
Ordered Fluid Equations II 
D. D. Schnack 
February 2004 

 
Abstract 

The ordered fluid equations of Ref. [1] are re-derived assuming that the velocity is 
normalized to the ion velocity and the current density to the gradient of the magnetic field.  It 
is found that the principle conclusions of Ref. [1] remain valid in this normalization.  High, 
intermedeiate, and low frequency regimes are again identified.  Further, equation consistency 
in each of these regimes constrains the maximum order (in   δ = ρi / L) of β  that is allowed: 

    β ~ O(δ2) in the high frequency (Hall) regime,   β ~ O(δ)  in the intermediate frequency 
(MHD) regime, and     β ~ O(1)  in the low frequency (drift) regime. 

 
1. Introduction 

In a recent note1, consistent sets of non-dimensional fluid equations were derived 
systematically by writing the two-fluid equations in non-dimensional form.  The resulting 
equations contain a few non-dimensional parameters that may be considered small.  
These parameters are the non-dimensional frequency,   ε = ω / Ωi, the non-dimensional 
velocity,     ξ = V0 /Vthi, the non-dimensional ion gyro-radius,   δ = ρi / L, and the plasma 

“beta”,     β = (Vthi /VA )2 .  (Note that this differs by a factor of 2 from the usual definition 
of β .)  Consistent with the assumptions underlying the derivation of the fluid equations 
from the kinetic equation, the ion gyro-radius is always considered small, i.e.,   δ <<1.  
Fluid models valid in several interesting plasma regimes were then obtained by 
considering different relative orderings of the remaining parameters with respect to δ , 
and retaining only low order terms.  These models are summarized in Table I. 

Table I 
Properties of Fluid Models 

Model   Vi ω  β   J × B  Whistlers† KAW†† 

Hall 
MHD 

    Vthi /δ    Ωci   O(δ2 ) 
   
mn dVi

dt
+ O(δ)

Yes No 

Ideal 
MHD 

  Vthi   δΩci   O(δ)   O(δ) No No 

Drift   δVthi     δ
2Ωci   O(1) 

  ∇p + O(δ2 ) No Yes 
†Whistler waves are high frequency phenomena that disappear as the frequency is ordered successively 
lower. 
††Kinetic Alfvén waves are finite pressure phenomena that appear as β  becomes successively larger. 

Recently some questions have been raised2 concerning the choice of normalizations 
used in this approach, and the effect of these choices on conclusions drawn in Ref. [1].  In 
particular, in Ref. [1] the velocity was normalized to   V0 = J0 / n0e .  This effectively 



measures the velocity in units of the electron velocity.  It results in a simple non-
dimensional constitutive relationship    J = n(Ve − Vi), but non-dimensional parameters 
then appear explicitly in Ampére’s law.  A more conventional choice might be to 
measure the velocity in units of the ion (momentum carrying) velocity, and to normalize 
the current density to J0 = B0 / µ0L.  Then the non-dimensional Ampére’s law takes the 
simple form   J = ∇ × B, but the relationship between the current and the velocity 
explicitly contains non-dimensional parameters.  Further, the choice of normalizing 
velocity used in Ref. [1] results in the relationship  β = δ /ξ , so that β  is not longer an 
independent parameter.  The implied constraints on β  for the validity various fluid 
models is shown in the fourth column of Table I.  The generality of these constraints may 
now be questioned, since they may arise from the particular choice of normalization 
velocity. 

In this short note we reconsider the ordering of the fluid equations when the velocity 
is measured in units of the ion velocity and the current density in units of     J0 = B0 / µ0L.  
In this case we again find that the non-dimensional parameters are not independent, but 
are now related by ε = ξδ .  Further, we find that consistency of the non-dimensional 
equations in the different parameter regimes leads to the same constraints on β  as found 
in Ref. [1], and displayed in Table I.  Thus the conclusions of Ref. [1] are essentially 
correct. 
2.  Ordered Equations 

Following Ref. [2], we choose a normalization in which length is measured in units 
of   L, time in units of   ω−1, velocity in units of   V0 = ω / L , magnetic field in units of   B0, 
current density in units of J0 = B0 / µ0L, electric field in units of E0 = V0B0 , density in 

units of     n0 , and pressure in units of 
  
pi0 = n0miVthi

2 = 2n0Ti .  (Note that the factor of 2 

differs from the usual definition.)  Then, neglecting the electron mass, the non-
dimensional 2-fluid equations become: 
Continuity: 

      
∂n
∂t

= −∇ ⋅ nVi    , (1) 

Center of Mass Equation of Motion: 

      
nε2 dVi

dt
= δ2 −∇p +

1
β

J × B −ε∇ ⋅ Πi
gv⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    ,  (2) 

Electron Equation of Motion: 

      
εE = −δ2 1

β
Ve × B +

Te
Ti

∇pe
n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    ,  (3) 

Constitutive Relation: 

      
δ2J = n βεVi −δ2Ve( )   . (4) 



As in Ref. [1], we do not consider the energy equation.  The total non-dimensional 
pressure (measured in units of     pi0) appearing in Equation (2) is   p = pi + (Te / Ti ) pe .  The 

non-dimensional parameters     ε = ω / Ωi,   δ = ρi / L, and β = Vthi
/VA( )2  are the same as in 

Ref. [1].  An additional parameter   ξ = V0 /Vthi
, which appears in Ref. [1], is no longer 

independent, but is related to the others by ε = ξδ .  All normalized variables that appear 
in Equations (1-4) are to be considered   O(1).  The ion gyro-radius is always considered 
to be small (  δ <<1).  The relative magnitudes of the terms in the equations are to be 
determined by the magnitudes of ε and β  relative to δ . 

Before proceeding, we note that, since the first and third terms in Equation (4) are 

    O(δ2 ), consistency requires that  βε ~ δ2.  Thus  β ~ δ2 /ε = δ /ξ  (since ε = ξδ ; see 
above).  This is precisely the constraint on β  that was found in Ref. [1].  Therefore, in 
this approach only the frequency ε can be specified independently.  (The temperature 
ratio     Te / Ti can also be specified.) 

As in Ref. [1] we will consider three regimes: a fast ordering,  ε ~ 1; an intermediate 
ordering,   ε ~ δ , and a slow ordering,  ε ~ δ2.  These correspond to Hall MHD, ideal 
MHD, and drift MHD, respectively. 
3.  Fast Ordering:   ε ~ 1 

We consider the high frequency case  ε ~ 1, or ω ~ Ωi.  This implies that 

    ξ ≡ V0 /Vthi
= ε /δ ~ O(1/δ), so that the characteristic flows can be much larger than the 

ion sound speed, and     β ~ O(δ2 ).  Then Equations (2-4) become 

      
n dVi

dt
= δ2 −∇p +

1
β

J × B − ∇ ⋅ Πi
gv⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    ,  (5) 

      
E = −δ2 1

β
Ve × B +

Te
Ti

∇pe
n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    , (6) 

and 

      
δ2J = n βVi −δ2Ve( )   . (7) 

Using Equation (7) in Equation (6) to eliminate the electron velocity, we find the 
generalized Ohm’s law to be 

      
E = −Vi × B + δ2 1

n
1
β

J × B −
Te
Ti

∇pe
n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    . (8) 

With the constraint     β ~ O(δ2 ), these equations are identical (except for the temperature 
ratio) to the Hall MHD equations of Ref. [1], Section 4, and the comments of Ref. [1] 
apply.  The model requires the retention of both the gyro-viscous stress and the Hall term.  
(The electron pressure term can be neglected unless the electrons are very much hotter 
than the ions, i.e.,     Te / Ti ~ O(1/δ2 ).) 



4.  Intermediate Ordering:   ε ~ δ  
In this case   ξ ~ 1 and   β ~ δ , and the equations are 

      
n dVi

dt
= −∇p +

1
β

J × B −δ∇ ⋅ Πi
gv    , (9) 

      
E = −δ 1

β
Ve × B +

Te
Ti

∇pe
n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    , (10) 

and 

      δJ = n βVi −δVe( )   . (11) 

The generalized Ohm’s law is 

      
E = −Vi × B + δ 1

n
1
β

J × B −
Te
Ti

∇pe
n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    .   (12) 

To lowest order in δ , this is the ideal MHD model discussed in Ref. [1], Section 5.  
Neither the gyro-viscosity, the Hall term, nor the electron pressure need be retained. 

5. Slow Ordering:   ε ~ δ2  
In this case   ξ ~ δ  and   β ~ 1, and the equations are 

      
nδ2 dVi

dt
+ ∇ ⋅ Π i

gv⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −∇p +

1
β

J × B    , (13) 

      
E = −

1
β

Ve × B −
Te
Ti

∇pe
n

  ,  (14) 

and 

      J = n βVi − Ve( )   . (15) 

The generalized Ohm’s law is 

      
E = −Vi × B +

1
nβ

J × B −
Te
Ti

∇pe
n

   . (16) 

These are identical to the equations derived in Ref. [1], Section 6.  The drift model is 
obtained by making the transformation    Vi = VE + V*i, where  

      
VE =

E × B

B2
 (17) 

is the “MHD” velocity, and  

      
V*i =

1

nB2
B × ∇pi (18) 

is the non-dimensional ion diamagnetic drift velocity.  Then Equation (13) simplifies by 
means of the gyro-viscous cancellation, as described in Ref. [1], while the generalized 
Ohm’s law becomes 



        

E = −VE × B +
1
n

−∇⊥ p +
1
β

J × B
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

O(δ2)
         

−
Te
Ti

∇|| pe
n

   ,  (19) 

      
   = −VE × B −

Te
Ti

∇|| pe
n

+ O(δ2 )    . (20) 

As discussed in Ref. [1], the drift model eliminates whistler waves due to force balance, 
but retains the dispersive kinetic Alfvén branch. 
5.  Discussion 

We have shown that the results of Ref. [1] survive with the suggested2 velocity 
normalization.  In particular, the restrictions on the magnitude of β  in the fluid models 
remain valid.  In Ref. [1] these constraints arise directly from the definition of the non-
dimensional variables and the choice of normalization.  Here they are a result of the 
requirement to balance the magnitude of the terms in the constitutive relation between the 
current density and the species velocities.  Each approach leads to identical conclusions, 
as it should since the physics content of the equations is independent of the units used to 
measure the individual variables. 
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