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Abstract

Various forms of the viscous force caused by collision-induced parallel viscous stresses within

an inhomogeneous magnetized plasma are presented. New forms are proposed for initial value

extended MHD codes to capture the “fast” (Braginskii) collisional viscous force effects on short

time scales and multi-collisionality regime “residual” viscous forces on collision time scales and

longer in axisymmetric toroidal plasmas. Collision-based viscosity coefficients are described in

various collisionality regimes: high (Braginskii, Pfirsch-Schlüter), intermediate (plateau) and low

(banana). Smoothed formulas for the residual viscous forces induced by electron and ion parallel

stresses on the collision and longer time scales that encompass all these collisionality regimes are

presented. Also, a generalized Ohm’s law that includes both the fast Braginskii-type viscous effects

and the slow residual effects that lead to the neoclassical parallel Ohm’s law is proposed. Finally,

suggestions are made for implementing and verifying viscous force effects in extended MHD codes.
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I. INTRODUCTION

Extended magnetohydrodynamic (MHD) models used in the CEMM project [1] seek to in-

clude all relevant physics needed for simulating fluid-type behavior of magnetically-confined

toroidal plasmas. The M3D [2] and NIMROD [3] code projects under the CEMM umbrella

have historically focused on using ideal and resistive MHD descriptions of axisymmetric equi-

librium toroidal plasmas. Recently, two-fluid effects (e.g., diamagnetic flows, gyroviscosity)

have been included. And explorations of plasma flows and their effects have begun.

In order to properly describe the evolution of flows, the anisotropic nature of the viscous

force in a magnetized plasma needs to be taken into account. In particular, the viscous forces

induced by collision-induced parallel stresses in the plasma need to be taken into account

because: 1) they are the largest viscous forces; 2) they collisionally relax the electron and ion

flows on their respective time scales; 3) in low collisionality plasmas they lead to important

effects in the parallel neoclassical Ohm’s law (trapped particle effects on the resistivity and

bootstrap current) and the poloidal plasma flow (relaxation to an ion-temperature-gradient-

determined value); and 4) it is important for numerical stability and convergence issues to

properly treat dissipative effects in the M3D and NIMROD codes.

This report is organized as follows. Section II describes the parallel, cross and perpendic-

ular stresses and in particular the collisional parallel viscous stresses in a magnetized plasma.

Appendix A describes the collisional (Braginskii) parallel stresses in plasmas containing, as

is typical in tokamaks, electrons, hydrogenic ions and impurity ions. The following section

(III) presents various forms of parallel stresses and the resultant viscous forces. Thereafter,

Section IV proposes specific forms for a combination of “fast” Braginskii-type and “resid-

ual” long-time-scale viscous forces induced by parallel stresses for inclusion in the M3D

and NIMROD codes. Asymptotic residual parallel viscous force coefficients in high (Bra-

ginskii, Pfirsch-Schlüter), intermediate (plateau) and low (banana) collisionality regimes,

and smoothed multi-collisionality formulas for electrons, hydrogenic and impurity ions are

presented in Appendix B. Their effects are developed in Appendix C. The penultimate (V)

section suggests verification tests of these viscous forces and their effects in the M3D and

NIMROD codes. The ion viscous stresses and general Ohm’s law in multi-collisionality

regimes for tokamak plasmas that are suggested for use in extended MHD codes are sum-

marized in Section VI. It also discusses possible limitations of the suggested forms.
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II. COLLISIONAL STRESSES IN A MAGNETIZED PLASMA

The fluid-based viscous force density on a small volume of a plasma species is−∇ ·π. The

fact that this force density is a local differential of the local viscous stress tensor π implies

that the physical processes that cause it are also local. This is unfortunately not true in low

collisionality toroidal plasmas where the collision length λ ≡ vT/ν is usually many times

the toroidal circumference of the experimental device. Nonetheless, the following discussion

and analysis seeks to capture the most important low collisionality physics within this local

model of viscous forces — to facilitate inclusion of viscous force effects of parallel viscous

stresses in the M3D and NIMROD extended-MHD-based initial value codes.

The collisional Braginskii [4] viscous stress tensors are given by

π = π‖ + π∧ + π⊥, parallel, cross (gyroviscous) and perpendicular stresses. (1)

Here, the subscripts ‖,∧,⊥ indicate parallel, cross and perpendicular directions relative to

the local magnetic field B(x). A strongly magnetized plasma species is defined as one that

has a small collision frequency ν compared to the gyrofrequency ωc and small gyroradius

% ≡ vT/ωc compared to cross and perpendicular gradient scale lengths of plasma properties

and electromagnetic fields. For strongly magnetized toroidal plasmas of fusion interest a

small gyroradius expansion is usually appropriate:

δ ≡ %/a� 1, small gyroradius expansion. (2)

Here, a is a characteristic macroscopic plasma dimension, typically the plasma minor radius.

For arbitrary flow velocity magnitudes and properties, the characteristic scalings of the

parallel, cross and perpendicular stresses can be written schematically for R0q >∼ λ >∼ a as

π‖ ∼ νλ2∇‖V, π∧ ∼ ν%λB×∇V/B ∼ δπ‖, π⊥ ∼ ν%2∇⊥V ∼ δ2 π‖, scalings. (3)

Thus, the parallel viscous stress tensor π‖ is usually dominant in small gyroradius, mag-

netized toroidal plasmas. The remainder of this report will concentrate on it. [For plasma

perturbations extended long distances along field lines (i.e., |∇‖| <∼ 1/a) but radially lo-

calized to a small fraction of the minor radius (i.e., |∇⊥| ∼ k⊥ � 1/a), the cross and

perpendicular stress effects can become larger than these scalings indicate by factors of k⊥a

and (k⊥a)2; for such cases the cross (gyroviscous) force can exceed the parallel stress force

— as is the case for many perturbed diamagnetic flow effects on MHD-type instabilities.]
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The parallel viscous stresses for electrons and ions were originally written by Braginskii

[4] for each species in the form (here, z is the local coordinate along B)

π‖ = − η0Wzz, Wzz ≡ 2
∂Vz
∂z
− 2

3
(∇·V). (4)

For an electron-ion plasma with a hydrogenic ion species (i.e., Zi=1), the collisional viscosity

coefficients for electrons and ions are [4] (τ ≡ 1/ν, λ ≡ vT/ν and vT ≡
√

2T/m)

ηi0 = 0.96niTi τi = 0.48mini νiλ
2
i , ηe0 = 0.73neTe τe = 0.365mene νeλ

2
e. (5)

The parallel stress tensor can be written in general (for arbitrary collisionality in an

inhomogeneous magnetized plasma) in the Chew-Goldberger-Low form as [5]

π‖ ≡ π‖ (b̂b̂− I/3), b̂ ·π‖· b̂ = (2/3) π‖, parallel stress tensor. (6)

Here, π‖(x, t) ≡ p‖ − p⊥ is the pressure anisotropy, which is a scalar function of space and

time. Also, b̂ ≡ B/B is a unit vector along the local magnetic field B and I is the identity

tensor (dyad). In the Braginskii high collisionality regime π‖ is given for each species by

π‖ ≡ − (3/2) η0 b̂ ·WV · b̂, collision-induced pressure anisotropy (a scalar), (7)

in which the rate of strain in the plasma species induced by the flow velocity V is

WV ≡∇V + (∇V)T − (2/3) I (∇·V), rate of strain induced by V. (8)

The superscript T is the transpose of that tensor (dyad); thus, WV is a symmetric tensor.

The Braginskii [4] closures for the parallel viscous stress tensor π‖ were developed for

MHD-type applications where the flow velocity V is assumed to be large compared to the

heat flow velocity Vq ≡ − 2q/5nT and higher order flow-type moments (energy-weighted

heat flow etc.) — but still small compared to thermal speeds, i.e., |V|/vT � 1. However,

in two-fluid treatments which include diamagnetic flows, the diamagnetic-type heat flows

Vq are comparable to the diamagnetic flows V∗ ≡ B×∇p/(nqB2) and cannot be neglected.

Then, the rate of strain tensor is modified [6]: WV → WV + Wq, where the rate of strain

tensor for heat flows is

Wq ≡ (−2/5nT ) [∇q + (∇q)T − (2/3) I (∇· q) ]. (9)

Similarly, the stress tensor gets modified: π → πV + πq, in which πq represents parallel

heat stresses. Collisional viscosity coefficients including these heat flow effects and allowing

for impure plasmas (i.e., for Zeff ≡
∑

i niZ
2
i /ne > 1) are discussed in Appendix A.
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III. VISCOUS FORCE INDUCED BY COLLISIONAL PARALLEL STRESSES

Next, various geometric forms of the pressure anisotropy and the viscous force they induce

will be explored. Using various vector and tensor identities and the definition of the local

curvature of the magnetic field, κ ≡ (b̂ ·∇)b̂ = − b̂×(∇×b̂) with b̂ ≡ B/B, it can be

shown that

B ·WV ·B/2 = B ·∇V·B− (B2/3) (∇·V)

= B (B ·∇)(B ·V/B) + [B×(B×V)] ·κ− (B2/3)∇·V

= BV·∇B + B ·∇×(V×B) + (2B2/3)∇·V − (B ·V)(∇·B). (10)

The form on the last line will be used below — because, as discussed below, its first term is

the only term that survives on longer than collision times scales, after the faster MHD-type

compressional Alfvén and sound wave relaxation processes come into quasi-equilibrium. The

representation of B ·Wq ·B is similar [6] with V→ q.

In order of appearance in the last line of (10), contributions to B ·WV ·B have the fol-

lowing effects. The first, V·∇B term indicates parallel strain induced by flow in directions

in which the magnitude of the magnetic field varies. Since the lowest order flows are within

a flux surface, this term mainly produces poloidal flow damping, at a rate proportional to

the collision frequency ν (for each species). The second term represents MHD-type advec-

tion of the parallel component of the magnetic field, as is evident from its linearized form

B0 ·∇×(Ṽ×B0) ∼ B0 ∂B̃‖/∂t. Together with part of ∇·V, it provides viscous damping of

“fast” compressional Alfvén waves, which to lowest order relax P̃ + B0B̃‖/µ0. The third,

∇·V term represents plasma compressibility. Its residual after the fast relaxation of com-

pressional Alfvén waves provides viscous damping of sound waves on the ion collision time

scale. Because there are no magnetic monopoles in the universe, the final, ∇·B term van-

ishes; however, this term could be kept in extended MHD codes to assist in “divergence

B cleaning” — i.e., for relaxing away via viscous damping any numerical errors that cause

∇·B 6= 0. For simplicity, the analogous effects due to heat flows Vq ≡ − (2q/5nT ) will

be neglected on the MHD compressional Alfvén and sound wave time scales; however, heat

flow effects will be retained on the “slow” collision (poloidal flow damping) time scales.

The M3D and NIMROD extended MHD codes use semi-implicit numerical algorithms to

take time steps longer than MHD wave time scales while capturing the constraints imposed
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by these processes. Thus, for analytic analyses, on collision time scales the last form of

(10) can be simplified by taking ∇·V = 0 and ∇·B = 0. On the collision time scale

perpendicular flows are E×B (with E ' −∇Φ) plus diamagnetic flows in the form V⊥ =

(1/B2)B×∇f , in which f = f(ψp) is a scalar flux function. Thus, one has B ·∇×(V×B) =

B(B ·∇f)(b̂ ·∇×b̂) ∼ (k‖a) β. As indicated, this term is small for typical plasma responses

that are highly extended along field lines and for low β plasmas; this quite small “residual”

contribution will be neglected in the following discussion. With all these simplifications, on

the collision time scale the “residual” pressure anisotropy induced by flows and heat flows

is (see Appendix A for how the viscosity coefficients are determined for impure plasmas)

π‖ ' −
3

B

(
η00V·∇B + η01

−2

5nT
q ·∇B

)
, on collision or longer time scales. (11)

The viscous force density caused by the parallel stress tensor π‖ defined in (6) is in general

Fπ ≡ −∇·π‖ = − π‖ [ κ−B (B ·∇B)/B3]− (1/B2) B (B ·∇)π‖ + (1/3)∇π‖. (12)

And the parallel (B · ) component of this viscous force is

B ·Fπ ≡ −B ·∇·π‖ = π‖ (b̂ ·∇B)− (2/3) (B ·∇) π‖, parallel viscous force. (13)

The last term will be annihilated below by averaging this parallel force over a flux surface.

Up to now neither the magnetic field structure nor a coordinate system have been spec-

ified. However, they are needed to connect these results with axisymmetric neoclassical

transport theory [7, 8]. The axisymmetric equilibrium magnetic field B0 ≡ Bt + Bp has

toroidal and poloidal components. It is written in terms of the poloidal magnetic flux ψp:

B0(ψp, θ) = I∇ζ +∇ζ×∇ψp =∇ψp×∇[ q(ψp) θ − ζ ], I(ψp) ≡ RBt. (14)

The radial, poloidal straight-field-line and toroidal axisymmetry coordinates will be taken

to be ψp, θ, ζ for which the poloidal rotation of a field line per unit toroidal rotation is

dθ/dζ = 1/q(ψp) ≡ B0·∇θ/B0·∇ζ. The Jacobian for transforming from the laboratory (x)

to these (non-orthogonal) curvilinear coordinates is
√
g ≡ 1/(∇ψp ·∇θ×∇ζ) = 1/B0·∇θ.

The flux surface average (FSA) of a scalar function f(x) on a ψp flux surface is defined by

〈f(x)〉 ≡
∫ 2π

0
dζ
∫ 2π

0
f(x) dθ/B0·∇θ

2π
∫ 2π

0
dθ/B0·∇θ

, flux surface average of f(x). (15)

The FSA is an annihilator for parallel derivatives of scalar functions: 〈B0·∇f〉 = 0.
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On the collision and longer time scales the flow and heat flow are incompressible [7, 8]:

∇·V = 0, ∇· q = 0. Since to first order in the small gyroradius expansion (δ � 1) the

flows and heat flows lie within flux surfaces, using the general relation for the divergence of

a vector in an axisymmetric system one can show for each plasma species that [8]

0 =∇·V = (V·∇θ) ∂

∂θ

(
V·∇θ
B0·∇θ

)
=⇒ Uθ(ψp) ≡

V·∇θ
B0·∇θ

, poloidal flow function. (16)

Similarly,∇· q = 0 yields Qθ(ψp) ≡ (−2/5nT ) q ·∇θ/B0·∇θ. Thus, to lowest order in δ the

FSA of (13) yields the residual parallel viscous force for each species (here, b̂0 ≡ B0/B0):

〈B0 ·Fπ〉 ≡ − 〈B0·∇·π‖〉 ' − 3 〈 (b̂0 ·∇B0)2〉 [ η00 Uθ + η01Qθ ]. (17)

IV. VISCOUS FORCES FOR EXTENDED MHD CODES

Extensions of the flux surface average (FSA) collisional parallel viscous force in (17) to

the low collisionality regimes of axisymmetric tokamak plasmas have been developed [8];

these “neoclassical” results are discussed, extended and summarized in Appendix B. And

their effects on residual ion flows and the parallel Ohm’s law are discussed in Appendix C.

It is convenient to specify the FSA of the residual ion parallel viscous force as a damping

force on the poloidal flow Uθ to an “intrinsic” or “offset” ion flow velocity U0
iθ in the form

〈B0 ·Fiπ〉 ≡ − 〈B0 · ∇ ·πi‖〉 = −mini µi 〈B2
0〉(Uiθ − U0

iθ), FSA ‖ ion viscous force, (18)

U0
iθ(ψp) ' ki

I(ψp)

qi〈B2
0〉
dTi0(ψp)

dψp
, offset ion poloidal flow V0

i ·∇θ = U0
iθ(ψp) B0·∇θ. (19)

General formulas for the poloidal viscous damping frequency µi and offset poloidal flow

coefficient ki, which depend on the species and collisionality regime in tokamak plasmas

composed of electrons, hydrogenic and impurity ions are specified in Appendix B. The usual

asymptotic banana regime neoclassical coefficients for Zi = 1, ν∗i � 1,
√
ε � 1 and no

impurities are µi ' 2.24
√
ε νi and ki ' 1.17/(1 + 0.67

√
ε ).

In general, the offset poloidal ion flow U0
iθ, which is proportional to the poloidal ion heat

flow (see Appendix C), does not depend solely on the temperature gradient of the ions being

considered. Rather, in tokamak plasmas with small admixtures of impurities in addition to

the dominant hyrogenic species, it depends on impurity density and temperature gradients,

and the impurity collisionality regime [9]. In transport codes U0
iθ is often evaluated using the
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NCLASS code [10]. However, as discussed in [9], if the impurities are in the intermediate

(plateau) or high (Braginskii, Pfirsch-Schlüter) collisionality regime, U0
iθ depends predomi-

nantly on the ion temperature gradient, as indicated in (19). Thus, as discussed further in

Appendix C, it will be assumed that the form of (19) provides a sufficient representation of

the effects of small admixtures of impurities in extended MHD codes.

The general form of the viscous force induced by pressure anisotropy is given in (12).

The key question is: what should be used for the pressure anisotropy π‖ ≡ p‖ − p⊥? The

answer for MHD-type responses is the combination of π‖ given by (7) with the B ·WV ·B/2

given by (10) since on the fast compressional Alfvén and sound wave relaxation time scales

the heat flows Vq can be neglected. After dissipation of the fast MHD-type compressional

Alfvén and sound waves with the Braginskii parallel viscous damping coefficient η00, the

residual contribution to (10) on collision and longer time scales is the first term, BV·∇B,

as indicated in (11). For that term the general multi-collisionality regime result for the flux

surface average of the residual parallel viscous force can be written in the form given in (18),

which is a generalization of the corresponding Braginskii form given in (17). To capture all

these properties within a single viscous force it is proposed to leave the fast (superscript f)

viscous force effects in (7) on compressional Alfvén and sound waves unchanged with the

Braginskii η00 coefficient, but to modify the coefficient of the BV·∇B term in (10) so the

residual (superscript r) flux surface average it produces on time scales longer than collision

times is given by (18). Thus, a pressure anisotropy for each species that includes both fast

Braginskii-type and residual viscous stresses is

π‖ = πf
‖ + πr

‖

πf
‖ ≡ − 3 η00

(
B ·∇×(V×B)

B2
+

2

3
∇·V − (B ·V)(∇·B)

B2

)
,

πr
‖ ≡ − mnµ 〈B2

0〉
b̂0 ·∇B0

〈 (b̂0 ·∇B0)2〉
(
Uθ − U0

θ

)
, b̂0 ≡ B0/B0,

proposed form.

(20)

Hence, the suggested procedure for introducing ion viscous force effects due to ion colli-

sional parallel stresses into extended MHD codes is to implement the viscous force given by

(12) with the pressure anisotropy πi‖ given in (20) using µi from (B14) and (B19) and ki

from (C27), plus (C26) (B15), (B16) and/or (B20). Formulas for the needed Braginskii-type

collisional ion viscosity coefficients ηi00 for ions in impure plasmas are given in (A17).
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The introduction of electron viscous force effects due to electron parallel viscous stresses

is more complicated — because their effects on the electron heat flow as well electron flows

must be taken into account to produce the neoclassical parallel Ohm’s law. The salient

points of their effects are discussed in Appendix C between (C1) and (C21). The net effect

of the residual parallel electron viscous forces is to modify the parallel electron momentum

equation and thereby produce the residual noclassical parallel Ohm’s law [11, 12]:

〈B0 ·EA〉 = ηnc
‖ ( 〈B0 · J〉 − 〈B0 · Jdrives〉 ). neoclassical parallel Ohm’s law. (21)

Here, ηnc
‖ is the neoclassical parallel resistivity [11, 12] defined in (C16); it includes both the

electron heat flow effects (→ Spitzer conductivity for homogeneous |B|) and the viscosity

effects (for ∇θ · ∇B 6= 0). The 〈B0·Jdrives〉 term includes currents driven by bootstrap and

non-inductive current drive sources [12]: 〈B0·Jdrives〉 = 〈B0·Jbs〉 + 〈B0·JCD〉 + 〈B0·Jdyn〉.

Thus, analogous to the ions, as discussed in Appendix C, the proposed general Ohm’s law

form that incorporates both the fast (superscript f) and residual viscous force effects is

E = −V×B +
J×B−∇pe −∇·πf

e‖ −∇·πe∧

nee
− me

e

dVe

dt

+ η⊥

(
J⊥ −

3

2

neB×∇Te
B2

)
+ ηnc

‖
(
J‖ − J‖drives

)
,

Ohm’s law. (22)

Here, J⊥ ≡ −B×(B×J)/B2, J‖ ≡ B (B · J)B2 and J‖drives ≡ B 〈B0 · Jdrives〉/〈B2
0〉. The

first line in (22) indicates the usual MHD advection, Hall-type terms and inertial effects

with the only difference from normal being that only the fast part of the viscous force due to

parallel electron stresses, −∇·πr
e‖, is included there. The second line of (22) represents the

anisotropic electrical resistivity effects that yield the usual perpendicular electric field from

η⊥J⊥ as well as the neoclassical parallel Ohm’s law given in (21). To obtain neoclassical

tearing modes (NTMs), the dominant bootstrap current drive [12] 〈B0·Jbs〉 ∼ − I dP0/dψp

has to be adapted to a more primitive form along perturbed magnetic field lines as follows:

I
dP0

dψp
≡ B2

0

J⊥·∇θ
B0·∇θ

=⇒ B2 J⊥·∇θ
B·∇θ with J⊥ ≡

B×∇P
B2

. (23)

Note also that (22) includes non-inductive current-drive sources via 〈B0·JCD〉 and dynamo

currents induced by fluctuations via 〈B0·Jdyn〉 [12]; these current sources should not be

added separately to avoid “double-counting.”

Various residual viscous force models have been implemented and tested in reduced MHD

codes [13–15]. Heuristic forms tested in the NIMROD code are discussed in [16]. The most
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successful heuristic form used in NIMROD is [16] Fπ = −mnµ〈B2〉(V · eθ) eθ/(B · eθ)2,

in which eθ =
√
g∇ζ×∇ψp = Bp/(B0·∇θ) is the covariant base vector. This form is

obviously simpler than the form proposed in (18)–(22). However, the proposed ion viscous

force in (12), (6), (20) and Ohm’s law in (22) have the advantage that they capture the

usual Braginskii viscous force as well as the residual multi-collisionality effects, offset ion

flows U0
iθ and neoclassical parallel Ohm’s law on time scales longer than collision times.

V. VERIFICATION TESTS FOR VISCOUS FORCE EFFECTS

In implementing this suggested procedure for including the viscous force effects due to

multi-collisionality parallel stresses in extended MHD codes, three categories of verification

tests are suggested: fast MHD-type processes, relaxation of flows and neoclassical parallel

Ohm’s law, and transport-time-scale effects — as discussed in the succeeding paragraphs.

Fast MHD-type processes: In general, viscous force effects should be negligible and have

no significant effects on ideal-MHD-type plasma responses. Thus, the first verification test

is to make sure adding the viscous force effects “does no harm” to these responses.

Relaxation of flows and neoclassical parallel Ohm’s law: The electron viscous force effects

add to the magnetic field evolution equation a fourth order derivative, diffusive- (parabolic-)

type term (via Ve = Vi − J/nee with µ0J ≡ ∇×B), which is sometimes called a “hyper-

resistivity” effect. While this is useful in dissipating magnetic field structures that are

highly localized radially, it should not affect other physical processes much. Similarly, the

ion viscous force adds a diffusive effect to the momentum equation, primarily to its parallel

component. These effects should become significant on the electron and ion collision time

scales, respectively; they should dissipate compressional Alfvén and sound waves on the ion

collision time scale. On time scales longer than their respective collision time scales, the

electron and ion flows should relax to being: incompressible, of first order in the gyroradius,

and flowing within an equilibrium or average flux surface. Specifically, they should be

described by (C3) and (C5), Eqs. (18)–(47) in [11], or Eqs. (11)–(38) in [12]. Suggested

verification tests would be to check that, on time scales longer than their respective collision

times: 1) electron and ion flows are incompressible to O{δ2} as indicated in (16) above and

Eq. (22) in [11]; 2) the poloidal flow function Uθ ≡ V·∇θ/B0·∇θ is approximately constant

on flux surfaces (to order O{δ}); 3) the current density J is as given in Eqs. (26) and (29)
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in [11]; 4) the FSA neoclassical Ohm’s law given in (21), Eq. (39) in [11] or Eq. (26) in [12]

is obtained with the bootstrap current given by (C17) or Eq. (29) in [12]; 5) the poloidal ion

flow is as indicated in (C27), Eqs. (44), (45) in [11] or Eqs. (34)–(37) in [12]; 6) the FSA radial

flows 〈V·∇ψp〉 for both electrons and ions are of order δ smaller than the corresponding

poloidal and toroidal flows within flux surfaces; and 7) for an axisymmetric equilibrium B0

field and a pressure anisotropy π‖ that is independent of the toroidal angle, the viscous

force does not cause a toroidal torque on either plasma species (i.e., 〈R2∇ζ · ∇ ·π‖〉 = 0).

Ultimate verification and validation of the proposed form for the π‖ given by (20) plus the

viscous force it causes and the general Ohm’s law in (22) will be through detailed comparisons

for a wide range of applications with results from kinetic-based approaches, such as those

being developed by Held et al. [17] and Ramos [18].

Transport-time-scale effects: The main residual viscous force effects induced by collision-

induced parallel viscous stresses on the long transport time scale are (analytically) to enforce

ambipolarity through first order in the gyroradius (via Eqs. (42)–(45) of [11]) and to cause

the banana-plateau (ambipolar) neoclassical radial particle flux, as indicated in Eq. (89)

in [11]. In addition, their inclusion facilitates the analytic derivation of a toroidal flow

(rotation) equation on the transport time scale, Eq. (119) of [11]. Suggested verification

tests would be to: 1) obtain the banana-plateau radial particle flux indicated in Eq. (89) of

[11] and check that it is ambipolar; 2) show that the toroidal flow obeys the toroidal rotation

evolution equation given by Eq. (119) in [11], after irrelevant terms there are eliminated;

and 3) obtain NTMs using the adaptation of the bootstrap current drive in (23).

VI. DISCUSSION AND SUMMARY

As indicated by the boxed equations above and the paragraph after (20), a new procedure

has been proposed for including viscous force effects caused by collision-induced parallel

viscous stresses in high (Braginskii [4], Pfirsch-Schlüter), intermediate (plateau) and low

(banana) collisionality regimes. The proposed procedure uses standard Braginskii collisional

viscous forces with coefficients η0 for relaxing the fast MHD-type responses, but a new

multi-collisionality regime residual viscous force on collision time scales. Specifically, the

new procedure uses the normal CGL pressure tensor form in (6) and viscous force definition

in (12), but suggests a new form for the pressure anisotropy given by (20). The multi-
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collisionality regime poloidal flow viscous damping frequency µs for each species s is given

in (B14), (B17), (B19) and the constant ki for the intrinsic poloidal flow U0
iθ defined in (19)

is given by (C27). The relevant collisional (Braginskii) regime viscosity coefficients ηs00 for

electrons and ions in impure plasmas, as is typical in tokamaks, are defined in (A11) and

(A17), respectively. The general Ohm’s law for including all these effects is given in (22).

Some issues and limitations regarding use of this procedure to represent viscous force

effects due to collisional parallel viscous stresses in various collisionality regimes are: 1) Are

the forms of the viscous force and its effects given by the combination of (12), (20) and (22)

really the best or most appropriate forms? 2) Are long scale (� πR0q) parallel variations

in flow components appropriately and adequately relaxed with the Braginskii η00 viscosity

coefficients even in low collisionality regimes where “collisionless” closures [17, 19] become

relevant? 3) While the exponential temporal decay of poloidal flows resulting from (18) is

not precisely correct in low collisionality regimes [20], is this residual viscous force sufficient,

except perhaps for applications where the poloidal flow dynamics is critical, since it produces

the correct equilibrium flows? 4) Are the approximations that lead to the “offset” poloidal

ion flow U0
iθ sufficiently accurate for extended MHD modeling in the M3D and NIMROD

codes? and 5) While the poloidal variation of the viscous force in the banana collisionality

regime [21] is not the same as that implied by the combination of (12) and (20), is this

residual viscous force sufficient, except perhaps for applications that depend critically on

the poloidal variation of viscous force effects, since its flux-surface average is correct?

New extended MHD applications that should be facilitated by the inclusion of these

proposed viscous stress forms fall into two categories analogous to the verification tests dis-

cussed in the preceding section. First, on time scales comparable to or slightly longer than

the collision time scales of electrons and ions they should facilitate obtaining the proper

currents and poloidal flows in low collisionality toroidal plasmas. This will allow, for exam-

ple, inclusion of: the neoclassical rather than Spitzer resistivity with appropriate trapped

particle and impurity effects (via Zeff), bootstrap current effects in H-mode pedestals, and

diamagnetic flow-type effects on MHD instabilities (e.g., ELMs). On time scales longer than

the ion collision time scale they will facilitate inclusion of proper poloidal and toroidal flows,

radial electric field evolution in concert with the toroidal flow evolution, and bootstrap cur-

rent effects. These effects will enable simulations of neoclassical tearing modes (NTMs) and

resistive wall modes (RWMs) that include the appropriate low collisionality toroidal physics.

12



The ultimate fate of the proposed viscous forces and Ohm’s law in extended MHD codes

will depend on the practicality of their implementation and their usefulness in capturing the

most important viscous force effects in low collisionality toroidal plasmas in extended MHD

codes such as M3D and NIMROD.
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Appendix A: Collisonal (Braginskii-type) Viscosities

The Braginskii [4] closures for the parallel viscous stress tensor π‖ were developed for

collisional plasmas (i.e., |λ∇V| � |V|) and MHD-type applications where the flow velocity

V is of order the E×B flow velocity and large compared to the diamagnetic flows. In

particular, V is assumed to be large compared to the heat flow velocity Vq ≡ (−2q/5nT )

and higher order flow-type moments (energy-weighted heat flow etc.) — but still small

compared to thermal speeds, i.e., |V|/vT � 1. However, as noted at the end of Section II,

since two-fluid treatments include diamagnetic flows, the diamagnetic-type heat flow Vq is

comparable to the diamagnetic flow V∗ and cannot be neglected. Then, the rate of strain

tensor is modified: WV → WV + Wq in which the rate of strain tensor for heat flows is

given in (9). Similarly, the stress tensor gets modified: π → π0 + π1 + · · · ≡ πV + πq + · · · .

Here, the subscript indicates the order j of the energy weighting Laguerre polynomial in the

relevant moments of the distribution function (v′ ≡ v −V):

πj ≡
∫
d3v′m [v′v′ − (v′2/3) I ]L

5/2
j (mv′2/2T ) f(x,v, t), (A1)

in which L
5/2
j (x) are Laguerre polynomials: L

5/2
0 = 1, L

5/2
1 = 7/2− x, · · · .
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Taking the
∫
d3v′m b̂ · [v′v′ − (v′2/3) I ] · b̂L5/2

j (mv′2/2T ) moments with j = 0, 1 of a

Chapman-Enskog form of the collisional equilibrium (∂/∂t < νs) plasma kinetic equation

and neglecting higher order (in a collisional regime) b̂ · (π · ∇V) · b̂ viscous-dissipation-type

terms yields a matrix equation for each plasma species:

ns Ts

 b̂ ·Ws
V · b̂

b̂ ·Ws
q· b̂

 = − 6

5 τss
Gs ·

 (2/3) πs0‖

(2/3) πs1‖

 . (A2)

Here, τss is a reference self-collision frequency (s−1) for a plasma species s defined by

1

τss
≡ 4

3
√
π

4π nsq
4
s ln Λ

{4πε0}2m2
s v

3
Ts

=
4

3
√
π

4π nsZ
4
s e

4 ln Λ

{4πε0}2m
1/2
s (2Ts)3/2

, reference collision frequency.

(A3)

The matrix Gs is a 2 × 2 matrix of Coulomb collisional “drag” coefficients on the stresses

that result from the parallel stress moments of the collision operator. The parallel viscous

stresses πs0‖ and πs1‖ will be obtained by multiplying this equation by the inverse G−1
s of

the matrix Gs for each species s. [If higher order energy moments are included (i.e., j ≥ 2),

they yield (j+1)× (j+1) matrices and j+1 equations; however, after inverting the larger Gs

matrices the results obtained below change less than the 1/ ln Λ ∼ 6 % intrinsic accuracy of

the Fokker-Planck Coulomb collision operator and hence are not warranted.)

The collisional matrix and its inverse can be written in general as [8, 23]

Gs = Z

 1 3
2

3
2

17
4

+
1√
2

 1 3
4

3
4

205
48

 , G−1
s =

 17Z
4

+ 205
48
√

2
−(3Z

2
+ 3

4
√

2
)

−(3Z
2

+ 3
4
√

2
) Z + 1√

2


2Z2 + 301Z/48

√
2 + 89/48

. (A4)

Here, the first matrix in Gs represents collisions of a species s with a species s′ of charge Z

that has a much larger mass (i.e., ms′ � ms) and the second matrix represents self-collisions

within the s species. Dotting the inverse matrix G−1
s with (A2) yields the collisional pressure

anisotropy induced by the flow and heat flow rates of strain within the s species of

πs‖ = − (3/2) [ ηs00 b̂ ·Ws
V · b̂ + ηs01 b̂ ·Ws

q · b̂ ]. (A5)

Here, the viscosity coefficients for each species s are

ηs00 =
5

6
G−1
s00 nsTs τss =

5

6

17Z/4 + 205/48
√

2

2Z2 + 301Z/48
√

2 + 89/48
nsTs τss, (A6)

ηs01 =
5

6
G−1
s01 nsTs τss = − 5

6

3Z/2 + 3/4
√

2

2Z2 + 301Z/48
√

2 + 89/48
nsTs τss. (A7)
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For an electron-ion plasma with a hydrogenic ion species (i.e., Z = 1), νe = 1/τee and the

numerical coefficient in ηe00 is 0.73, in agreement with the Braginskii coefficient ηe0 given in

(5). For only one species of ions Z → 0 in (A6), τii ≡ τi = 1/(
√

2 νi) and the numerical

coefficient in ηi00 from (A6) is (5/6)(205/89
√

2)(1/
√

2) = 0.96, in agreement with ηi0 in (5).

Typical tokamak plasmas have small admixtures of impurity (non-hydrogenic) ions. For

collisions of electrons with hydrogenic ions (subscript i, Zi=1) and various types of impurity

ions (subscript I, charge ZI), the effective ion charge is

Zeff ≡
ni +

∑
I nIZ

2
I

ne
, ion charge for electron collisions in an impure plasma. (A8)

The electron collision frequency and length are defined for an impure plasma by

νe ≡
Zeff

τee
=

4
√

2π (ni +
∑

I nIZ
2
I ) e4 ln Λ

{4πε0}2 3m
1/2
e T

3/2
e

' 5×10−11 ne(m
−3)Zeff

[Te(eV)]3/2

(
ln Λ

17

)
s−1, (A9)

λe =
vTe
νe
' 1.2×1016 [Te(eV]2

Zeff ne(m
−3)

m. (A10)

For an impure plasma the electron viscosity coefficients obtained from (A6) and (A7) are

ηe00 =
5

12

17Z2
eff/4 + 205Zeff/48

√
2

2Z2
eff + 301Zeff/48

√
2 + 89/48

mene νeλ
2
e, (A11)

ηe01 = − 5

12

3Z2
eff/2 + 3Zeff/4

√
2

2Z2
eff + 301Zeff/48

√
2 + 89/48

mene νeλ
2
e. (A12)

With only hydrogenic ions (Zeff → 1), ηe00 reduces to the Braginskii ηe0 in (5).

For collisions of hydrogenic ions (subscript i, Zi=1) with various impurity ions (subscript

I, charge ZI) that are heavier than them (mI � mi), the effective ion charge is

Z∗ ≡
∑

I nIZ
2
I

ni
, ion charge for hydrogenic ion collisions in an impure plasma. (A13)

Note that the effective ion charge for electron collisions can be written in terms of this

effective charge for hydrogenic ions via Zeff = (ni/ne)(1 + Z∗) or Z∗ = (ne/ni)Zeff − 1.

The ion collision frequency and length can be defined for an impure plasma in terms of the

conventional deuterium (mass mD) ion collision frequency (νiτii = 1/
√

2 + Z∗):

νi ≡
4
√
π(ni+

√
2
∑

I nIZ
2
I )e4 ln Λ

{4πε0}2 3m
1/2
i T

3/2
i

' 5.8×10−13 ni(m
−3) (1+

√
2Z∗)

(mi/mD)1/2 [Ti(eV)]3/2

(
ln Λ

17

)
s−1, (A14)
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λi =
vT i
νi
' 1.7×1016 [Ti(eV)]2

(1 +
√

2Z∗)ni(m
−3)

m. (A15)

Neglecting the small variations in the ln Λ coefficients, the ion collision frequency in an

impure plasma can be written in terms of the electron collision frequency in (A9):

νi =
ni
ne

(
me

mi

)1/2(
Te
Ti

)3/2
1 +
√

2Z∗√
2Zeff

νe ∼ 10−2 νe. (A16)

For an impure plasma the ion viscosity coefficients obtained from (A6) and (A7) are

ηi00 =
5(1 +

√
2Z∗)

12
√

2

17Z∗/4 + 205/48
√

2

2Z2
∗ + 301Z∗/48

√
2 + 89/48

mini νiλ
2
i , (A17)

ηi01 = − 5(1 +
√

2Z∗)

12
√

2

3Z∗/2 + 3/4
√

2

2Z2
∗ + 301Z∗/48

√
2 + 89/48

mini νiλ
2
i . (A18)

With only hydrogenic ions (Z∗ → 0), ηi00 reduces to the Braginskii ηi0 in (5).

Appendix B: Viscosity Coefficients For Multi-Collisionality Regimes

There is one fundamental approximation used in obtaining the Braginskii viscous stresses

that is not appropriate for extended MHD descriptions of tokamak plasmas. Namely, the

collision length λ is assumed to be shorter than parallel inhomogeneity scale lengths of

the flow velocity V (i.e., |λ∇‖V| � |V|). It is proposed here that this shortcoming be

rectified by extending and utilizing a multi-collisionality form [9] of the neoclassical-based

closures [8] for the residual parallel viscous force 〈B0·∇·π‖〉. The general form of the

flux-surface-average (FSA) parallel viscous force will be discussed first. Next, the lowest

(banana) collisionality regime closure will be discussed. Thereafter, scalings of the viscosity

coefficients for the low, intermediate and high collisionality regimes will be discussed. Then,

multi-collisionality forms for the FSA of the residual parallel viscous force will be developed.

In all collisionality regimes the residual FSA parallel viscous force 〈B0·∇·π0‖〉 and par-

allel viscous heat force 〈B0·∇·Θ‖〉 can be written [8] for each species in forms analogous to

the corresponding FSA of Braginskii closure relations in (17): 〈B0·∇·π‖〉

〈B0·∇·Θ‖〉

 =
mn

τ
〈B2

0〉

 µ00 µ01

µ01 µ11

 Uθ
Qθ

 ≡ mn

τ
〈B2

0〉 M ·

 Uθ
Qθ

 , (B1)
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in which mn/τ ≡ msns/τss for the s species. The symmetric matrix M (with µ10 ≡ µ01) of

dimensionless viscous damping frequency coefficients and its inverse are

M ≡

 µ00 µ01

µ01 µ11

, M−1 ≡

 µ11 −µ01

−µ01 µ00


µ00 µ11 − µ2

01

, viscous damping coefficients. (B2)

The dimensionless damping frequencies µij will be written in terms of a reference collision

frequency νref that will depend on the collisionality regime and a matrix of dimensionless,

positive-definite coefficients K̂ij (see Eqs. (4.20)–(4.22) in [8]):

M ≡

 µ00 µ01

µ01 µ11

 = νref τ

 K̂00
5
2
K̂00−K̂01

5
2
K̂00−K̂01 K̂11−5 K̂01+ 25

4
K̂00

 . (B3)

The very low collisionality physics that needs to be captured in a fluid description is the

parallel stress and resultant residual parallel viscous force induced by collisions of untrapped

(circulating) particles that carry parallel flows with the “immobile” trapped particles. In

the “banana” low collisionality regime [7, 8] trapped particles circumnavigate their banana

drift orbits before collisions scatter them out of the trapped particle region of velocity space.

The banana (superscript B) collisionality regime collision frequency for each species s is

νBref ≡ (ft/fp) νs ∼
√
ε νs, banana collisionality regime reference frequency. (B4)

The relevant collision frequencies for electrons and ions are given in (A9) and (A14). Here,

the flow-weighted fraction of circulating particles fc is defined by [8, 9]

fc ≡
3

4
〈B2

0〉
∫ 1/Bmax

0

λ dλ

〈
√

1− λB0(θ) 〉
' 1− 1.46

√
ε+ 0.46 ε

√
ε, circulating fraction. (B5)

Slightly more accurate approximate forms are given in [24, 25]. The complementary fraction

of trapped particles is ft ≡ 1−fc ' 1.46
√
ε−0.46 ε

√
ε. In the approximate forms at the end

of all these formulas the variation of the magnetic field strength on a magnetic flux surface

has been approximated by B0 ' B0R0/R ' B00(1− ε cos θ) in which

ε ≡ Bmax−Bmin

Bmax+Bmin

' r

R0

� 1, inverse aspect ratio. (B6)

In the banana collisionality regime the dimensionless poloidal flow damping coefficients K̂B
ij

can be written for a plasma composed of electrons, hydrogenic ions and impurity ions as

indicated in the first column of Table 1 (see Eqs. (4.18), (4.19) and (4.61)–(4.64) in [8]).
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TABLE I: ASYMPTOTIC DIMENSIONLESS VISCOSITY COMPONENTS.

For a pure electron-ion plasma Z → Zi for electrons but Z → 0 for the ions.

In impure plasmas Z → Zeff for electrons, Z → Z∗ for ions and Z → 1/Z∗ for impurities.

In the rightmost column D ≡ (6/5)(2Z2 + 301/48
√

2 + 89/48) ' 2.40Z2 + 5.32Z + 2.225.

collisionality
regime: banana (B) plateau (P ) Pfirsch-Schlüter (PS)

K̂00 [Z +
√

2− ln(1+
√

2)]/(νsτss)
√
π (17Z/4 + 205/48

√
2)/D

' (Z + 0.533)/(νsτss) ' 1.77 ' (4.25Z + 3.02)/D

K̂01 [Z + 1/
√

2]/(νsτss) 3
√
π (7/2)(23Z/4 + 241/48

√
2)/D

' (Z + 0.707)/(νsτss) ' 5.32 ' (20.13Z + 12.43)/D

K̂11 [2Z + 9/4
√

2]/(νsτss) 12
√
π (49/4)(33Z/4 + 325/48

√
2)/D

' (2Z + 1.591)/(νsτss) ' 21.27 ' (101.06Z + 58.65)/D

Collisionality regimes in tokamak plasmas are defined by the ratio of the effective collision

frequency of trapped particles νeff ∼ ν/f 2
t ∼ ν/ε to their bounce frequency ωb ∼

√
ε vT/R0q:

ν∗ ≡
νeff

ωb
=

ν

ε3/2(vT/R0q)
=

R0q

ε3/2λ
, collisionality regime parameter. (B7)

The three relevant collisionality regimes (for each species) are

ν∗ � 1, low (banana, B) collisionality regime,

1� ν∗ � ε−3/2, intermediate (plateau, P ) collisionality regime,

ε−3/2 � ν∗, high (Braginskii, Pfirsch-Schlüter, PS) collisionality regime.

(B8)

The FSA residual parallel viscous force in the banana regime was discussed in the preceding

paragraph. The parameters for the plateau and Pfirsch-Schlüter collisionality regimes will

be discussed in the next two paragraphs.

The plateau regime is an intermediate collisionality regime where typical untrapped par-

ticles are collisionless, but trapped and low parallel velocity particles drift radially off flux

surfaces, which causes radial plasma transport and parallel viscous forces. The plateau

regime reference frequency is independent of collision frequency. For each species it is

νPref ≡
〈(b̂·∇B0)2〉
〈B2

0〉
v2
Ts

ωts
' 1

2
ε2ωts, plateau regime reference frequency. (B9)
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In the last approximate expression a large aspect ratio tokamak expansion which yields

〈(b̂ ·∇B0)2〉/〈B2
0〉 ' ε2/(2R2

0q
2) has been used and the characteristic transit frequency for

each species of untrapped particles has been defined by

ωts ≡
vTs
R0q

, species transit frequency. (B10)

In the plateau collisionality regime the dimensionless poloidal flow damping coefficients K̂P
ij

can be written for a plasma composed of electrons, hydrogenic ions and impurity ions as

indicated in the second column of Table 1 (see (4.65) in [8]).

The Pfirsch-Schlüter regime is [7, 8] the high collisionality Braginskii regime whose FSA

parallel viscous force, which is in the form of (B1), was given in (17). Its reference collision

frequency is

νPSref ≡
3

2

〈(b̂·∇B0)2〉
〈B2

0〉
v2
Ts

νs
' 3

4

ε2ω2
ts

νs
Pfirsch-Schlüter regime reference frequency, (B11)

which is inversely proportional to the collision frequency. In the Pfirsch-Schlüter collision-

ality regime the dimensionless poloidal flow damping coefficients K̂PS
ij can be written for a

plasma composed of electrons, hydrogenic ions and impurity ions as indicated in the third

column of Table 1 (see (A6), (A7) above and Eqs. (4.31)–(4.40) in [8]).

In general, the collisionality parameter ν∗ is solely a function of the poloidal flux ψp and

can be specified for a general axisymmetric magnetic field geometry by [9] (for each species)

ν∗s ≡
ft/fc
2.92

νs ωts
v2
Ts

〈B2
0〉

〈(b̂ ·∇B0)2〉
∼ νs

ε3/2(vTs/R0q)
, general collisionality parameter.

(B12)

The collision frequencies for electrons νe and ions νi in an impure plasma are defined in (A9)

and (A14). The impurity collision frequency νI is specified in (B21) below. As indicated at

the end of (B12), in a large aspect ratio tokamak where
√
ε� 1 one obtains ft/fc ∼ 1.46

√
ε

and again 〈(b̂ ·∇B0)2〉/〈B2
0〉 ' ε2/(2R2

0q
2), (B12) reduces to the approximate (B7).

Multi-collisionality forms of the parallel viscosity coefficients µe, µi for electrons, ions

in the desired form given by (18) have been developed [7–9]. They can be written in the

generic form [7] µ ∼
√
ε ν/[(1 + ν

1/2
∗ + ν∗)(1 + ε3/2ν∗)], with various order unity numerical

factors in front of each of the factors. Here, the ν
1/2
∗ factor in the denominator arises from

[7] collisional boundary layer effects in the vicinity of the velocity-space boundary between

trapped and untrapped (circulating) particles.

19



In this work smoothed formulas for the residual parallel viscous forces are desired that

encompass all three collisionality regimes and asymptotically approach the low (banana)

collisionality regime results for ν∗ � 1, the plateau results for 1� ν∗ � ε−3/2, and the high

(Braginskii) collisionality regime when ν∗ � ε−3/2. Also, small admixtures of impurities

should be allowed for since tokamak plasmas often have Zeff ∼ 2–3. Such descriptions have

been developed by Kim et al. [9] from general formulas presented in [8]. Those results will be

used after taking account of the Errata in Ref. [9] and correcting the coefficient of the Pfirsch-

Schlüter term in Table 1 of [9] in the denominator from 1/6 to 2/3 to obtain the correct high

collisionality limit. Also, collisional boundary layer effects [7] will be added with an assumed

coefficient of unity. Finally, the viscous damping frequencies in (B3) will be referenced to

the banana regime reference frequency in (B4). Thus, the proposed dimensionless viscosity

coefficients are, in the spirit of a Padé approximation, for each species s

K̂tot
ij =

K̂B
ij[

1 + ν
1/2
∗s + 2.92 ν∗sK̂B

ij /K̂
P
ij

] [
1 + 2K̂P

ij/(3ωtsτssK̂
PS
ij )
] . (B13)

Here, the K̂B
ij , K̂

P
ij and K̂PS

ij quantities are the dimensionless viscosity coefficients in the

banana, plateau and Pfirsch-Schlüter collisionality regimes, respectively; they are given in

Table I. The corresponding poloidal flow and heat flow damping frequencies µij are obtained

by multiplying the K̂tot
ij coefficients by the banana regime reference collision frequency in

(B4) and combining them as indicated in (B3). As in the caption of Table I, Z → Zeff for

electrons, Z → Z∗ for ions and Z → 1/Z∗ for impurities.

For example, the basic dimensionless poloidal flow damping frequency for each species is

µs ≡ µs00 = νsτss
ft
fc
Ktot
s00 =

(νsτss) (ft/fc)K
B
s00[

1 + ν
1/2
∗s + 2.92 ν∗sK̂B

s00/K̂
P
s00

] [
1 + 2K̂P

s00/(3ωtsτssK̂
PS
s00)
] .

(B14)

In the asymptotic banana regime (ν∗s → 0) this µs becomes (νsτss)(ft/fc)K̂
B
s00, which is the

banana result implied by νBrefτssK
B
s00. Similarly, in the asymptotic Pfirsch-Schlüter regime

(ν∗s � ε−3/2 or ωtsτss � 1) the µs in (B14) reduces to (3Tsτ
2
ss/ms)K̂

PS
s00〈(b̂ ·∇B0)2〉/〈B2

0〉,

which in turn yields 3 ηs00τss〈(b̂ ·∇B0)2〉/(msns〈B2
0〉) in which the ηs00 coefficients are the

generalized Braginskii coefficients given in (A6).

For extended MHD simulations it is convenient to specify the FSA of the residual parallel

viscous force in terms of the damping of the poloidal flow to an “offset” flow velocity U0
θ
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in the form (for each plasma species) indicated in (18) and (19). Thus, it is convenient to

write the first row of the matrix equation in (B1) as

〈B0·∇·π〉 = mnµ00〈B2
0〉
(
Uθ − U0

θ

)
, U0

θ ≡ − (µ01/µ00)Qθ, offset poloidal flow. (B15)

A multi-collisionality formula for the relative coefficient µ01/µ00 of the poloidal heat flow Qθ

can be constructed similarly for each species from the coefficients in Table 1:

µs01

µs00

=
5

2
− K̂tot

s01

K̂tot
s00

=
5

2
− K̂B

s01

K̂B
s00

1 + ν
1/2
∗s + 2.92 ν∗sK̂

B
s00/K̂

P
s00

1 + ν
1/2
∗s + 2.92 ν∗sK̂B

s01/K̂
P
s01

1 + 2K̂P
s00/(3ωtsτssK̂

PS
s00)

1 + 2K̂P
s01/(3ωtsτssK̂

PS
s01)

.

(B16)

To lowest order in
√
ε, for hydrogenic ions and no impurities (Zeff→ 1, Z∗ → 0), the ratio

µi01/µi00 is 1.17, −0.5 and −1.6 in the asymptotic banana, plateau and Pfirsch-Schlüter

(PS) collisionality regimes, respectively. The value of −1.6 disagrees with the ratio of −2.1

quoted just after Eq. (6.134) in [7], but is consistent with the values inferred from the ratio

of the first two rows of Table I in [8] in the the PS limit where µi01/µi00 ≡ 5/2− K̂PS
i01 /K̂

PS
i00 .

These coefficients for the poloidal flow damping frequency µ and ratio µ01/µ00 in the

offset poloidal flow yield numerically correct FSA parallel viscous forces (B1) and (17) in

the asymptotic limits of the banana and Pfirsch-Schlüter collisionality regimes. However,

they may overestimate them slightly in intermediate collisionality regimes — without the

ν
1/2
∗ boundary layer effect the µ value can be a factor of order 1.4 too large in the plateau

collisionality regime (see Fig. 1 in [8]).

In the large aspect ratio limit
√
ε � 1 the viscous damping frequency µ and offset

flow coefficient µ01/µ00 can be simplified. Namely, using the definition in (B14) and the

specifications of the coefficients in Table I, one obtains for electrons (νeτee = Zeff)

µe '
1.46
√
ε(1 + 0.533

Zeff
) νe[

1 + ν
1/2
∗e + 1.65(1 + 0.533

Zeff
)ν∗e

] [
1 + 1.18

2.4Z2
eff+5.32Zeff+2.225

Zeff(4.25Zeff+3.02)
ε3/2ν∗e

]
Zeff=2.5
' 1.77

√
ε νe

(1 + ν
1/2
∗e + 2 ν∗e)

(
1 + 1.06 ε3/2ν∗e

) . (B17)

The corresponding electron coefficient for the offset poloidal flow is

µe01

µe00

' 5

2
− Zeff + 0.707

Zeff + 0.533

1 + ν
1/2
∗e + 1.65(1 + 0.533

Zeff
)ν∗e

1 + ν
1/2
∗e + 0.55(1 + 0.707

Zeff
)ν∗e

1 + 1.18
2.4Z2

eff+5.32Zeff+2.225

Zeff(4.25Z∗+3.02)
ε3/2ν∗e

1 + 3.54
2.4Z2

eff+5.32Zeff+2.225

Zeff(20.13Zeff+12.43)
ε3/2ν∗e

Zeff=2.5
' 5

2
− 1.06

1 + ν
1/2
∗e + 2 ν∗e

1 + ν
1/2
∗e + 0.70 ν∗e

1 + 1.06 ε3/2ν∗i
1 + 0.69 ε3/2ν∗e

. (B18)
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The last approximate forms are appropriate for most tokamak plasmas where Zeff is often

in the range of 2–3. The electron collision frequency νe is given in (A9) and the electron

collisionality parameter ν∗e is defined in (B7) with ν → νe ≡ Zeff/τee, vT → vTe ≡
√

2Te/me

and λ→ λe ≡ vTe/νe, which is given in (A10).

The corresponding ion viscous poloidal damping frequency is given by (νiτii = Z∗+1/
√

2)

µi '
1.46
√
ε Z∗+0.533
Z∗+0.707

νi[
1 + ν

1/2
∗i + 1.65Z∗+0.533

Z∗+0.707
ν∗i

] [
1 + 1.18 2.4Z2

∗+5.32Z∗+2.225
(Z∗+0.707)(4.25Z∗+3.02)

ε3/2ν∗i

]
Z∗=3' 1.32

√
ε νi

(1 + ν
1/2
∗i + 1.49 ν∗i)

(
1 + 0.80 ε3/2ν∗i

) . (B19)

The corresponding ion coefficient for the offset poloidal flow is

µi01

µi00

' 5

2
− Z∗ + 0.707

Z∗ + 0.533

1 + ν
1/2
∗i + 1.65Z∗+0.533

Z∗+0.707
ν∗i

1 + ν
1/2
∗i + 0.55ν∗i

1 + 1.18 2.4Z2
∗+5.32Z∗+2.225

(Z∗+0.707)(4.25Z∗+3.02)
ε3/2ν∗i

1 + 3.54 2.4Z2
∗+5.32Z∗+2.225

(Z∗+0.707)(20.13Z∗+12.43)
ε3/2ν∗i

Z∗=3' 5

2
− 1.05

1 + ν
1/2
∗i + 1.57 ν∗i

1 + ν
1/2
∗i + 0.55 ν∗i

1 + 0.80 ε3/2ν∗i
1 + 0.52 ε3/2ν∗i

. (B20)

The last approximate forms are appropriate for most tokamak plasmas where Z∗ is often in

the range of 2–4. The ion collision frequency νi is given in (A14) and the ion collisionality

parameter ν∗i is defined in (B7) with ν → νi ≡ (Z∗ + 1/
√

2)/τii, vT → vT i ≡
√

2Ti/mi and

λ→ λi ≡ vT i/νi, which is given in (A15).

Finally, formulas for these quantities will be specified for an impurity (subscript I) ion

species. To do so, consider a typical case where there is only one dominant impurity ion

species, which is often carbon in present tokamak plasmas. Thus, a plasma that is composed

of electrons, hydrogenic ions (e.g., deuterons with Zi = 1 and mD/mH = 2) and one species

of impurity ions (e.g., carbon with ZI = 6 and mI/mD = 6) will be considered. For this

type of plasma the impurity collision frequency is typically dominated by impurity-impurity

collisions. [Impurity-electron collisions are negligible for Z∗ni/ne � (2me/mD)1/2 ∼ 1/43

and impurity-ion collisions are negligible for Z∗ ≡ nIZ
2
I /ni � (2mD/mI)

1/2 ∼ 0.6.] Hence,

the impurity collision frequency can be referenced to the ion collision frequency in (A14) as

νI = Z2
I

(
Z∗

1/
√

2 + Z∗

)(
Ti
TI

)3/2(
mi

mI

)1/2

νi ' Z2
I

(
mi

mI

)1/2

νi. (B21)

And the impurity neoclassical collisionality parameter can be written in terms of ν∗i as

ν∗I = Z2
I

(
Z∗

1/
√

2 + Z∗

)(
Ti
TI

)2

ν∗i ' Z2
I ν∗i. (B22)
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Thus, impurity ions are usually much more collisional than the hydogenic ions — by a factor

of ν∗I/ν∗i ∼ Z2
I ∼ 36 for carbon ions with TI ' Ti and Z∗ � 1. With these specifications the

impurity poloidal flow damping frequency µI and impurity ratio µI01/µI00 coefficient for the

offset poloidal flow are obtained from the corresponding ion formulas in (B19) and (B20)

using νi → νI , ν∗i → ν∗I and Z∗ → 1/Z∗ (see Z → 1/Z∗ note in caption of Table I).

Appendix C: Collisional Friction And Viscous Forces And Their Effects

In order to determine the offset poloidal flow U0
θ defined in (B15), consider next the

determination of the poloidal heat flow Qθ, for electrons, hydrogenic ions and impurities. In

general this requires [8, 9] the simultaneous solution of the FSA parallel momentum and heat

momentum (flux) equations for electrons and separately for hydrogenic and impurity ions.

In transport codes these are often evaluated using the NCLASS code [10]. Here, approximate

analytic results will be presented to illustrate how these heat flows are determined and their

consequences. The key asssumption made [9] to obtain these approximate results is that the

flow velocities of the impurities are the same as those of the hydrogenic ions. The conditions

for validity of this approximation are discussed at the end of this appendix.

Analogous to (B1), the friction and heat friction forces for a species s of particles flowing

with velocity Vs colliding with a heavier (ms′ � ms) species s′ flowing with velocity Vs′ can

be written in the matrix form [8, 26]R
s/s′

V

R
s/s′
q

 ' − msns
τss

(
ns′Zs′

ns

) Zs′
3
2
Zs′

3
2
Zs′

√
2 + 13

4
Zs′

Vs −Vs′

−2
5nT

qs

 . (C1)

The total collisional friction and heat friction forces on a given species s are determined by

summing over all species s′, including the species s:

RsV ≡
∑
s′

R
s/s′

V , Rsq ≡
∑
s′

Rs/s′

q . (C2)

Consider next the poloidal flow Usθ and heat flow Qsθ. At first order in the gyroradius

the flows lie within a flux surface. They are a combination of the parallel flow velocity

Vs‖ ≡ B0 (B0·Vs)/B
2
0 and the VE = E×B0/B

2
0 = B0×∇Φ0/B

2
0 and diamagnetic Vs∗ ≡

B0×∇ps/(nsqsB2
0) flow velocities. Thus, for a species s with pressure ps ≡ nsTs the poloidal

flow function defined in (16) is (see Eqs. (3.43), (3.45), (3.47) in [8] and (A13), (A16) in [9])

Usθ ≡
Vs ·∇θ
B0 ·∇θ

=
(Vs‖ + VE + Vs∗) ·∇θ

B0 ·∇θ
=

B0 ·Vs

B2
0

+
I

B2
0

(
dΦ0

dψp
+

1

nsqs

dps
dψp

)
. (C3)
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Multiplying this equation by nsqsB
2
0 , summing over species using the quasineutrality con-

dition
∑

s nsqs = 0, and averaging over a flux surface yields a relation for the FSA parallel

current J ≡
∑

s nsqsVs in the plasma:

〈B0 · J〉 = 〈B2
0〉
∑
s

nsqsUsθ − I
dP

dψp
, (C4)

in which P ≡
∑

s ps is the total plasma pressure. Assuming that the ion and impu-

rity flow velocities are approximately equal and using the fact that from quasineutrality

ni +
∑

I nIZI = ne, this last relation yields a relation for the poloidal electron flow function:

nee〈B2
0〉Ueθ = − 〈B0 · J〉 − I

dP

dψp
+ nee〈B2

0〉Uiθ. (C5)

The poloidal heat flow function is Qθ ≡ (−2/5nT ) q ·∇θ/B0·∇θ. The total heat flow

within the flux surface is q ≡ B0 (B0 · q)/B2
0 + q∧ in which the diamagnetic heat flow is

q∧ ≡ (5nT/2)B×∇T/qB2
0 . Thus, the FSA of B2

0 times the poloidal heat flow for each

species s is (see Eqs. (3.44), (3.46), (3.48) in [8], (A13), (A15) in [9]) or Eq. (13) in [12]

〈B2
0〉Qsθ(ψp) ≡

−2

5nsTs
〈B2

0〉
qs ·∇θ
B0·∇θ

=
−2

5nsTs
〈B0 · qs〉 −

I

qs

dTs
dψp

. (C6)

These formulas will be used to determine the poloidal electron heat flow Qeθ and parallel

neoclassical Ohm’s law in a plasma composed of electrons, hydrogenic ions and impurity

ions. The coupled FSA parallel momentum and heat flow equations for electrons are

0 = −nee〈B0 ·EA〉+ 〈B0 ·ReV〉 − 〈B0 ·∇·πe‖〉, (C7)

0 = 〈B0 ·Req〉 − 〈B0 ·∇·Θe‖〉. (C8)

Here, the electron collisional friction ReV and heat friction Req are caused by collisions

of electrons with electrons, hydrogenic ions and impurity ions, as defined in (C2). Thus,

assuming again that the impurity flow velocity is approximately equal to the hydrogenic ion

flow velocity, the friction and heat friction forces can be written in the matrix formReV

Req

 = − mene
τee

Ne ·

 −1
nee

J

−2
5neTe

qe

 , Ne ≡

 νe00 νe01

νe01 νe11

 =

 Zeff
3
2
Zeff

3
2
Zeff

√
2 + 13

4
Zeff

 .
(C9)

The corresponding FSA electron parallel viscous forces from (B1) are 〈B0·∇·πe‖〉

〈B0·∇·Θe‖〉

 ≡ mene
τee

Me ·

 〈B2
0〉Ueθ

〈B2
0〉Qeθ

 , (C10)
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in which the matrix Me of viscosity coefficients from (B3) and (B13) for electrons is

Me ≡

 µe00 µe01

µe01 µe11

 = (νeτee)
ft
fc

 Ktot
e00

5
2
Ktot
e00−Ktot

e01

5
2
Ktot
e00−Ktot

e01 K̂tot
e11−5 K̂tot

e01+ 25
4
K̂tot
e00


∼ 1.46

√
ε

 0.533 + Zeff 0.625 + 3
2
Zeff

0.625 + 3
2
Zeff 1.386 + 13

4
Zeff

. (C11)

The last form indicates the form of the Me coefficients in the asymptotic low collisionality

(ν∗e → 0) and large aspect ratio (
√
ε� 1) limit.

Using (C3)–(C6) and (C9), (C10) in (C7), (C8) and qe = − e, the matrix equation to be

solved for the FSA parallel current 〈B0 · J〉 and electron heat flow 〈B0 · qe〉 becomes 0

0

 = −nee

 〈B0 ·EA〉

0

+
mene
τee

 [Ne + Me] ·

 (1/nee) 〈B0 · J〉

(2/5neTe)〈B0 · qe〉



+ Me ·

 (I/nee) dP/dψp − 〈B2
0〉Uiθ

− (I/e) dTe/dψp

 . (C12)

This matrix equation is solved for the FSA parallel plasma current and electron heat flow

by taking the inner product of the inverse matrix [Ne + Me]
−1 with it: 〈B0 · J〉

(2e/5Te)〈B0 · qe〉

 =
nee

2τee
me

[Ne + Me]
−1 ·

 〈B0 ·EA〉

0


−
[

[Ne + Me]
−1 · Me

]
·

 I dP/dψp − nee〈B2
0〉Uiθ

− (neI) dTe/dψp

 . (C13)

The first row of this matrix equation yields the parallel neoclassical Ohm’s law. It will

be written in terms of an equation for the parallel inductive electric field induced by the

parallel current because MHD “owns” J =∇×B/µ0 since it evolves the magnetic field B:

〈B0 ·EA〉 = ηnc
‖ ( 〈B0 · J〉 − 〈B0 · Jbs〉 ), neoclassical parallel Ohm’s law. (C14)

If there are current-drive sources from external sources (e.g., for electron cyclotron current

drive) or fluctuations (dynamo) they can be added to this equation via [12]

〈B0 · Jbs〉 → 〈B0 · Jdrives〉 ≡ 〈B0 · (Jbs + JCD + Jdyn)〉. (C15)

The current-drive (subscript CD) and dynamo (subscript dyn) currents are defined in [12].
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In (21) the neoclassical parallel electrical resistivity ηnc
‖ is defined by

ηnc
‖ ≡

me

nee2τee

1

[Ne + Me]
−1
00

|Ne|�|Me|
=⇒ me

nee2τee

1

[Ne]
−1
00

=
meνe
nee2

√
2 + Zeff√

2 + (13/4)Zeff

≡ 1

σSp
‖
.

(C16)

As indicated at the end, when viscosity effects are negligible the parallel neoclassical resistiv-

ity reduces to the inverse of the Spitzer electrical conductivity. This formula for the Spitzer

conductivity is typically accurate to within about 1 % for Zeff ∼ 1–4, but incorrect by about

5 % for Zeff → ∞. Greater accuracy can be obtained by including “energy-weighted heat

flow” effects and inverting the resultant 3×3 matrix equation. However, such an expanded

treatment is usually not warranted because the intrinsic uncertainty in the Coulomb collision

operator is ∼ 1/ ln Λ ∼ 1/17 ' 6 %, which is larger than the errors in (C16). Neglecting

electron heat flow effects, the Ne and Me matrices reduce to just their 00 elements; in this

limit the neoclassical parallel resistivity becomes simply ηnc
‖ ' η⊥(1 + µe00/νe00), in which

η⊥ ≡ (meνe)/(nee
2) is the perpendicular plasma resistivity and µe00 ∼ 1.46

√
ε (0.533 +Zeff).

The FSA bootstrap current in (C14) is defined by

〈B0 · Jbs〉 =
[

[Ne + Me]
−1·Me

]
00

(
−I dP

dψp
+ nee〈B2

0〉Uiθ
)

+
[

[Ne + Me]
−1·Me

]
01

(
neI

dTe
dψp

)
.

(C17)

Neglecting electron heat flow effects so the Ne and Me matrices simplify to their 00 elements,

the poloidal ion flow Uiθ, and electron temperature gradient effects, to lowest order in the

asymptotic banana collisionality and large aspect ratio regime the bootstrap current becomes

〈B0 · Jbs〉 ∼ −
µe00

νe00 + µe00

I
dP

dψp
∼ − 1.46

√
ε (0.533 + Zeff)

Zeff + 1.46
√
ε (0.533 + Zeff)

B0

Bθ

dP

dr
. (C18)

Now that the FSA neoclassical parallel Ohm’s law has been specified, the Braginskii-

derived Ohm’s law can be modified so that it obtains the form given in (C14) for time scales

longer than the electron collision time. The total electron momentum equation is given by

mene dVe/dt = −nee(E + Ve×B)−∇pe −∇ ·πe + ReV. (C19)

Using Ve ≡ Vi − J/nee with Vi ' V (plasma flow velocity) and (1) for representing the

components of the electron viscous force ∇·πe, the electron momentum equation can be

rewritten as a general Ohm’s law:

E = −V×B +
J×B−∇pe −∇·πe∧

nee
+

ReV −∇·πe‖

nee
− me

e

dVe

dt
. (C20)

26



Here, the perpendicular electron viscous force∇·πe⊥ has been neglected because it is always

negligible. For time scales longer than the electron collision time 1/νe the inertia term can

neglected. Then, for B ' B0 the dominant contributions to the FSA of the parallel (B0 · )

component of this equation involves the inductive electric field EA, friction force ReV and

viscous force due to electron parallel stresses ∇·πe‖. (The electron gyroviscous stress force

∇·πe∧ is higher order in the gyroradius expansion and can be neglected.) The resultant

FSA parallel equation is simply (C7), which yields the parallel neoclassical Ohm’s law given

by (21). However, the perpendicular friction force yields the usual result

ReV⊥ = nee η⊥

(
J⊥ −

3

2

B×∇Te
eB2

)
, J⊥ ≡ −

B×(B×J)

B2
. (C21)

These effects are all assembled in the general Ohm’s law given in (22).

The ion parallel momentum and heat flow equations will be considered next in order to

determine the poloidal ion heat flow Qiθ en route to determining the “offset” ion poloidal

flow function U0
iθ. As indicated in the caption of Table I, the ion friction and viscosity

matrices Ni and Mi can be obtained by changing Zeff to Z∗ in the corresponding electron

matrices. However, when the hydrogenic and impurity ions are assumed to have the same

flow velocities there is no frictional force RiV between the ion species, although there is an

ion heat friction force Riq; this is taken into account by setting Z → Z∗ = 0 in the friction

matrix. Thus, the ion friction and viscosity coefficient matrices become simply

Ni =

 νi00 νi01

νi01 νi11

 =

 0 0

0
√

2

 , (C22)

Mi =

 µi00 µi01

µi01 µi11

 ∼ (νiτii)
ft
fc

 0.533 + Z∗ 0.625 + 1.5Z∗

0.625 + 1.5Z∗ 1.386 + 3.25Z∗

 . (C23)

As usual, the last form of Mi indicates the banana collsionality regime (ν∗i � 1) coefficients.

The total FSA plasma parallel force balance equation [8, 11] has no parallel friction force

RiV and hence to lowest order (in
√
me/mD ∼ 1/60� 1) is simply

0 = −〈B0 ·∇·πi‖〉 = − (mini/τii) 〈B2
0〉 (µi00Uiθ + µi01Qiθ). (C24)

The FSA parallel heat flow equation for the hydrogenic ions is

0 = 〈B0 ·Riq〉− 〈B0 ·∇·πi‖〉 = − mini
τii

[
νi11

(
−2

5niTi

)
〈B0 · qi〉+ 〈B2

0〉 (µi01Uiθ + µi11Qiθ)

]
.

(C25)
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Using the definition of the FSA parallel ion heat flow in (C6) and the solution from (C24) of

Uiθ = − (µi01/µi00)Qiθ, this equation can be solved for the poloidal ion heat flow function:

Qiθ = c#
I

qi〈B2
0〉

dTi
dψp

, c# ≡
1

1 + (µi11 − µ2
i01/µi00)/νi11

. (C26)

Various limits of the numerical coefficient c# are of interest. When viscosity effects are

negligible, c# = 1. For a pure electron-ion plasma (i.e., no impurities, Z∗ → 0) in the ν∗i � 1

collisionality regime, one obtains c# = 1/[1 + 0.46(ft/fc)]. When ion-impurity collisions are

dominant (i.e., when Z∗ � 1) in the ν∗i � 1 collisionality regime, c# = 1/[1 + 0.71(ft/fc)].

Since the poloidal ion heat flow has been determined, the offset poloidal ion flow function

defined in (B15) can now be specified:

U0
iθ = ki

I

qi〈B2
0〉

dTi
dψp

, ki ≡ c#
µi01

µi00

, final offset poloidal ion flow. (C27)

The constant ki is the usual neoclassical factor [7] for the poloidal ion flow. For a pure

electron-ion plasma (i.e., Z∗ = 0) in the asymptotic banana collisionality (ν∗i � 1) and

large aspect ratio (
√
ε� 1, ft/fc ' 1.46

√
ε� 1) regime it is 1.17/(1 + 0.67

√
ε ).

The preceding analysis has assumed that impurity flow velocities are approximately equal

to the hydrogenic ion flow velocities. However, in general one should solve simultaneously

for the impurity flow velocities and the hydrogenic ion flow velocities from their respective

FSA parallel momentum and heat flow equations, allowing for differences in them. This is

what the NCLASS code [10] does. In doing so one finds in general that the hydrogenic and

impurity ion flows and hence the offset U0
iθ depend on the impurity density and temperature

gradients. However, since impurity collision frequencies are usually much larger than ion

collision frequencies, impurities have much higher collisionalities (ν∗I/ν∗i ∼ Z2
I � 1); hence,

they are often in the plateau or even Pfirsch-Schlüter collisionality regimes. There, their

viscous damping effects become negligible; then, it can be shown [9] that to lowest order

the offset poloidal ion flow U0
iθ is solely proportional to the ion temperature gradient. An

approximate criterion for the validity of (19) and (C27) with the coefficient ki determined

mainly by the collisionality regime of the hydrogenic ions results from requiring [9] that the

impurity viscous force be negligible compared to the impurity-ion friction force:

|NI | � |MI |, which for plateau regime impurities is ν∗I >∼ ft/fc ∼ 1.46
√
ε. (C28)

Thus, impurities effectively must be in the plateau or Pfirsch-Schlüter collisionality regime.
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Very deep in the ion banana collisionality regime (i.e., ν∗i � 1) one can have ν∗I < 1;

then, the impurity ion density and temperature gradient effects should be taken into account

by using NCLASS [10] to obtain the offset flows U0
iθ. However, this very low hydrogenic ion

collisionality regime is only barely reached in most present tokamak plasmas. When impurity

flows become important one should really be solving three-fluid equations that include the

impurity density, momentum, energy and heat flow equations. For the purpose of extended

MHD codes it will be assumed that the offset poloidal ion flows U0
iθ can be represented in

terms of the ion temperature gradients as indicated in (19), (B15) and (C27).
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