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Abstract

Finite Larmor radius (FLR) fluid equations for magnetized plasmas evolving on either sonic or

diamagnetic drift time scales are derived consistent with a broad low-collisionality hypothesis. The

fundamental expansion parameter is the ratio δ between the ion Larmor radius and the shortest macro-

scopic length scale (including fluctuation wavelengths in the absence of small scale turbulence). The

low-collisionality regime of interest is specified by assuming that the other two basic small parameters,

namely the ratio between the electron and ion masses and the ratio between the ion collision and

cyclotron frequencies are comparable to or smaller than δ2. First significant order FLR equations for

the stress tensors and the heat fluxes are given, including a detailed discussion of the collisional terms

that need be retained under the assumed orderings and of the closure terms that need be determined

kinetically. This analysis is valid for any magnetic geometry and for fully electromagnetic non-linear

dynamics with arbitrarily large fluctuation amplitudes. It is also valid for strong anisotropies and does

not require the distribution functions to be close to Maxwellians. With a subsidiary small-parallel-

gradient ordering for large-aspect-ratio toroidal plasmas in a strong but weakly inhomogeneous mag-

netic field, a new system of reduced two-fluid equations is derived, rigorously taking into account all

the diamagnetic effects associated with arbitrary density and anisotropic temperature gradients.
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I. Introduction.

The fluid description of magnetized plasmas constitutes a very useful framework to analyze their

macroscopic behavior. Even though a consistent fluid closure can only be justified rigorously at high

collisionality1−2, the fluid moments of the kinetic equations provide an exact, lower-dimensionality

constraint on the complete kinetic description and a good approximation for the dynamics perpen-

dicular to the magnetic field by themselves, regardless of collisionality. For the collisionless or weakly

collisional regimes of main interest in space and in magnetic fusion experiments, the hybrid approach

based on exploiting the fluid moment information, complemented by a kinetic approximation of the

unavailable closure terms, is currently a major area of active research3−7.

In a previous work8, a general formalism for magnetized plasmas encompassing a maximum fluid

moment information, was developed for the strictly collisionless case. The purpose of the present

article is to extend that work to the more realistic case of low but finite collisionality. Considering

dynamical evolution away from equilibrium, it will be assumed that the two terms that contribute

to the convective time derivatives are comparable (∂/∂t ∼ uα · ∇ where uα are the different species

macroscopic flow velocities). Then, provided that small scale turbulence effects can be neglected, the

strictly collisionless fluid moment analysis can be based on the single expansion parameter δ ∼ ρι/L,

the ratio between the ion Larmor radius and the shortest macroscopic length scale including large scale

fluctuation wavelengths. The treatment of the finite collisionality terms involves two more independent

small parameters, namely the ratio me/mι between the electron and ion masses and the ratio νι/Ωcι

between the ion collision and cyclotron frequencies, whose ordering relative to δ is a matter of choice.

The present low-collisionality analysis will adopt as basic working hypotheses (me/mι)1/2 <∼ δ � 1

and νι/Ωcι
<∼ δ (me/mι)1/2. With deuterium ions of density and temperature n and Tι respectively

in a magnetic field B, this means 1.4× 10−4Tι(eV )1/2B(T )−1 � L(m) <∼ 8.7× 10−3Tι(eV )1/2B(T )−1

and 2.7 × 10−16n(m−3)Tι(eV )−3/2B(T )−1 <∼ 1. Such conditions are well satisfied for a wide class of

macroscopic modes over most of the plasma parameter range relevant to tokamak fusion experiments,

possibly failing only at the very plasma edge where the complex governing physics is beyond the scope

of the simple fluid theory and precludes its applicability anyway. It can therefore be argued that these
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orderings provide a meaningful foundation for a broad low-collisionality fluid theory.

Besides specifying the collisionality regime, the fluid analysis requires specification of the time

scales of interest. In terms of dimensionless ratios, this amounts to specifying the orderings of the

time derivatives relative to the ion cyclotron frequency and of the macroscopic flow velocities relative

to the ion thermal speed, which are linked once ∂/∂t ∼ uα ·∇ is assumed. Here we shall be concerned

with two frequently considered such orderings. The first one is the ”fast dynamics” (or ”sonic”) order-

ing characterized by uα ∼ vthι and ∂/∂t ∼ δΩcι. The second one is the ”slow dynamics” (or ”drift”)

ordering where the flow velocities and time derivatives are comparable to the diamagnetic drift veloc-

ities and frequencies, uα ∼ δvthι and ∂/∂t ∼ δ2Ωcι. As discussed in Ref.8, this slow dynamics ordering

has a consistency problem whose resolution requires the adoption of further assumptions. One way of

obviating this difficulty is to assume separate length scales parallel and perpendicular to the magnetic

field, with a subsidiary small parameter ε ∼ L⊥/L‖ ∼ k‖/k⊥ � 1. In this case, as a consequence

of the fact that parallel gradients are ordered small, the pressures need to be known only in their

zero-Larmor-radius limit, avoiding the problematic evaluation of their O(δ2) FLR corrections. This

subsidiary small-parallel-gradient ordering for plasmas in a strong but weakly inhomogeneous mag-

netic field, which leads to the so called ”reduced” systems9−17 where the fast magnetosonic wave is

eliminated, will be adopted when considering the slow dynamics. A major improvement over previous

reduced fluid models in the slow dynamics ordering13−17 will be the rigorous treatment of arbitrary

density and temperature gradients, especially their associated diamagnetic effects, as well as the al-

lowance for strong temperature anisotropies and arbitrarily large density, temperature and electric

potential fluctuation amplitudes.

II. General fluid formalism.

This section presents the general macroscopic equations for the fluid moment variables. It follows

the approach of Ref.8, with the addition of the collisional terms and some changes and streamlining

in the notation. All the results derived in this section are exact without approximations and valid

for each plasma species independently, so the species index is dropped here for convenience. The
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macroscopic system follows from the velocity moments of the underlying kinetic equation,

∂f(v,x, t)
∂t

+ vj
∂f(v,x, t)

∂xj
+

e

m

(
Ej + εjklvkBl

)∂f(v,x, t)
∂vj

= C(v,x, t), (1)

where f(v,x, t) is the distribution function, C(v,x, t) is the collision operator, E(x, t) and B(x, t) are

the electric and magnetic fields, and m and e are the species mass and electric charge. Conservation of

particles in the collisions yields
∫

d3v C(v,x, t) = 0. The following fluid moments of the distribution

function and the collision operator will be considered:

n(x, t) =
∫

d3v f(v,x, t), (2)

n(x, t) uj(x, t) =
∫

d3v vj f(v,x, t), (3)

Pjk(x, t) = m

∫
d3v (vj − uj)(vk − uk) f(v,x, t), (4)

Qjkl(x, t) = m

∫
d3v (vj − uj)(vk − uk)(vl − ul) f(v,x, t), (5)

Rjklm(x, t) = m2
∫

d3v (vj − uj)(vk − uk)(vl − ul)(vm − um) f(v,x, t), (6)

F coll
j (x, t) = m

∫
d3v (vj − uj) C(v,x, t), (7)

Gcoll
jk (x, t) = m

∫
d3v (vj − uj)(vk − uk) C(v,x, t), (8)

Hcoll
jkl (x, t) = m

∫
d3v (vj − uj)(vk − uk)(vl − ul) C(v,x, t). (9)

Integrating the appropriately weighed kinetic equation over velocity space, one obtains the following

system of macroscopic equations:
∂n

∂t
+

∂(nuj)
∂xj

= 0, (10)

mn

(
∂uj

∂t
+ uk

∂uj

∂xk

)
+

∂Pjk

∂xk
− en

(
Ej + εjklukBl

)
− F coll

j = 0, (11)

∂Pjk

∂t
+

∂

∂xl

(
Pjkul + Qjkl

)
+

∂u[j

∂xl
Plk] − e

m
ε[jlmBmPlk] − Gcoll

jk = 0, (12)

∂Qjkl

∂t
+

∂

∂xm

(
Qjklum +

1
m

Rjklm

)
+

∂u[j

∂xm
Qmkl] − e

m
ε[jmnBnQmkl] −

− 1
mn

∂P[jm

∂xm
Pkl] +

1
mn

F coll
[j Pkl] − Hcoll

jkl = 0, (13)

4



where the square brackets around indices represent the minimal sum over permutations of uncon-

tracted indices needed to yield completely symmetric tensors.

The stress and stress-flux tensors can be uniquely split into ”Chew- Goldberger-Low” (CGL) and

”perpendicular” (noted with a ”hat”) parts:

Pjk = p⊥δjk + (p‖ − p⊥)bjbk + P̂jk = PCGL
jk + P̂jk , (14)

Qjkl = qT‖δ[jkbl] + (2qB‖ − 3qT‖)bjbkbl + Q̂jkl = QCGL
jkl + Q̂jkl , (15)

where bj is the magnetic unit vector, P̂jj = P̂jkbjbk = 0 and Q̂jkkbj = Q̂jklbjbkbl = 0. In the CGL

tensors, p⊥ and p‖ are the perpendicular and parallel pressures with the mean scalar pressure defined

as p = (2p⊥+p‖)/3, qT‖ is the parallel flux of perpendicular heat and qB‖ is the parallel flux of parallel

heat. The total heat flux vector is

qj = Qjkk/2 = (qT‖ + qB‖)bj + Q̂jkk/2 = q‖bj + q⊥j (16)

and the total flux of parallel heat is

qBj = Qjklbkbl/2 = qB‖bj + Q̂jklbkbl/2 = qB‖bj + qB⊥j . (17)

For the fourth-rank moment, it is useful to define

Rjklm =
1
n

P[jk Plm] + R̃jklm . (18)

The contribution of the factorized first term allows the proper account of temperature gradient effects,

as can be seen by bringing this representation to Eq.(13) which becomes

∂Qjkl

∂t
+

∂

∂xm

(
Qjklum +

1
m

R̃jklm

)
+

∂u[j

∂xm
Qmkl] − e

m
ε[jmnBnQmkl] +

+
1
m

P[jm
∂

∂xm

(
1
n

Pkl]

)
+

1
mn

F coll
[j Pkl] − Hcoll

jkl = 0. (19)

The irreducible term R̃jklm would vanish with a Maxwellian distribution function and accounts for

purely kinetic effects such as wave-particle resonances and collisionless dissipation.
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A formal solution for the stress and stress-flux tensors can be constructed as follows. Bringing the

representations (14) and (15) to the evolution equations (12) and (19), these can be written as

ε[jlmbmP̂lk] = Kjk (20)

and

ε[jmnbnQ̂mkl] = Ljkl , (21)

where

Kjk =
m

eB

[
∂Pjk

∂t
+

∂

∂xl

(
Pjkul + Qjkl

)
+

∂u[j

∂xl
Plk] − Gcoll

jk

]
(22)

and

Ljkl =
m

eB

[
∂Qjkl

∂t
+

∂

∂xm

(
Qjklum +

1
m

R̃jklm

)
+

∂u[j

∂xm
Qmkl] +

+
1
m

P[jm
∂

∂xm

(
1
n

Pkl]

)
+

1
mn

F coll
[j Pkl] − Hcoll

jkl

]
. (23)

These equations are subject to the solubility constraints Kjj = Kjkbjbk = 0 and Ljkkbj = Ljklbjbkbl = 0,

which correspond to the dynamic evolution equations for the CGL variables:

3
2

[
∂p

∂t
+

∂(puj)
∂xj

]
+ Pjk

∂uj

∂xk
+

∂qj

∂xj
− gcoll = 0 , (24)

1
2

[
∂p‖
∂t

+
∂(p‖uj)

∂xj

]
− Pjkbj

[
∂bk

∂t
+ ul

∂bk

∂xl
− bl

∂ul

∂xk

]
+

∂qBj

∂xj
− Qjklbj

∂bk

∂xl
− gcoll

B = 0 , (25)

∂q‖
∂t

+
∂(q‖uj)

∂xj
− qj

[
∂bj

∂t
+ uk

∂bj

∂xk
− bk

∂uk

∂xj

]
+ Qjklbj

∂uk

∂xl
+

1
m

Pjkbl
∂

∂xj

(
3p

2n
δkl +

1
n

Pkl

)
+

+
1

2m
bj

∂R̃jkll

∂xk
+

1
mn

bjF
coll
k

(
3p

2
δjk + Pjk

)
− hcoll = 0 (26)

and
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∂qB‖
∂t

+
∂(qB‖uj)

∂xj
− 3qBj

[
∂bj

∂t
+ uk

∂bj

∂xk
− bk

∂uk

∂xj

]
+

3
2m

Pjkbk
∂

∂xj

(
p‖
n

)
−

− 3
mn

PjlPkmbjbk
∂bl

∂xm
+

1
2m

bjbkbl
∂R̃jklm

∂xm
+

3p‖
2mn

bjF
coll
j − hcoll

B = 0 . (27)

Here we have defined the collisional exchange rates gcoll = Gcoll
jj /2, gcoll

B = Gcoll
jk bjbk/2, hcoll = Hcoll

jkkbj/2

and hcoll
B = Hcoll

jkl bjbkbl/2. Then, Eqs.(20) and (21) can be inverted to yield:

P̂jk =
1
4
ε[jlmblKmn

(
δnk] + 3bnbk]

)
, (28)

Q̂jkl =
1
3
ε[jmnbmLnkl] −

1
12

ε[jmnbkbmbpLnpl] +
2
9
ε[jmnεkpqεlrs]bmbpbrLnqs +

5
6
ε[jmnbkbl]bmbpbqLnpq . (29)

Since Kjk and Ljkl (22,23) are proportional to the inverse of the gyrofrequency, Ωc = eB/m, these

equations are amenable to a perturbative expansion in the case of strong magnetization, thus yielding

explicit algebraic representations for P̂jk and Q̂jkl, and explicit evolution equations for PCGL
jk and

QCGL
jkl . The tensor R̃jklm and the collisional terms are the closure variables that must be provided by

kinetic theory.

III The Fokker-Plank collision operator and its fluid moments.

The irreversible part of the plasma dynamics will be modeled with a Fokker-Plank operator for

binary Coulomb collisions in the kinetic equation (1). The Fokker-Plank collision operator will be kept

in its complete, quadratic form so that the analysis remains valid for far-from-Maxwellian distribution

functions. Introducing the species indices (α, β) and adopting the Landau form18 in the rationalized

electromagnetic system of units being used throughout this work,

Cα(v,x, t) = −
∑
β

c4e2
αe2

β ln Λαβ

8πmα
Γαβ(v,x, t) , (30)

where ln Λαβ = ln Λβα are the Coulomb logarithms,

Γαβ(v,x, t) =
∂

∂vj

∫
d3w Ujk(v,w)

[
fα(v,x, t)

mβ

∂fβ(w,x, t)
∂wk

− fβ(w,x, t)
mα

∂fα(v,x, t)
∂vk

]
(31)
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and

Ujk(v,w) =
|v − w|2 δjk − (vj − wj)(vk − wk)

|v − w|3 . (32)

We shall assume a single ion species of unit charge, α, β ∈ (ι, e), eι = −ee = e and take now α �= β.

Then, considering the fluid moments of the collision operator (7-9) and dropping the (x, t) arguments,

we obtain after integrations by parts:

F coll
α,j = −F coll

β,j = −c4e4

4π
ln Λαβ

(
1

mα
+

1
mβ

)∫ ∫
d3v d3w fα(v) fβ(w)

vj − wj

|v − w|3 , (33)

Gcoll
α,jk =

c4e4

4π

[
ln Λαα

mα

∫ ∫
d3v d3w fα(v) fα(w)

|v − w|2 δjk − 3(vj − wj)(vk − wk)
|v − w|3 +

+
ln Λαβ

mα

∫ ∫
d3v d3w fα(v) fβ(w)

|v − w|2 δjk − (vj − wj)(vk − wk)
|v − w|3 −

− ln Λαβ

(
1

mα
+

1
mβ

)∫ ∫
d3v d3w fα(v) fβ(w)

(v[j − w[j)(vk] − uα,k])
|v − w|3

]
(34)

and

Hcoll
α,jkl =

c4e4

4π

{
ln Λαα

mα

∫ ∫
d3v d3w fα(v) fα(w)

(v[j − uα,[j)
[
|v − w|2 δkl] − 3(vk − wk)(vl] − wl])

]
|v − w|3 +

+
ln Λαβ

mα

∫ ∫
d3v d3w fα(v) fβ(w)

(v[j − uα,[j)
[
|v − w|2 δkl] − (vk − wk)(vl] − wl])

]
|v − w|3 −

− ln Λαβ

(
1

mα
+

1
mβ

)∫ ∫
d3v d3w fα(v) fβ(w)

(v[j − w[j)
[
(vk − uα,k)(vl] − uα,l])

]
|v − w|3

}
. (35)
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IV Asymptotic expansions.

The general fluid moment equations given in the previous two Sections yield a workable fluid

description of the macroscopic plasma dynamics after an asymptotic expansion for strong magneti-

zation. The fundamental expansion parameter is the ratio δ ∼ ρι/L between the ion Larmor radius

and the shortest characteristic length other than the gyroradii, typically a fluctuation perpendicu-

lar wavelength or a perpendicular gradient scale length. The ensuing macroscopic fluid theory will

therefore apply to phenomena where physical effects associated with length scales comparable to the

gyroradii (such as small scale turbulence) can be neglected and the ratio δ can indeed be taken as much

smaller than unity. In addition, the relative orderings of the ratio me/mι between the electron and ion

masses and the ratio νι/Ωcι between the ion collision and cyclotron frequencies must be specified. As

discussed in the Introduction, the present low-collisionality macroscopic analysis will adopt as basic

working hypotheses (me/mι)1/2 <∼ δ � 1 and νι/Ωcι
<∼ δ (me/mι)1/2. It will also be assumed that the

plasma is quasineutral with a single ion species of unit charge, nι = ne = n, that the ion and electron

pressures are comparable, pι ∼ pe, and that the pressure anisotropies are arbitrary, (pα‖ − pα⊥) ∼ pα.

The ordering of the partial time derivatives will be linked to the macroscopic flow velocities of the ions

and electrons by ∂/∂t ∼ uα/L and, in order to cover both the fast (sonic) and slow (diamagnetic drift)

motions, it will be assumed δvthι
<∼ uι ∼ ue

<∼ vthι. Finally, the requirement that the electromagnetic

force j×B be balanced by either pressure gradients or inertial forces with sonic or diamagnetic flows

yields j/(en) = uι − ue ∼ δvthι.

The ion and electron thermal velocities are defined here as vthα = [pα/(mαn)]1/2. For the collision

frequencies, the following definitions are adopted:

νι =
c4e4n ln Λιι

4πm2
ι v

3
thι

, (36)

νe =
c4e4n ln Λeι

4πm2
ev

3
the

, (37)

νee =
c4e4n ln Λee

4πm2
ev

3
the

. (38)

Within the temperature ranges of interest for magnetic fusion, it can be taken ln Λee = ln Λeι, hence

νee = νe. These natural definitions of the collision frequencies differ by numerical factors from the
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inverse collision times τ−1
α defined in Ref.2 and widely used in the literature: νι = 3π1/2τ−1

ι and

νe = 3(π/2)1/2τ−1
e .

In order to carry out the asymptotic expansion of the collisional moments, it is useful to introduce

the dimensionless velocity space coordinates ξ defined by

v = uα + vthα ξ (39)

and the dimensionless distribution functions f̂α(ξ) defined by

fα(v) = fα(uα + vthα ξ) =
n

v3
thα

f̂α(ξ) , (40)

such that ∫
d3ξ f̂α(ξ) = 1 , (41)

∫
d3ξ ξj f̂α(ξ) = 0 , (42)

∫
d3ξ ξjξk f̂α(ξ) =

1
pα

Pα,jk (43)

and ∫
d3ξ ξjξkξl f̂α(ξ) =

1
pαvthα

Qα,jkl . (44)

In terms of the above variables, the collisional friction force (33) becomes

F coll
ι,j = −F coll

e,j =
νepe

vthe

(
1 +

me

mι

) ∫ ∫
d3ξ d3ζ f̂ι(ξ) f̂e

(
ζ +

vthι

vthe
ξ +

1
envthe

j

)
ζj

ζ3
, (45)

which is an expression suitable for the asymptotic expansion under our assumed orderings. By virtue

of these, vthι/vthe ∼ (me/mι)1/2 <∼ δ and j/(envthe) ∼ δ(me/mι)1/2 <∼ δ2 so, for ξ = O(1), we can

Taylor expand:

f̂e

(
ζ+

vthι

vthe
ξ+

1
envthe

j

)
= f̂e(ζ) +

(
vthι

vthe
ξk +

1
envthe

jk

)
∂f̂e(ζ)

∂ζk
+

v2
thι

2v2
the

ξkξl
∂2f̂e(ζ)
∂ζk∂ζl

+ O(δ3) . (46)
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Provided the distribution functions decay sufficiently fast at high energies, the integrals over the ξ

variable in (45) can now be carried out using (41-43). Using also the relationship ζj/ζ3 = −∂(1/ζ)/∂ζj

to integrate by parts with respect to the ζ variable, we obtain:

F coll
ι,j = −F coll

e,j =
νepe

vthe

(
1 +

me

mι

)[∫
d3ζ

ζj

ζ3
f̂e(ζ) +

+
1

envthe
jk

∫
d3ζ

ζ

∂2f̂e(ζ)
∂ζj∂ζk

+
me

2mιpe
Pι,kl

∫
d3ζ

ζ

∂3f̂e(ζ)
∂ζj∂ζk∂ζl

+ O(δ3)

]
. (47)

For the magnetized plasmas under consideration, the distribution functions can be expanded as

f̂α(ξ) = f̂ (0)
α (ξ, ξ‖) + f̂ (1)

α (ξ) + O(δ2
α) , (48)

where ξ‖ = ξjbj is the dimensionless parallel velocity coordinate, f̂
(0)
α (ξ, ξ‖) = O(1) is independent of

the gyrophase, f̂
(1)
α (ξ) = O(δα) and δα ∼ ρα/L ∼ δ (mα/mι)1/2. In addition, as a consequence of

Eqs.(20,22) and our low collisionality orderings, the ”perpendicular” part of the ion stress tensor is

P̂ι,kl
<∼ δpι. Therefore, within the retained accuracy of O(δ2νepe/vthe), we can write:

F coll
ι,j = −F coll

e,j =
νepe

vthe

[(
1 +

me

mι

)
bj

∫
d3ζ

ζ‖
ζ3

f̂ (0)
e (ζ, ζ‖) +

∫
d3ζ

ζj

ζ3
f̂ (1)

e (ζ) +

+
1

envthe
jk

∫
d3ζ

ζ

∂2f̂
(0)
e (ζ, ζ‖)

∂ζj∂ζk
+

me

2mιpe
PCGL

ι,kl

∫
d3ζ

ζ

∂3f̂
(0)
e (ζ, ζ‖)

∂ζj∂ζk∂ζl
+ O(δ3)

]
. (49)

If the zeroth-order electron distribution function were isotropic (not necessarily Maxwellian), i.e.

f̂
(0)
e = f̂

(0)
e (ξ), the first and last terms on the right hand side of Eq.(49) would vanish and the leading

order collisional friction force would reduce to

F coll
ι,j = −F coll

e,j =
νepe

vthe

[∫
d3ζ

ζj

ζ3
f̂ (1)

e (ζ) − 4πf̂
(0)
e (0)

3envthe
jj

]
= O

(
δe

νepe

vthe

)
, (50)

which contains the results obtained in high-collisionality theories2,19,20. However, in the low-collisionality

regime of interest here, nothing in principle prevents the distribution function from having a zeroth-

order anisotropic part, odd along the direction of the magnetic field, that would contribute to both
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the first and last terms of (49). In this case, the leading order collisional friction force stems just from

the first term and is

F coll
ι,j = −F coll

e,j =
νepe

vthe
bj

∫
d3ζ

ζ‖
ζ3

f̂ (0)
e (ζ, ζ‖) = O

(
νepe

vthe

)
, (51)

the remaining terms giving corrections of order δeνepe/vthe
<∼ δ2νepe/vthe or higher.

The higher-rank collisional moments can be expanded in a similar manner. For the second-rank

moments, keeping O(νepe) and O(νιpι), but neglecting O(δeνepe) ∼ O(δνιpι) we get:

Gcoll
e,jk =

1
2

νepe (3bjbk − δjk)
∫

d3ξ
ξ2 − 3ξ2

‖
ξ3

[
f̂ (0)

e (ξ, ξ‖) +

+
∫

d3ζ f̂ (0)
e

(
|ξ + ζ|, ξ‖ + ζ‖

)
f̂ (0)

e (ζ, ζ‖)

]
+ O(δeνepe) (52)

and

Gcoll
ι,jk =

1
2
νιpι(3bjbk − δjk)

∫
d3ξ

ξ2 − 3ξ2
‖

ξ3

∫
d3ζ f̂ (0)

ι

(
|ξ + ζ|, ξ‖ + ζ‖

)
f̂ (0)

ι (ζ, ζ‖) + O(δνιpι). (53)

For the electrons, keeping O(νepevthe), but neglecting O(δeνepevthe), the term needed to evaluate

the collisional contribution to the third-rank stress-flux tensor is (23):

Hcoll
e,jkl − 1

men
F coll

e,[j Pe,kl] =

= νepevthe

{
b[jδkl]

[
1
2

∫ ∫
d3ξ d3ζ

9ξ2
‖ζ‖ − ξ2ζ‖ − 6ξ‖ξ · ζ

ξ3
f̂ (0)

e

(
|ξ + ζ|, ξ‖ + ζ‖

)
f̂ (0)

e (ζ, ζ‖) +

+
∫

d3ξ
ξ‖ (3ξ2

‖ − 2ξ2)

ξ3
f̂ (0)

e (ξ, ξ‖) +
pe⊥
pe

∫
d3ξ

ξ‖
ξ3

f̂ (0)
e (ξ, ξ‖)

]
+

+ bjbkbl

[
9
2

∫ ∫
d3ξ d3ζ

ξ2ζ‖ − 5ξ2
‖ζ‖ + 2ξ‖ξ · ζ
ξ3

f̂ (0)
e

(
|ξ + ζ|, ξ‖ + ζ‖

)
f̂ (0)

e (ζ, ζ‖) +

+ 3
∫

d3ξ
ξ‖(3ξ2 − 5ξ2

‖)

ξ3
f̂ (0)

e (ξ, ξ‖) +
3(pe‖ − pe⊥)

pe

∫
d3ξ

ξ‖
ξ3

f̂ (0)
e (ξ, ξ‖)

]}
+ O(δeνepevthe). (54)
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For the ions, keeping O(νιpιvthι), but neglecting O(δνιpιvthι):

Hcoll
ι,jkl − 1

mιn
F coll

ι,[j Pι,kl] =

= νιpιvthι

[
1
2

b[jδkl]

∫ ∫
d3ξ d3ζ

9ξ2
‖ζ‖ − ξ2ζ‖ − 6ξ‖ξ · ζ

ξ3
f̂ (0)

ι

(
|ξ + ζ|, ξ‖ + ζ‖

)
f̂ (0)

ι (ζ, ζ‖) +

+
9
2
bjbkbl

∫ ∫
d3ξ d3ζ

ξ2ζ‖ − 5ξ2
‖ζ‖ + 2ξ‖ξ · ζ
ξ3

f̂ (0)
ι

(
|ξ + ζ|, ξ‖ + ζ‖

)
f̂ (0)

ι (ζ, ζ‖)

]
+ O(δνιpιvthι). (55)

The perpendicular stress-flux tensors, Q̂α,jkl, will be evaluated in their lowest significant order,

O(δαpαvthα). To obtain this accuracy, the collisional terms Hcoll
α,jkl − F coll

α,[j Pα,kl]/(mαn) of Eq.(23)

are needed only to O(ναpαvthα), as given by Eqs.(54,55). However, these expressions give a null

contribution to Q̂α,jkl when inserted in Eq.(29). Therefore, keeping only O(δαpαvthα) and allowing

for the fastest flow velocities uα ∼ vthι, the perpendicular stress-flux tensors have just the collision-

independent form8:

Q̂α,jkl = 2b[jbkqαB⊥,l] +
1
2
(δ[jk − b[jbk)qαT⊥,l] + ε[jmnbkbmTα,np(δpl] − bpbl]), (56)

where qαB⊥,l = Q̂α,jklbjbk/2 are the perpendicular fluxes of parallel heat given by

qιB⊥ =
1

eB
b×

[
pι⊥∇

(
pι‖
2n

)
+

pι‖(pι‖ − pι⊥)
n

κ + 2mιqιB‖(b · ∇)uι + mιqιT‖b×ωι

]
+ q̃ιB⊥ , (57)

qeB⊥ = − 1
eB

b ×
[
pe⊥∇

(
pe‖
2n

)
+

pe‖(pe‖ − pe⊥)

n
κ

]
+ q̃eB⊥ , (58)

qαT⊥,l = Q̂α,jkl(δjk − bjbk)/2 are the perpendicular fluxes of perpendicular heat given by

qιT⊥ =
1

eB
b ×

[
pι⊥∇

(
2pι⊥
n

)
+ 4mιqιT‖(b · ∇)uι

]
+ q̃ιT⊥ , (59)

qeT⊥ = − 1
eB

b ×
[
pe⊥∇

(
2pe⊥

n

)]
+ q̃eT⊥ , (60)
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and the second-rank tensors Tα,np are

Tι,np =
1

4eB

[
mιqιT‖

∂uι,[n

∂xp]
+

pι⊥(pι‖ − pι⊥)
n

∂b[n

∂xp]

]
+ T̃ι,np , (61)

Te,np = −
pe⊥(pe‖ − pe⊥)

4eBn

∂b[n

∂xp]
+ T̃e,np . (62)

Here, κ = (b · ∇)b stands for the magnetic curvature and ωι = ∇ × uι for the ion vorticity. These

expressions include the closure terms

q̃αB⊥ =
1

eαB
b ×

[
∇(r̃(0)

α⊥ + r̃
(0)
α∆)/5 + (r̃(0)

α‖ − r̃
(0)
α⊥ − r̃

(0)
α∆)κ

]
, (63)

q̃αT⊥ =
1

eαB
b ×

[
∇(4r̃

(0)
α⊥ − r̃

(0)
α∆)/5 + r̃

(0)
α∆κ

]
, (64)

and

T̃α,np =
r̃
(0)
α∆

2eαB

∂b[n

∂xp]
, (65)

where r̃
(0)
α⊥, r̃

(0)
α‖ and r̃

(0)
α∆ are the zero-Larmor-radius components of the R̃α,jklm tensors that must be

provided by kinetic theory:

R̃
(0)
α,jklm = (2r̃

(0)
α⊥/5− r̃

(0)
α∆/10) δ[jkδlm] + r̃

(0)
α∆ δ[jkblbm]/2 + (2r̃

(0)
α‖ − 2r̃

(0)
α⊥ − 7r̃

(0)
α∆/2) bjbkblbm . (66)

These three scalars are moments of the difference between the actual zeroth-order distribution func-

tions, f̂
(0)
α (ξ, ξ‖), and the two-temperature Maxwellians, f̂Mα(ξ, ξ‖). Therefore, they are well suited

for a Landau-fluid closure approximation3,4,7. Specifically, they are:

r̃
(0)
α⊥ =

p2
α

4n

∫
d3ξ ξ2(ξ2 − ξ2

‖)
[
f̂ (0)

α (ξ, ξ‖) − f̂Mα(ξ, ξ‖)
]

, (67)

r̃
(0)
α‖ =

p2
α

2n

∫
d3ξ ξ2ξ2

‖
[
f̂ (0)

α (ξ, ξ‖) − f̂Mα(ξ, ξ‖)
]

, (68)

r̃
(0)
α∆ =

p2
α

4n

∫
d3ξ (ξ2 − ξ2

‖)(5ξ2
‖ − ξ2)

[
f̂ (0)

α (ξ, ξ‖) − f̂Mα(ξ, ξ‖)
]

, (69)

with

f̂Mα(ξ, ξ‖) =
p
3/2
α

(2π)3/2pα⊥p
1/2
α‖

exp

[
−pα

2

(
ξ2 − ξ2

‖
pα⊥

+
ξ2
‖

pα‖

)]
. (70)
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Unlike the perpendicular parts of the stress-flux tensors, whose ordering consistent with the gen-

eral hypotheses of the present work is uniquely determined as Q̂α,jkl = O(δαpαvthα), the ordering of

the corresponding CGL parts, namely the parallel heat fluxes, requires further assumptions. The ion

analysis could proceed without additional difficulty assuming the maximal ordering QCGL
ι,jkl = O(pιvthι)

but for the electrons, consistent with the general evolution equations (24-27), different orderings for

the parallel heat fluxes depend on more specific assumptions on the ordering of the collision frequency

and the ratio between parallel and perpendicular gradient scale lengths. For the sake of conciseness,

we shall carry on this work with the overall assumption QCGL
α,jkl = O(pαuα), which will be possible to

make compatible with Eqs.(24-27). While this amounts to little or no restriction on the ions, it could

sometimes be too restrictive for the electrons. In such cases the analysis would have to be extended

in a way that is specific to more precise νe and L‖/L⊥ ordering assumptions.

With the parallel heat flux orderings QCGL
α,jkl = O(pαuα), the lowest significant order in the ion

perpendicular stress tensor is P̂ι,jk = O(δpιuι/vthι) which will be the maximum accuracy retained in

this work. To obtain this accuracy, the collisional term Gcoll
ι,jk of Eq.(22) is needed only to O(νιpι), as

given by Eq.(53). Like in the case of the perpendicular stress-flux tensor, this expression gives a null

contribution to P̂ι,jk when inserted in Eq.(28). Therefore, keeping O(δpιuι/vthι), the ion perpendicular

stress tensor is given by the following expression which does not depend explicitly on collisions, i.e.

the so called gyroviscous stress:

P̂ι,jk =
1
4

ε[jlmbl Kgyr
ι,mn

(
δnk] + 3bnbk]

)
(71)

with

Kgyr
ι,mn =

mι

eB

[
∂PCGL

ι,mn

∂t
+

∂

∂xp

(
PCGL

ι,mnuι,p + QCGL
ι,mnp + Q̂ι,mnp

)
+ PCGL

ι,[mp

∂uι,n]

∂xp

]
= O

(
δpιuι

vthι

)
. (72)

Following similar considerations, the electron perpendicular stress tensor turns out to be P̂e,jk =

O(δepeue/vthe) <∼ O(δ3pe), which will always be negligible for our purposes.

Finally, (52,53) imply that the collisional heat exchange rates gcoll
α = Gcoll

α,jj/2 are gcoll
α = O(δαναpα)

which will be negligible within the maximum accuracy, O(δvthιpα/L), to be retained in our mean

pressure evolution equations (24). In summary, the only collisional terms that will play a role in our
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low-collisionality fluid systems are the friction force and the scalars gcoll
Bα , hcoll

α and hcoll
Bα of Eqs.(25-27).

V Two-fluid system for fast dynamics.

In this section, the results obtained so far will be further specialized to the fast dynamics ordering

∂/∂t ∼ uα/L ∼ vthι/L. This will yield a two-fluid system for plasma evolution on the sonic time

scale with first-order FLR corrections. Here, no distinction will be made between parallel and per-

pendicular length scales (L ∼ L⊥ ∼ L‖) and the plasma ”beta” will be taken as order unity (pα ∼ B2).

In our single-ion quasineutral plasma we have always:

ne = nι = n , (73)

∂n

∂t
+ ∇ · (nuι) = 0 , (74)

ue = uι − 1
en

j , (75)

j = ∇× B (76)

and
∂B
∂t

+ ∇× E = 0 . (77)

All the other fluid equations will be expanded keeping the first FLR corrections of order δ beyond the

lowest-order or zero-Larmor-radius terms.

The electric field is obtained from the electron momentum equation. Keeping O(vthιB)+O(δvthιB),

we get a generalized Ohm’s law of the form:

E = −uι × B +
1
en

(
j × B −∇ · PCGL

e

)
, (78)

where

∇ · PCGL
α = ∇pα⊥ + (B · ∇)

(
pα‖ − pα⊥

B2
B

)
. (79)
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The parallel component of the electric field begins in O(δvthιB) and is available to the accuracy of

O(δvthιB) + O(δ2vthιB):

b · E =
1
en

[
−b · ∇pe‖ + (pe‖ − pe⊥)b · ∇(lnB) + F coll

e‖
]

, (80)

where the parallel friction force is needed only in its lowest significant order,

F coll
e‖ = − νepe

vthe

∫
d3ξ

ξ‖
ξ3

f̂ (0)
e (ξ, ξ‖) = O

(
νepe

vthe

)
. (81)

Here it is worth pointing out that in the general case of three-dimensional geometry, anisotropic pres-

sures and independent dynamical evolution of pressures and density, the term −∇·PCGL
e /(en) cannot

be represented as the gradient of a global scalar and yields a non-vanishing contribution to the paral-

lel electric field, hence it is the largest term to break the magnetic frozen-in law and allow magnetic

reconnection.

The ion flow velocity is obtained from the sum of the ion and electron momentum equations.

Keeping O(mιnv2
thι/L) + O(δmιnv2

thι/L), we get:

mιn

[
∂uι

∂t
+ (uι · ∇)uι

]
+ ∇ ·

(
PCGL

e + PCGL
ι + P̂ι

)
− j × B = 0 . (82)

Here, the ion perpendicular stress tensor is needed in its lowest significant order, P̂ι,jk = O(δpι).

Keeping this accuracy and using the fast dynamics ordering in Eqs.(71,72), we get the fast dynamics

gyroviscous tensor:

P̂ι,jk =
1
4

ε[jlmbl K(1)
ι,mn

(
δnk] + 3bnbk]

)
(83)

with

K(1)
ι,mn =

mι

eB

{
pι⊥

∂uι,n]

∂x[m
+

∂(qιT‖bn])
∂x[m

+b[m

[
(2qιB‖−3qιT‖)κn]+2(pι‖−pι⊥) bp

∂uι,n]

∂xp

]}
= O(δpι). (84)

The divergence of this gyroviscous stress tensor, in coordinate-free vector form for general magnetic

geometry and general flows, is given in Ref.21.

The remaining equations in the two-fluid system are the evolution equations for the CGL vari-

ables, obtained by expanding (24-27). Keeping O(pιvthι/L)+O(δpιvthι/L), the ion pressure equations
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become:

3
2

[
∂pι

∂t
+ ∇ · (pιuι)

]
+ pι∇ · uι + (pι‖ − pι⊥)

{
b ·

[
(b · ∇)uι

]
−∇ · uι/3

}
+ ∇ · (qι‖b) +

+ P̂ι : (∇uι) + ∇ · qι⊥ = 0 (85)

and

1
2

[
∂pι‖
∂t

+ ∇ · (pι‖uι)

]
+ pι‖b ·

[
(b · ∇)uι

]
+ ∇ · (qιB‖b) + qιT‖b · ∇(ln B) +

+ b · P̂ι · (b × ωι) + ∇ · qιB⊥ − b · Q̂ι : (∇b) − gcoll
ιB = 0 . (86)

The first four terms of each of these equations constitute the classic CGL collisionless, zero-Larmor-

radius result22. The first-order, collision-independent FLR corrections8,23 are represented by the terms

involving the perpendicular stress tensor P̂ι as given by (83,84) and the perpendicular stress-flux tensor

Q̂ι as given by (56,57,59,61,63-65). Accordingly,

P̂ι : (∇uι) = b · P̂ι ·
[
2(b · ∇)uι + b × ωι

]
+ qιT‖σι , (87)

where the vector b · P̂ι is

b · P̂ι =
mι

eB
b ×

[
2pι‖(b · ∇)uι + pι⊥b × ωι + ∇qιT‖ + 2(qιB‖ − qιT‖)κ

]
(88)

and the scalar σι is

σι =
mι

4eB
εjklbj

(
∂bk

∂xm
+

∂bm

∂xk

)
(δmn − bmbn)

(
∂uι,l

∂xn
+

∂uι,n

∂xl

)
, (89)

the total perpendicular heat flux vector is qι⊥ = qιB⊥ + qιT⊥, with qιB⊥ and qιT⊥ as given by (57)

and (59), and

b · Q̂ι : (∇b) = 2qιB⊥ · κ − qιT‖σι . (90)

As discussed before, the collisional contributions to the perpendicular viscosity and the perpendicular

heat fluxes, as well as the collisional heat exchange term in (85), are negligible within our orderings

and the only collisional term that needs to be retained here is gcoll
ιB in (86). Sometimes it is useful
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to consider the linear combination between (85) and (86) that gives the evolution of the ion pressure

anisotropy:

∂(pι‖ − pι⊥)
∂t

+ ∇ ·
[
(pι‖ − pι⊥)uι

]
+ (pι‖ − pι⊥)

{
b ·

[
(b · ∇)uι

]
+ ∇ · uι/3

}
+

+ pι

{
3b ·

[
(b · ∇)uι

]
−∇ · uι

}
+ ∇ ·

[
(3qιB‖ − qι‖)b

]
+ 3qιT‖b · ∇(ln B) +

+ 3b · P̂ι · (b × ωι) − P̂ι : (∇uι) + ∇ · (3qιB⊥ − qι⊥) − 3b · Q̂ι : (∇b) − 3gcoll
ιB = 0 . (91)

Given our low-collisionality ordering νι
<∼ δ2Ωcι ∼ δvthι/L, the collisional term gcoll

ιB is needed only

in its lowest significant order, as derived from (53):

gcoll
ιB = νιpι

∫
d3ξ

ξ2 − 3ξ2
‖

2ξ3

∫
d3ζ f̂ (0)

ι

(
|ξ + ζ|, ξ‖ + ζ‖

)
f̂ (0)

ι (ζ, ζ‖) = O(νιpι) . (92)

The angular dependence of the (ξ2 − 3ξ2
‖) factor is the l = 2, m = 0 spherical harmonic. Hence,

the gcoll
ιB moment samples the anisotropic and even along the direction of the magnetic field part of

the distribution function, which also yields the pressure anisotropy. We may then use the estimate

gcoll
ιB ∼ νι(pι‖−pι⊥) <∼ δ(pι‖−pι⊥)vthι/L (with a negative multiplier of order unity). The zero-Larmor-

radius part of (91) contains the following piece independent of the pressure anisotropy,

Dι = pι

{
3b ·

[
(b · ∇)uι

]
−∇ · uι

}
+ ∇ ·

[
(3qιB‖ − qι‖)b

]
+ 3qιT‖b · ∇(ln B) , (93)

which in the present sonic flow ordering and with the exception of some special configurations such as

certain quasi-equilibria with closed magnetic surfaces is Dι ∼ pιvthι/L. Therefore, collisions cannot in

general force (pι‖−pι⊥) to be much smaller than pι and, in order to balance Dι, our strong anisotropy

ordering (pι‖−pι⊥) ∼ pι must be retained. The same argument holds for the electrons in the sonic flow

ordering, where a similarly defined De is De ∼ pevthι/L and gcoll
eB ∼ νe(pe‖− pe⊥) <∼ (pe‖− pe⊥)vthι/L .

The electron pressure equations are similar to the ion ones, only lacking a number of terms which

are negligible due to the small electron mass. Keeping O(pevthι/L) + O(δpevthι/L), we get:
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3
2

[
∂pe

∂t
+∇·(peue)

]
+ pe∇·ue + (pe‖−pe⊥)

{
b ·

[
(b ·∇)ue

]
−∇·ue/3

}
+ ∇·(qe‖b+qe⊥) = 0 (94)

and

1
2

[
∂pe‖
∂t

+∇·(pe‖ue)

]
+pe‖b·

[
(b·∇)ue

]
+∇·(qeB‖b+qeB⊥)+qeT‖b·∇(ln B)−2qeB⊥·κ−gcoll

eB = 0 (95)

or, alternatively,

∂(pe‖ − pe⊥)
∂t

+ ∇ ·
[
(pe‖ − pe⊥)ue

]
+ (pe‖ − pe⊥)

{
b ·

[
(b · ∇)ue

]
+ ∇ · ue/3

}
+

+ pe

{
3b ·

[
(b · ∇)ue

]
−∇ · ue

}
+ ∇ ·

[
(3qeB‖ − qe‖)b

]
+ 3qeT‖b · ∇(ln B) +

+ ∇ · (3qeB⊥ − qe⊥) − 6qeB⊥ · κ − 3gcoll
eB = 0 . (96)

Here, the total electron perpendicular heat flux vector is qe⊥ = qeB⊥ + qeT⊥, with qeB⊥ and qeT⊥ as

given by (58) and (60), and the collisional term gcoll
eB is as derived from (52):

gcoll
eB = νepe

∫
d3ξ

ξ2 − 3ξ2
‖

2ξ3

[
f̂ (0)

e (ξ, ξ‖) +
∫

d3ζ f̂ (0)
e

(
|ξ + ζ|, ξ‖ + ζ‖

)
f̂ (0)

e (ζ, ζ‖)

]
∼ νe(pe‖ − pe⊥).(97)

Considering the parallel heat flux evolution equations for the ions and keeping the accuracy of

O(pιv
2
thι/L) + O(δpιv

2
thι/L), we get:

∂qι‖
∂t

+ ∇ · (qι‖uι) + qι‖∇ · uι + qιB‖
{
3b ·

[
(b · ∇)uι

]
−∇ · uι

}
+

+
pι‖
mι

b · ∇
(

3pι‖ + 2pι⊥
2n

)
−

pι⊥(pι‖ − pι⊥)
mιn

b · ∇(lnB) +
1

mι

[
b · ∇r̃

(0)
ι‖ − (r̃(0)

ι‖ − r̃
(0)
ι⊥ )b · ∇(lnB)

]
+

+
1

mι
b · P̂ι ·

[
∇

(
3pι‖ + 2pι⊥

2n

)
−

2(pι‖ − pι⊥)
n

κ

]
+

(
pι‖ − 2pι⊥

mιn

)
P̂ι : (∇b) +

(
pι⊥
mι

)
∇ ·

(
1
n
b · P̂ι

)
+

+qι⊥ · (b × ωι) + b · Q̂ι : (∇uι) +
s̃
(1)
ι

2mι
+

(
3pι‖ + 2pι⊥

2mιn

)
F coll

ι‖ − hcoll
ι = 0 (98)
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and

∂qιB‖
∂t

+ ∇ · (qιB‖uι) + 3qιB‖b ·
[
(b · ∇)uι

]
+

3pι‖
2mι

b · ∇
(

pι‖
n

)
+

+
1

mι

[
b · ∇(r̃(0)

ι‖ − 2r̃
(0)
ι⊥ /5 − 2r̃

(0)
ι∆/5) − (r̃(0)

ι‖ − r̃
(0)
ι⊥ − r̃

(0)
ι∆ )b · ∇(lnB)

]
+

+
3

2mι
b · P̂ι ·

[
∇

(
pι‖
n

)
−

2pι‖
n

κ

]
+ 3qιB⊥ · (b × ωι) +

s̃
(1)
ιB

2mι
+

3pι‖
2mιn

F coll
ι‖ − hcoll

ιB = 0 . (99)

In the collision-independent parts of these FLR parallel heat flux equations8, two additional scalars

involving the perpendicular stress and stress-flux tensors are

P̂ι : (∇b) = b · P̂ι · κ − pι⊥σι (100)

and

b · Q̂ι : (∇uι) = 2qιB⊥ ·
[
2(b · ∇)uι + b × ωι

]
+

1
mι

[
pι⊥(pι‖ − pι⊥)

n
+ 2r̃

(0)
ι∆

]
σι . (101)

Also, two FLR closure terms appear in (98-99):

s̃(1)
ι = bj

∂R̃
(1)
ι,jkll

∂xk
(102)

and

s̃
(1)
ιB = bjbkbl

∂R̃
(1)
ι,jklm

∂xm
, (103)

where R̃
(1)
ι,jklm = O(δm2

ι nv2
thι) is the first-order, FLR part of the R̃ι,jklm tensor defined in (18). These

are the only closure terms in our analysis that require knowledge of the first-order part of the ion

distribution function, f̂
(1)
ι (ξ) = O(δ), and are therefore the most difficult to evaluate. If these two

terms could be neglected, then all the required closure terms, including the collisional ones, could be

obtained from the lowest-order distribution functions f̂
(0)
α (ξ, ξ‖) = O(1) obeying zero-Larmor-radius

drift-kinetic equations.
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Again, as a consequence of our low-collisionality ordering νι
<∼ δ2Ωcι ∼ δvthι/L, the collisional

terms in (98-99) are needed only in their lowest significant order,
[
hcoll

ι − (3pι‖ +2pι⊥)F coll
ι‖ /(2mιn)

]
∼[

hcoll
ιB − 3pι‖F

coll
ι‖ /(2mιn)

]
∼ νιpιvthι

<∼ δpιv
2
thι/L, as derived from (55):

hcoll
ι −

(
3pι‖ + 2pι⊥

2mιn

)
F coll

ι‖ = νιpιvthι

∫ ∫
d3ξ d3ζ

ξ2ζ‖ − 3ξ‖ξ · ζ
ξ3

f̂ (0)
ι

(
|ξ + ζ|, ξ‖ + ζ‖

)
f̂ (0)

ι (ζ, ζ‖)

(104)

and

hcoll
ιB −

3pι‖
2mιn

F coll
ι‖ =

3
2
νιpιvthι

∫ ∫
d3ξ d3ζ

ξ2ζ‖ − 3ξ2
‖ζ‖

ξ3
f̂ (0)

ι

(
|ξ + ζ|, ξ‖ + ζ‖

)
f̂ (0)

ι (ζ, ζ‖) . (105)

Finally, in the parallel heat flux evolution equations for the electrons, the leading terms are

O(pev
2
the/L). Therefore, the maximum accuracy that can consistently be kept there is O(pev

2
the/L) +

O(δpev
2
the/L). Neglecting higher-order terms under our ordering scheme, those equations yield the

following time-independent constraints that do not involve explicitly the parallel heat fluxes:

pe‖
me

b · ∇
(

3pe‖ + 2pe⊥
2n

)
−

pe⊥(pe‖ − pe⊥)
men

b · ∇(lnB) +
1

me

[
b · ∇r̃

(0)
e‖ − (r̃(0)

e‖ − r̃
(0)
e⊥)b · ∇(lnB)

]
+

+

(
3pe‖ + 2pe⊥

2men

)
F coll

e‖ − hcoll
e = 0 (106)

and

3pe‖
2me

b · ∇
(

pe‖
n

)
+

1
me

[
b · ∇(r̃(0)

e‖ − 2r̃
(0)
e⊥/5 − 2r̃

(0)
e∆/5) − (r̃(0)

e‖ − r̃
(0)
e⊥ − r̃

(0)
e∆)b · ∇(lnB)

]
+

+
3pe‖
2men

F coll
e‖ − hcoll

eB = 0 . (107)

Accordingly, the electron parallel heat fluxes are determined implicitly by the condition that the

solutions of the dynamical electron pressure evolution equations (94,95) be compatible with these

time-independent constraints. The latter, whose collisionless limit was obtained in Ref.24 using the

gyrofluid formalism and in Ref.8 using the present fluid moment formalism, provide an improvement

over the adiabatic electron response model. The collisional terms that need be retained in this case
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are
[
hcoll

e − (3pe‖+2pe⊥)F coll
e‖ /(2men)

]
∼

[
hcoll

eB −3pe‖F
coll
e‖ /(2men)

]
∼ νepevthe

<∼ δpev
2
the/L, as derived

from (54):

hcoll
e −

(
3pe‖ + 2pe⊥

2men

)
F coll

e‖ = νepevthe

[∫ ∫
d3ξ d3ζ

ξ2ζ‖ − 3ξ‖ξ · ζ
ξ3

f̂ (0)
e

(
|ξ + ζ|, ξ‖ + ζ‖

)
f̂ (0)

e (ζ, ζ‖) −

− 1
2

∫
d3ξ

ξ‖
ξ

f̂ (0)
e (ξ, ξ‖) +

(
3pe‖ + 2pe⊥

2pe

) ∫
d3ξ

ξ‖
ξ3

f̂ (0)
e (ξ, ξ‖)

]
(108)

and

hcoll
eB −

3pe‖
2men

F coll
e‖ = νepevthe

[
3
2

∫ ∫
d3ξ d3ζ

ξ2ζ‖ − 3ξ2
‖ζ‖

ξ3
f̂ (0)

e

(
|ξ + ζ|, ξ‖ + ζ‖

)
f̂ (0)

e (ζ, ζ‖) +

+
3
2

∫
d3ξ

ξ2ξ‖ − 2ξ3
‖

ξ3
f̂ (0)

e (ξ, ξ‖) +
3pe‖
2pe

∫
d3ξ

ξ‖
ξ3

f̂ (0)
e (ξ, ξ‖)

]
. (109)

Summarizing, our fast dynamics FLR two-fluid system comprises the continuity equation (74)

to evolve the particle density, the constitutive relation (75) for the electron flow velocity, Ampere’s

and Faraday’s laws (76,77) for the current and the magnetic field, the generalized Ohm’s law (78,80)

for the electric field, the momentum equation (82) for the ion flow velocity, the evolution equations

(85,86,94,95) for the anisotropic ion and electron pressures, the evolution equations (98,99) for the

ion parallel heat fluxes and the implicit constraints (106,107) for the electron parallel heat fluxes.

Explicit representations are given for the ”perpendicular” parts of the stress and stress-flux tensors

involved in this system. The unspecified closure variables that must be provided by kinetic theory

are the irreducible fourth rank moments r̃
(0)
α⊥, r̃

(0)
α‖ , r̃

(0)
α∆, s̃

(1)
ι and s̃

(1)
ιB (67,68,69,102,103), and the

collisional moments F coll
e‖ , gcoll

αB , hcoll
α and hcoll

αB (81,92,97,104,105,108,109). Of these, only s̃
(1)
ι and s̃

(1)
ιB

require knowledge of the FLR part of any distribution function, all the others being derived from the

lowest-order distribution functions f̂
(0)
α (ξ, ξ‖) obeying zero-Larmor-radius drift-kinetic equations. The

problematic terms s̃
(1)
ι and s̃

(1)
ιB contribute only to the FLR corrections to the ion parallel heat fluxes

which in turn only enter the theory either acted upon by parallel gradient operators or multiplied

by magnetic gradient factors. A plausible truncation scheme would therefore be to neglect s̃
(1)
ι and
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s̃
(1)
ιB (or even perhaps all the first-order terms including the diamagnetic and collisional ones) in the

ion parallel heat flux equations (98,99). This results in a very inclusive and ”almost fully consistent”

FLR fluid-kinetic hybrid model, whose kinetic side is required to provide only zero-Larmor-radius

drift-kinetic solutions to evaluate the remaining fluid closure variables.

VI Reduced two-fluid system for slow dynamics.

A widely used ordering for slow dynamics on the diamagnetic drift scale is ∂/∂t ∼ uα/L ∼ δvthι/L,

meaning that the flow velocities and time derivatives are taken to be comparable to the diamagnetic

drift velocities and frequencies respectively. There is a difficulty specific to this ordering which has to

do with the fact that, to obtain the parallel flow velocities in their leading order, uα‖ = O(δvthι), the

parallel components of ∇ · PCGL
α in the momentum equations must be known to second order accu-

racy: b · (∇ · PCGL
α ) = O(δ2mαnv2

thα/L). The fluid equations cannot provide second-order-accurate

CGL pressures, PCGL
α = O(mαnv2

thα) + O(δ2mαnv2
thα), since this would require knowing the paral-

lel velocities and the heat fluxes to third order accuracy, namely uα‖ = O(δvthι) + O(δ3vthι) and

qα = O(δvthιmαnv2
thα) + O(δ3vthιmαnv2

thα). One way of avoiding this difficulty is to assume the

small-parallel-gradient subsidiary ordering b ·∇ ∼ δ2/L which allows a lowest-significant-order formu-

lation where the parallel velocities decouple from the perpendicular dynamics and only lowest-order

pressures, PCGL
α = O(mαnv2

thα), are needed.

The adoption of small-parallel-gradient orderings leads naturally to the so-called ”reduced sys-

tems” characterized by separate parallel and perpendicular length scales with a subsidiary expansion

parameter ε ∼ L⊥/L‖ ∼ k‖/k⊥ � 1 besides δ ∼ ρι/L⊥ � 1, weakly inhomogeneous magnetic fields

such that ∇B ∼ B/L‖ and elimination of the fast magnetosonic (compressional Alfven) wave9−17.

This approach will be followed here and, based on our general fluid equations, we shall derive the

corresponding slow dynamics reduced system, taking ε ∼ δ2 as in the prototypical reduced system for

dynamics on the diamagnetic drift scale13. Specifically we shall assume a slow dynamics ordering with

diamagnetic drift scale particle and heat flows:
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∂/∂t ∼ uα/L⊥ ∼ δ2Ωcι , (110)

uα‖ ∼ uα⊥ ∼ δvthι , (111)

qα‖ ∼ qα⊥ ∼ uαpα ∼ δvthιpα , (112)

and a small-parallel-gradient ordering in a toroidal background geometry with inverse aspect ratio ε

of the order of δ2 and weakly inhomogeneous, mainly toroidal magnetic field:

ε ∼ (R − R0)/R0 ∼ L⊥/L‖ ∼ δ2 , (113)

k‖ ∼ b · ∇ ∼ eζ · ∇ ∼ 1/R0 ∼ εk⊥ , (114)

B = B0eζ + B1 , (115)

B1 ∼ εB0 , (116)

where R0 and B0 are constants and eζ is the azimuthal unit vector of the (R, ζ, Z) cylindrical coordinate

system. In addition, the plasma ”beta” will be taken as O(ε) and the ion and electron pressures will

be assumed to be comparable with arbitrary anisotropies:

pι ∼ pe ∼ (pι‖ − pι⊥) ∼ (pe‖ − pe⊥) ∼ εB2
0 . (117)

From the above orderings and its divergence-free condition, it follows that the magnetic field can

be represented as

B = (B0 + B1ζ) eζ − eζ ×∇ψ + O(ε2B0) (118)

and, from Ampere’s law, the current density is:

j =
B0

R0
eZ − eζ ×∇B1ζ − ∇2

⊥ψ eζ + O(ε2B0/L⊥) , (119)

where we have adopted the notation ∇2
⊥f = ∇⊥ · (∇⊥f), with ∇⊥f = (∂f/∂R)eR + (∂f/∂Z)eZ and

∇⊥ · h = ∂(eR · h)/∂R + ∂(eZ · h)/∂Z.
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Bringing the magnetic field representation (118) along with the orderings (110,111,113,114) to

Faraday’s law, we obtain for the electric field

E = −∇⊥Φ + O(εδvthιB0) , (120)

where Φ = O(δvthιB0L⊥) is the electric potential. The parallel component of the electric field begins

in O(εδvthιB0) and is

b · E = −∂ψ

∂t
− ∇‖Φ + O(ε2δvthιB0) , (121)

where we use the notation ∇‖f = R−1
0 ∂f/∂ζ −B−1

0 [ψ, f ] and [g, f ] = ∂f/∂R ∂g/∂Z −∂g/∂R ∂f/∂Z.

Then, keeping the leading order accuracy of O(εδvthιB0), the parallel component of the electron

momentum equation or generalized Ohm’s law yields:

∂ψ

∂t
+ ∇‖Φ − 1

en
∇‖ pe‖ +

1
en

F coll
e‖ = 0 , (122)

where the collisional friction force needs to be kept only in its lowest-order form given by Eq.(81).

The sum of the ion and electron momentum equations yields a time-independent quasi-equilibrium

condition in its leading order, O(pα/L⊥) = O(εB2
0/L⊥):

∇(pι⊥ + pe⊥ + B2/2) − B2κ = O(ε2B2
0/L⊥) . (123)

Moreover, for our weakly inhomogeneous magnetic field in large-aspect-ratio toroidal geometry, we

have

B2κ = − B2
0

R0
eR + O(ε2B2

0/L⊥) = − B2
0 ∇

(
R − R0

R0

)
+ O(ε2B2

0/L⊥) . (124)

Therefore, Eq.(123) can be integrated to obtain

B1ζ = −B0

(
R − R0

R0

)
− 1

B0
(pι⊥ + pe⊥) + O(ε2B0) . (125)

This time-independent relation for the toroidal component of the magnetic field removes the fast

magnetosonic wave from the system. The first term of this formula takes into account the R−1 =

R−1
0 [1 − (R − R0)/R0] + O(ε2R−1

0 ) spatial dependence of the vacuum field that was not included in

the constant B0 term of (118) and the cross product of eζ with its gradient cancels the first term in

the expression (119) for the current density which becomes:

j =
1

B0
eζ ×∇(pι⊥ + pe⊥) − ∇2

⊥ψ eζ + O(ε2B2
0/L⊥) (126)
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or, recalling that the magnetic unit vector is b = eζ + O(ε),

j =
1

B0
b ×∇(pι⊥ + pe⊥) − ∇2

⊥ψ b + O(ε2B2
0/L⊥) . (127)

Taking the cross product of the ion momentum equation with the magnetic unit vector, we obtain

the expression for the ion flow velocity:

uι = uι‖ b +
1

B0
b ×

(
∇Φ +

1
en

∇pι⊥

)
+ O(εδvthι) (128)

and, from the ion velocity and the current:

ue = uι − 1
en

j =

(
uι‖ +

1
en

∇2
⊥ψ

)
b +

1
B0

b ×
(
∇Φ − 1

en
∇pe⊥

)
+ O(εδvthι) . (129)

Accordingly, the divergence of the particle fluxes is

∇ · (nuι) = ∇ · (nue) = B−1
0 [Φ, n] + O(εδnvthι/L⊥) . (130)

Thus, introducing the fluid time derivative associated with an advection by the leading-order form of

the E × B drift, d′f/dt = ∂f/∂t + B−1
0 [Φ, f ], the lowest-significant-order continuity equation can be

written as:
d′n
dt

= 0 . (131)

To complete the slow dynamics reduced system, there remains to obtain the evolution equations

for the ion and electron parallel and perpendicular pressures, the ion parallel velocity and the electric

potential. These will be derived from the evolution equations for the CGL stress tensors (24,25), the

parallel component of the total (sum of ion and electron) momentum equation (11) and the vorticity

equation obtained by taking the parallel component of the curl of the total momentum equation. In

their lowest significant orders, these equations require knowledge of the ion and electron perpendicular

heat fluxes and the ion gyroviscosity. The parallel heat fluxes are either acted upon by parallel gradient

operators or multiplied by magnetic gradient factors and do not contribute to this leading-order system
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as a consequence of the assumptions (110-116). Bringing these orderings to Eqs.(57-60) and keeping

only the required accuracy of O(δpαvthι), the ion and electron perpendicular heat fluxes become:

qαB⊥ =
pα⊥

2eαB
b ×∇

(
pα‖
n

)
+

1
5eαB

b ×∇(r̃(0)
α⊥ + r̃

(0)
α∆) (132)

and

qαT⊥ =
2pα⊥
eαB

b ×∇
(

pα⊥
n

)
+

1
5eαB

b ×∇(4r̃
(0)
α⊥ − r̃

(0)
α∆) . (133)

Therefore, keeping only O(δpαvthι/L⊥), we get:

∇ · qαB⊥ = − 1
2eαB0

[pα⊥, pα‖/n] (134)

and

∇ · qαT⊥ = − 2pα⊥
eαB0

[pα⊥, 1/n] . (135)

Similarly, using (110-116) and keeping the required accuracy of P̂ι,jk = O(δ2pι), the ion gyroviscous

stress tensor (71,72) becomes:

P̂ι,jk =
1
4

ε[jlmbl K(2)
ι,mn

(
δnk] + 3bnbk]

)
(136)

with

K(2)
ι,mn =

mι

eB

[
pι⊥

∂uι,n]

∂x[m
+

∂(qιT‖bn])
∂x[m

+

(
pι‖ − pι⊥

en2B

)
b[m

∂n

∂xp

∂pι⊥
∂xq

εpqn] +
∂Q̂ι,mnp

∂xp

]
. (137)

The divergence of this tensor can be evaluated following the analysis of Ref.21. Making use of the

present orderings (110-116) and keeping only O(δ2pι/L⊥), it reduces to

∇ · P̂ι = − mι

eB0

[
(b ×∇pι⊥) · ∇

]
uι − ∇×

[(
mιpι⊥
2eB0

∇ · uι +
mι

4eB0
∇ · qιT⊥

)
b

]
− ∇χ†

ι , (138)

where the last term, ∇χ†
ι , can be ignored since its contribution to b · (∇ · P̂ι) and b · [∇× (∇ · P̂ι)]

will be negligible. Substituting for ∇ ·uι from (128) and for ∇ · qιT⊥ from (135), always keeping only

O(δ2pι/L⊥), we get:

∇ · P̂ι = − mι

eB0

[
(b ×∇pι⊥) · ∇

]
uι − ∇χ†

ι . (139)

Notice that, like in the case of the parallel heat fluxes, the contributions of the closure variables r̃
(0)
α‖ ,

r̃
(0)
α⊥ and r̃

(0)
α∆ to the divergences of the heat flux vectors and to the ion gyroviscous force are one order
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in ε higher than the leading terms to be retained in the pressure evolution equations, the parallel

momentum equation and the vorticity equation. As the result, the final reduced two-fluid system will

be closed except for the collisional terms.

Considering the pressure evolution equations (24,25), their leading terms under the assumptions

(110-116) are O(δmιnv3
thι/L⊥). Keeping this lowest-significant-order accuracy, we get

1
2

[
∂pα‖
∂t

+ ∇ · (pα‖uα)

]
+ ∇ · qαB⊥ − gcoll

αB = 0 (140)

and
∂pα⊥
∂t

+ ∇ · (pα⊥uα) + pα∇ · uα + ∇ · qαT⊥ + gcoll
αB = 0 , (141)

where the collisional exchange terms gcoll
αB are needed only in their lowest-order form given by Eqs.(92)

and (97). Using now our expressions (128,129,134,135) for the particle and heat flows, the pressure

equations reduce to
1
2

d′pα‖
dt

− gcoll
αB = 0 (142)

and
d′pα⊥

dt
+

(
pα‖ − pα⊥
3eαB0n2

)
[n, pα⊥] + gcoll

αB = 0 . (143)

In its leading order, O(δ2mιnv2
thι/L⊥), the parallel component of the total momentum equation

yields

mιn

(
∂uι‖
∂t

+ uι · ∇uι‖

)
+ b · ∇(pι‖ + pe‖) + b · (∇ · P̂ι) = 0 (144)

and, substituting for uι (128) and ∇ · P̂ι (139), we obtain within this accuracy

d′uι‖
dt

+
1

mιn
∇‖(pι‖ + pe‖) = 0 . (145)

Finally, we consider the vorticity equation that will determine the evolution of the electric potential.

In its leading order, O(δ2mιnv2
thι/L2

⊥), the parallel component of the curl of the total momentum
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equation yields

mιn

(
∂

∂t
+ uι · ∇

)[
b · (∇× uι) + ∇(lnn) · (uι × b)

]
+

+ mι∇ ·
[
n (∇ · uι) uι × b

]
+

mι

2
(∇n × b) · ∇(u2

ι − u2
ι‖) +

+ b ·
[
∇× (∇ · P̂ι)

]
+ (κ × b) · ∇(pι‖ + pι⊥ + pe‖ + pe⊥) − B0 b · ∇(b · j) = 0 . (146)

Substituting for uι (128), ∇ · P̂ι (139), κ (124) and j (127), introducing the auxiliary variable

W =
B0

n
b ·

[
∇×(nuι)

]
= B0 b ·(∇×uι) +

1
n
∇⊥n ·

(
∇⊥Φ+

1
en

∇⊥pι⊥

)
+ O(εδB0vthι/L⊥) (147)

and keeping only the leading order accuracy of O(δ2v2
thι/L2

⊥) after division by mιn we obtain

d′W
dt

+
1

2B0n
[|∇⊥Φ|2, n] +

1
eB0n

[∇⊥Φ;∇⊥pι⊥] +

+
B0

mιR0n
[R, (pι‖ + pι⊥ + pe‖ + pe⊥)] +

B2
0

mιn
∇‖(∇2

⊥ψ) = 0 , (148)

where we have used the notation [∇⊥g;∇⊥f ] = [∂g/∂R, ∂f/∂R] + [∂g/∂Z, ∂f/∂Z]. The relationship

between the generalized parallel vorticity W and the electric potential Φ in their leading orders, follows

from the definition (147) and the expression (128) for the ion flow velocity:

1
n
∇⊥ · (n∇⊥Φ) = W − 1

en
∇2

⊥pι⊥ . (149)

In summary, our diamagnetic-drift-scale reduced two-fluid analysis yields a coupled dynamical sys-

tem for the seven scalar fields ψ, n, pα‖, pα⊥ and Φ. The evolution equations for these variables are

the parallel Ohm’s law (122), the continuity equation (131), the parallel and perpendicular pressure

equations for each species (142,143) and the vorticity equation (148) along with the time-independent

elliptic equation (149) for Φ in terms on n, pι⊥ and the auxiliary variable W . All these equations are

in their lowest significant order and all the terms in each of them are comparable under our order-

ing assumptions (110-116). The ion and electron flow velocities can be determined once this primary
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seven-field system has been solved, by integrating the decoupled parallel momentum equation (145) for

uι‖, relating the parallel current to the perpendicular Laplacian of ψ and recalling Eqs.(128,129) which

specify the perpendicular components of the flows as sums of E × B plus diamagnetic drifts. Unlike

the fast dynamics system in general magnetic geometry considered in Section V, this slow dynamics

system for small-parallel-gradient and large-aspect-ratio geometry with weak magnetic inhomogeneity

admits a consistent isotropic-pressure limit, provided the collisional terms gcoll
αB can be justified to

vanish with isotropic pressures. The corresponding five-field model follows by setting pα‖ = pα⊥ and

gcoll
αB = 0.

It should be emphasized that, in deriving the present reduced two-fluid system, no special as-

sumptions have been made on the density or temperature gradients or the amplitude of the density or

temperature fluctuations. Rather, the maximal orderings ∇⊥(lnn) ∼ ∇⊥(ln pα‖) ∼ ∇⊥(ln pα⊥) ∼ L−1
⊥

have been implied and no distinction between equilibrium and fluctuating parts has ever been made.

This represents a significant improvement over previous reduced systems for diamagnetic-drift-scale

dynamics 13−17 and our approach shows without ambiguity the proper way of including the diamag-

netic effects for arbitrary density and anisotropic temperatures, a subject on which there is no general

agreement in the literature. In particular, noting that the first two terms of the parallel Ohm’s law

(122) can be rewritten as ∂ψ/∂t+∇‖Φ = d′ψ/dt+R−1
0 ∂Φ/∂ζ, we see that all the dynamical fields (ψ,

n, pα‖, pα⊥, W and uι‖) evolve with the d′/dt derivative, i.e. they are advected by the leading-order

E×B drift. This is the manifestation of the ”diamagnetic cancellations” which are prominent in the

case of weakly inhomogeneous magnetic field and small parallel gradients under consideration here.

(These cancellations are only partial and not very useful in practice for general magnetic geometries

and parallel gradients such as in the case considered in Section V.) Notice also the density dependence

in the elliptic operator acting on Φ in Eq.(149) and the novel [|∇⊥Φ|2, n] term (a cubic nonlinearity) in

the vorticity equation (148). The main physical effects missing in this seven-field reduced system are

those associated with the parallel dynamics. They are ”ordered out” by the assumptions (110-116),

which make all the terms involving parallel particle or heat flows negligible and allow the leading-order,

seven-field system to be closed except for the collisional terms. The assumption on the electron parallel

heat flux is probably the most restrictive one. The ordering ε ∼ δ2 is also restrictive, although it is
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standard in the diamagnetic-drift-scale fluid approach13 and may be difficult to relax whithout having

to abandon the fluid framework and being forced to carry out a kinetic evaluation of the CGL pressures

in a consistent slow dynamics analysis. In any case, while other orderings might be devised to bring

parallel physics terms into the reduced system, the perpendicular physics especially the diamagnetic

effects associated with general density and temperature gradients should remain in the form given here.
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