellent verification and validation tests for the integrated simulation model of
NIMROD, and (hopefully) will lead to advances in large scale computations and
understanding of the physics of giant sawteeth.

We begin by studying the linear stability of discharge 96043 at t = 1900 msecs.,
where the stabilizing effect of the energetic trapped particles is maximum (see
Fig. 17). For these calculations, NIMROD was run as a linear stability code,
and only the MHD model was used. One issue with these calculations is the
choice of “equilibrium” distribution function for the energetic ions. The present
NIMROD particle model uses a slowing down distribution with maximum energy
Em. In discharge 96043, the energetic ions are injected with a neutral beam with
Em = 80 KeV, and are then accelerated to much higher energy by RF radiation. As
discussed in Section 4.3, this leads to a distribution function that is a superposition
of a slowing down distribution with Em = 80 KeV, and a high energy tail extended
to several hundred KeV. The principal stabilization of the kink comes from this
high energy tail [46]. NIMROD does not yet incorporate such a model for the
equilibrium distribution. We have therefore begun by performing generic studies
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using the slowing down distribution, and examining the stabilization properties
for different values of both the injection energy Em and the hot particle beta βhp.
(A primary assumption is that the presence of the energetic particles does not
affect the MHD equilibrium force balance ∇p = J×B as given by the equilibrium
reconstruction.)

The preliminary results are shown in Fig. 19, where we plot the growth
rate of the internal kink mode in DIII-D shot 96043 as a function of βhp/β for
two slowing down distributions, one with Em = 41.75 KeV and the other with
Em = 281 KeV. Both the plasma and the beam are deuterium. The Lundquist
number is S = 1.7 × 107, and the resistive MHD growth rate (with βhp = 0) is
γR = 3.29 × 104 /sec.. At 41 KeV, the precession frequency is ωpd = 5 × 104

Figure 19: Growth rate of the internal kink mode in DIII-D shot 96043 as a
function of βhp/β fort wo slowing down distribution with Em = 41.75 KeV and
Em = 381 KeV.
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/sec., so that γR/ωpd = 0.66; at the q = 1 surface, ωpd = Em/mhωhcRr1, so that
the precession frequency is proportional to the energy. The growth rate and the
precession frequency are not widely separated, and little stabilization is expected.
(Recall that it is the conservation of the third adiabatic invariant that is respon-
sible for the stabilization.) However, for 281 KeV, γR/ωpd = 0.097, so they are
separated by a factor of 10. Nonetheless, there is no stable gap for either value of
Em. These results are converged in both spatial and temporal resolution, as well
as in the number of particles. (At high energy convergence required 107 particles.)
There is a minimum in the growth rate at βf ≡ βhp/β ≈ 0.2. Presumably, for
Em = 41 KeV, βf < 0.2 represents partial stabilization of the internal kink by
energetic particles, and βf > 0.2 represents destabilization of the fishbone mode.
Perhaps even larger separation between γR and ωpd is required to achieve stabi-
lization. Or perhaps, as speculated in Ref. [9], a true energetic tail is required of
the hot particle distribution function.

In Fig. 20 we plot the growth rate as a function of the injection energy for
βf = 0.2, the minimum in Fig. 19. (The case with Em = 140 KeV required
107 particles for convergence.) Even with Em = 140 KeV, the growth rate and
the precession frequency are not widely separated. However, the growth rate
does not decrease linearly with energy, as reported in Ref. [56], and there are
indications that stabilization may not occur at even higher values of Em. Perhaps
this is because, even if the third adiabatic invariant is well conserved for individual
particles, there are insufficient energetic particles to resist the flux change induced
by the current perturbation caused by the internal kink. Runs at high energy with
increased βf are underway.

The preliminary calculations reported here are challenging, and they raise sev-
eral questions.

What is the required separation between the resistive growth rate and the pre-
cession frequency (energy) of the hot particles to achieve stability? So far we have
only gone to a few hundred KeV for the injection energy of the hot particles, and
this gives ωpd/γR ≃ 10. Theory requires ωpd/γR ≫ 1. Calculations with Em > 100
KeV have required in excess of 107 particles. Can we afford to go higher? And,
does the βf required for stability increase with Em?

What is the role of the hot particle distribution function? The present algorithm
assumes a slowing down equilibrium distribution function for the hot particles.
How important is the form of the distribution function, as opposed to its maximum
energy, to stabilization?

What is the role of extended MHD effects on linear stability? Analytically, the
stabilization criterion for the internal kink includes diamagnetic effects (see Eq.
(117)). The present calculations only include the resistive MHD Ohm’s law. Will
it be necessary to extend the particle model to use the extended MHD Ohm’s
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Figure 20: Growth rate of the internal kink mode in DIII-D shot 96043 as a
function of Em (or equivalently ωpd) for βf = 0.2.
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law? Further, it is well known that, in the absence of extended MHD (diamag-
netic) effects, tokamak plasmas are predicted to be increasingly unstable at high n
(toroidal mode number); extended MHD is required to stabilize these modes and
allow nonlinear computations to proceed. I suspect that, for one reason or another,
extended MHD will have to be addressed by the kinetic model in NIMROD.

How do we include the effects of thermal trapped particles? The stabilizing
effect thermal trapped particles are encapsulated in δWKO, the Kruskal-Oberman
term. However, these particles are part of the majority ion species that is modeled
by the fluid equations. How is there presence to be captured? Are they described
by so-called neo-classical effects? Reference [46] found their effect to be small, but
they could be important in other configurations.

Is there a critical value of the Lundquist number? Theoretically, the Lundquist
number must exced a critical value for stabilization (see Eq. (119)). The present
results have been obtained with S = 1.7 × 107, which is quite large for computa-
tion but quite small for a modern tokamak. Is it large enough, or is the lack of
stabilization seen so far simply a result of having S too low?

Can we afford to compute in the required parameter regime? Large hot particle
energy, which is required for separation between the growth rate and the preces-
sion frequency, require many particles for convergence of the gyrokinetic model.
So far, linear calculations with 107 particles have been able to proceed practically
because of parallelization of the particle algorithm in the poloidal plane. Is this
sufficient for even higher energies, or more toroidal modes (as required for nonlin-
ear calculations). How much code development will be required for the particle
algorithm to be practical for these problems?

Can nonlinear calculations be done? We have very little experience here, es-
pecially with large scale modes in toroidal geometry. The present calculations will
push the envelope for nonlinear computation, and hopefully will promote further
advances in both numerical and computational algorithms.

But first, I’d just like to see complete linear stabilization of the internal kink
in DIII-D shot 96043!
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