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a b s t r a c t

Implicit algorithms are essential for predicting the slow growth and saturation of global
instabilities in today’s magnetically confined fusion plasma experiments. Present day algo-
rithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for
highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s.
However, today’s computers and modern linear and non-linear solver techniques make
practical much more comprehensive implicit algorithms than were previously possible.
Combining these advanced implicit algorithms with highly accurate spatial representa-
tions of the vector fields describing the plasma flow and magnetic fields and with improved
methods of calculating anisotropic thermal conduction now makes possible simulations of
fusion experiments using realistic values of plasma parameters and actual configuration
geometry. This article is a review of these developments.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

This article is a review of the progress made during the last 35 years in developing accurate and efficient implicit algo-
rithms for simulating the global dynamics of strongly magnetized low-b (ratio of plasma to magnetic pressure) plasmas such
as exist in modern magnetic fusion experiments; in particular the tokamak configuration [1]. Other, related confinement
configurations that these methods are useful for include stellarators, reversed field pinches, spheromaks, and spherical tori.
We limit our discussion to algorithms for solving the magnetohydrodynamic (MHD) equations [2], in which the plasma is
described as a conducting fluid. Several forms of these equations are summarized in Appendix B. Efforts at extending this
work to include intrinsically kinetic effects are presently underway, but this will not be covered in the present review.

The typical geometry of a tokamak experiment is shown in Fig. 1 where a cylindrical (R,u,Z) coordinate system is used.
The equilibrium magnetic field is axisymmetric; independent of the toroidal angle u. The magnetic field is composed of a
toroidal field, which is into the plane of the paper, and a poloidal field, which lies within the plane of the paper. The magnetic
field lines interior to the separatrix surface form closed flux surfaces on which the temperature, pressure, and density are
nearly constant. These are shown as solid curves in the figure. The ratio of the number of times a magnetic field line goes
the long way around the torus to the number of times it goes the short way around on one of these surfaces is called the
safety factor, which we denote as q. It typically varies from 1 near the magnetic axis to 3 or 4 near the edge. Exterior to
the separatrix surface, the magnetic surfaces are open and the field lines intersect the vacuum vessel or other structures.
The plasma on these open surfaces will necessarily be very low pressure, density, and temperature. The vacuum vessel is
sometimes modeled as a perfect conductor, but in reality has some electrical resistance, which can be important for some
plasma dynamics [3,4]. Exterior to the vacuum vessel, it is normally assumed that a vacuum exists so that the free-space
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Maxwell equations are satisfied. This is the geometry we are interested in simulating, although much of the algorithm devel-
opment leading up to simulations in this geometry has occurred using much simpler geometry.

In Section 2 we review the reasons for the multiple timescales that exist when describing the global dynamics of magne-
tized plasma, and hence the need for an implicit algorithm. Section 3 traces back the origins of modern algorithms for treating
the hyperbolic terms (ideal MHD) to similar methods proposed for implicit hydrodynamics in the 1960s. In Section 4 we dis-
cuss some of the considerations in choosing a spatial representation, including the choice of variables used in representing the
vector fields. We discuss implicit treatment of the anisotropic heat conduction in Section 5, and techniques for dealing with
the terms that occur in the two-fluid (2F) description in Section 6. Section 7 contains a short summary and some observations.
In Appendix A, we show the relation of the algorithms most widely used for implicit treatment of the hyperbolic terms to the
Schur complement of a matrix.

2. The need for an implicit algorithm

Global plasma instabilities are termed either ‘‘ideal’’ or ‘‘resistive’’ depending on the minimum equation set that is re-
quired to describe their onset. Ideal instabilities require only the ideal MHD equations [5], while resistive instabilities require
the presence of resistivity, or other forms of dissipation. In general, resistive instabilities occur on significantly slower time-
scales than do ideal instabilities since the resistivity in high temperature plasma is very low.

There is a wide separation in timescales even within phenomena described by the ideal MHD equations in tokamak
geometry. There are three characteristic wave propagation velocities in ideal MHD: that of the slow wave VS, the Alfvén wave
VA, and the fast wave VF. These satisfy VS� VA < VF. Since the fast wave is the only one that compresses the magnetic field, a
motion that is highly stabilizing, all low-b tokamak ideal MHD instabilities are associated with the slow wave and the Alfvén
wave. The plasma will ‘‘slip through’’ the background field rather than compress it. However it is the fast wave that sets the
maximum allowable time step when using an explicit time advance.

To better understand the time step restriction imposed by the presence of the fast wave, consider the timescales associ-
ated with the three types of waves. The slow wave and Alfvén wave only propagate in the direction parallel to the back-
ground magnetic field whereas the fast wave’s propagation is nearly isotropic [2]. If we denote the local safety factor as q
and the local aspect ratio as e, then the ratio of the transit times of these three waves is: qe�2: qe�1: 1. However, the differ-
ence in the explicit time step constraint associated with the three waves is much more extreme than this. The spatial res-
olution requirements perpendicular to the magnetic field are much more severe than those parallel to the magnetic field,
making the Courant–Friedrichs–Lewy (CFL) [6] condition associated with the fast wave much more restrictive than that

Fig. 1. In a tokamak, the equilibrium plasma is axisymmetric. Magnetic flux surfaces are closed interior to the separatrix and open exterior to it. Plasma is
surrounded by a metallic vacuum vessel.
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associated with the others; typically by two or more orders of magnitude. An implicit treatment of at least the fast wave is
therefore essential if one is to follow even relatively rapid growing ideal MHD instabilities.

Resistive instabilities present even more of a timescale problem. The Lundquist number, S, is the ratio of the resistive dif-
fusion time for the magnetic field to the Alfvén wave transit time. If we denote the minor radius as a, the poloidal magnetic
field as BP, the plasma resistivity as g, the number density as n, the ion mass as Mi, and the permeability of free space as
l0 = 4p � 10�7, then we can approximate this as (SI units):

S ¼
ffiffiffiffiffiffiffiffiffi
l0

nMi

r
aBp

g
: ð1Þ

In modern fusion experiments, this number is typically in the range: S � 106 � 109. Resistive instabilities will grow on times
proportional to inverse fractional powers of this multiplied by the Alfvén wave transit time: sRI � S�asA where typically
a � 1/3 � 3/5 [7,8]. The initial growth of these instabilities involves plasma motion highly localized in the vicinity of a par-
ticular flux surface, necessitating very high spatial resolution in the direction perpendicular to the magnetic field. During the
nonlinear growth, it is typical to have a � 1[9] so that very long integration time scales are required. It is clear that a highly
implicit treatment of the ideal MHD wave terms (hyperbolic terms) is essential if one is interested in simulating these slowly
growing resistive instabilities.

3. Implicit algorithms for time advancing the hyperbolic terms

If the (small) resistive and other dissipative terms are neglected, the resistive MHD equations reduce to the ideal MHD
equations, a symmetric hyperbolic system of equations. In this section, we review progress in developing implicit algorithms
for this type of system of equations.

3.1. Implicit hydrodynamics

The algorithm now widely used to obtain implicit solutions (and hence enable large time steps) for the MHD equations
has its roots in the ICE algorithm of Harlow and Amsden for hydrodynamics [10]. The essence of this algorithm can be illus-
trated by applying it to the 2D isothermal hydrodynamic system of equations:

@q
@t
þ @mx

@x
þ @my

@y
¼ 0; ð2aÞ

@mx

@t
þ @

@x
ðqu2Þ þ @

@y
ðquvÞ þ c2 @q

@x
¼ 0; ð2bÞ

@my

@t
þ @

@x
ðquvÞ þ @

@y
ðqv2Þ þ c2 @q

@y
¼ 0: ð2cÞ

Here q is the fluid density, mx � qu and my � qv are momentum densities, and c2 is a constant. The method is motivated by
the need to treat the sound wave characteristics implicitly when the flow Mach number is small. This is accomplished by
using the advanced time value of the momentum density in the density evolution equation, Eq. (2a), and the advanced time
value of the density in the momentum density evolution equations, Eqs. (2b), (2c). Introduce the time step dt and consider
the time advance from time n (denoted with a superscript) to time n + 1. Using ‘‘dots’’ to denote time differentiation; i.e.
_a � @a=@t ¼ ðanþ1 � anÞ=dt for any scalar quantity a, we can introduce an implicit parameter h and write the implicit time
advance equations as

_qþ @

@x
ðmn

x þ hdt _mxÞ þ
@

@y
ðmn

y þ hdt _myÞ ¼ 0; ð3aÞ

_mx þ
@

@x
ðqn þ hdt _qÞu2� �

þ @

@y
ðqn þ hdt _qÞuv½ � þ c2 @

@x
ðqn þ hdt _qÞ ¼ 0; ð3bÞ

_my þ
@

@x
ðqn þ hdt _qÞuv½ � þ @

@y
ðqn þ hdt _qÞv2� �

þ c2 @

@y
ðqn þ hdt _qÞ ¼ 0: ð3cÞ

Those variables without a superscript or dot are evaluated at time level n. We can now use Eqs. (3b) and (3c) to eliminate _mx

and _my from Eq. (3a) to obtain

_q� ðhdtÞ2 @2

@x2 ðu
2 þ c2Þ _q

� �
þ 2

@2

@y@x
½uv _q� þ @2

@y2 ðv
2 þ c2Þ _q

� � !

¼ � @

@x
ðmn

x Þ �
@

@y
ðmn

yÞ þ hdt
@2

@x2 ðu
2 þ c2Þq

� �
þ 2

@2

@y@x
½uvq� þ @2

@y2 ðv
2 þ c2Þq

� � !
: ð4Þ
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Letting dt _q ¼ qnþ1 � qn, and multiplying through by dt, we have

qnþ1 � qn � ðhdtÞ2 @2

@x2 ðu
2 þ c2Þqnþ1� �

þ 2
@2

@y@x
½uvqnþ1� þ @2

@y2 ðv
2 þ c2Þqnþ1� � !

¼ �dt
@

@x
ðmn

x Þ �
@

@y
dtðmn

yÞ þ hð1� hÞðdtÞ2 @2

@x2 ðu
2 þ c2Þq

� �
þ 2

@2

@y@x
½uvq� þ @2

@y2 ðv
2 þ c2Þq

� � !
: ð5Þ

This can be put into the form used in [10] by setting h = 1 (backward in time), using centered finite difference operators, and
subtracting Eq. (3a) in the form

�qn þ qn�1 ¼ dt
@

@x
ðmn

xÞ þ dt
@

@y
ðmn

yÞ: ð6Þ

This yields the finite difference equation for the new time density:

qnþ1
i;j � 2qn

i;j þ qn�1
i;j �

dt2

dx2 ðu2Þniþ1;j þ c2
� �

qnþ1
iþ1;j � 2 ðu2Þni;j þ c2

� �
qnþ1

i;j þ ðu2Þni�1;j þ c2
� �

qnþ1
i�1;j

h i
� dt2

dy2 ðv2Þni;jþ1 þ c2
� �

qnþ1
i;jþ1 � 2 ðv2Þni;j þ c2

� �
qnþ1

i;j þ ðv2Þni;j�1 þ c2
� �

qnþ1
i;j�1

h i
� 2

dt2

dxdy

ðuvÞniþ1=2;jþ1=2q
nþ1
iþ1=2;jþ1=2 � ðuvÞniþ1=2;j�1=2q

nþ1
iþ1=2;j�1=2

�ðuvÞni�1=2;jþ1=2q
nþ1
i�1=2;jþ1=2 þ ðuvÞni�1=2;j�1=2q

nþ1
i�1=2;j�1=2

" #
¼ 0: ð7Þ

Subscripts denote the spatial index on an equally spaced Cartesian grid with x = idx and y = jdy. Eq. (7) is then solved itera-
tively for the new time density: qnþ1

i;j . Once this is obtained, it is used in the finite difference forms of Eqs. (3b) and (3c) to
advance the momentum density from time n to n + 1. Eq. (7) is seen to be a diagonally dominant matrix equation that is read-
ily solved by relaxation techniques. The noteworthy features of this unconditionally stable method are that (1) the matrix
equation that needs to be solved is for only one variable, qn+1, as the momentum variables at the new time level have been
eliminated algebraically, and (2) the matrix equation is diagonally dominant and nearly symmetric, and thus well
conditioned.

3.2. Implicit treatment of the fast wave

Consider now the ideal MHD equations (given in Appendix B), a purely hyperbolic system of equations. These are similar
to the hydrodynamic equations, but are considerably more complicated in that they have additional characteristics. As dis-
cussed above, in a low-b strongly magnetized fusion plasma, such as a tokamak, the ideal MHD equations contain three types
of wave solutions that differ greatly in their structure and propagation properties. Since the CFL condition for the fastest of
these waves is unduly restrictive, some type of implicit treatment is required if one is to integrate the equations over times of
interest. We can use the fact that the fast wave is the only one that compresses the magnetic field and hence has a non-zero
divergence perpendicular to the field, r�V\ – 0, [2] to isolate it for an implicit advance in a relatively simple equation. Con-
sider the ideal MHD equations in the form:

_V þ V � rV þ 1
q
r pþ 1

2l0
B2

� �
¼ þ 1

ql0
B � rB; ð8aÞ

_pþ V � rpþ cpr � V ¼ 0; ð8bÞ
_Bþ V � rBþ Br � V? � B � rV? ¼ 0: ð8cÞ

Next, define the total (fluid + magnetic pressure) P � pþ 1
2l0

B2 and the perpendicular divergence of the velocity D �r\�V. By
taking the perpendicular divergence of Eq. (8a) and adding Eq. (8b) to the inner product of B with Eq. (8c) we obtain [11]

_P þ 1
l0

B2 þ cp
� �

Dþ N ¼ 0; ð9aÞ

_Dþr? �
1
q
rP þ Q ¼ 0: ð9bÞ

Here, we have defined

N � V � rpþ cpr � Vk þ
1
l0

B � V � rB� 1
l0

B � B � rV?; ð10aÞ

Q � r? �
�1
l0q

B � rBþ V � rV
	 


: ð10bÞ

In a manner analogous to what was done in going from Eq. (2) to Eq. (3), we construct a partially implicit time advance by
evaluating the perpendicular velocity divergence and the total pressure in Eq. (9) at the advanced time to obtain
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_P þ 1
l0

B2 þ cp
� �

Dn þ hdt _D
� �

þ N ¼ 0; ð11aÞ

_Dþr? �
1
q
r Pn þ hdt _P
� �

þ Q ¼ 0: ð11bÞ

Next, use Eq. (11b) to eliminate _D from Eq. (11a) to obtain the single equation for the advanced time pressure:

Pnþ1 � ðhdtÞ2c2r? �
1
q
rPnþ1 ¼ Pn þ dt �c2Dn � N þ c2hdtQ

� �
þ hð1� hÞdt2c2r? �

1
q
rPn: ð12Þ

Here, we have defined c2 � 1
l0

B2 þ cp. Again, we note that after applying centered spatial finite differencing operators, Eq.
(12) becomes a well conditioned, diagonally dominant nearly symmetric matrix equation for the new time total pressure,
very similar to the equation for the new time density in Eq. (7). The total pressure, Pn+1, can be readily solved for using relax-
ation or other techniques [11]. Once this is obtained, we can use it in Eq. (8a) to advance the velocity, and then use the ad-
vanced velocity in Eq. (8b) and (8c) to advance the pressure and magnetic field. The time step using this method need only
obey the CFL condition for the Alfvén wave and slow wave, not the fast wave.

This basic technique of solving a separate equation for the advanced time total pressure has been extended to three
dimensions in [12] and to 3D toroidal geometry [14]. However, in [12], the operator in Eq. (12) is replaced in their Eq.
(32) by:

Pnþ1 � ðhdtÞ2 cp	r? �
1
q
rPnþ1 � B	 � r � 1

q
rPnþ1 � B	

	 

¼ � � � : ð13Þ

Here starred quantities are predicted values in their predictor–corrector algorithm. Eq. (13) is what results if all the terms in
Eq. (8c) are retained in the implicit solve rather than just the one involving compression. It is not clear what the advantage of
this is, or if the authors studied its effect. This algorithm was first successfully implemented in circular cylindrical geometry
where the two equilibrium ignorable periodic coordinates were treated using a Fourier series expansion. In order to obtain
separable equations to facilitate rapid inversion, the quantities p and B⁄ were approximated as being independent of the an-
gles during the matrix solve [12]. This was later extended to toroidal geometry [13].

3.3. Semi-implicit treatment of the fast wave

At about the same time as [12] appeared; Harned and Kerner [15] developed a semi-implicit algorithm that also allows
exceeding the CFL condition for the fast wave. Although not cited in this first paper, a similar semi-implicit algorithm had
been used previously by others in large scale meteorological calculations to eliminate the severe time step constraint due
to external gravity waves. This technique was shown to be exceptionally efficient when using a spectral representation
[16] but had also been shown to be effective when using a finite difference model [17]. This early meteorological work is
reviewed in [18] and referred to in later MHD publications[19].

The Harned and Kerner algorithm is noteworthy in several respects: (1) it solves for the velocity field (rather than the
total pressure) with an implicit operator. This is important in that it was essential for subsequent extensions of this tech-
nique to an implicit treatment of the other ideal MHD characteristics, (2) it uses an approximate implicit operator rather
than the full operator. This has the potential for greatly increasing the efficiency of the method for a nonlinear problem since
the same (approximate) implicit operator could be used repeatedly without having to be inverted each time step, and (3) the
same operator appears on each side of the equals sign in the equation for the new time velocity; it operates on Vn+1 on the
left and Vn on the right. This provides a convenient prescription for developing a second order in time implicit operator that
again allowed for generalization in future works.

To derive the Harned and Kerner algorithm, consider the ideal MHD equations as given in Eq. (8). Analogous to Eq. (11),
we evaluate only the terms that contribute to the fast wave at the advanced time:

_V þ V � rV þ 1
q
r pþ hdt _pþ 1

2l0
B2 þ 1

l0
hdtB � _B

	 

¼ þ 1

ql0
B � rB; ð14aÞ

_pþ V � rpþ cpr � ðV þ hdt _VÞ ¼ 0; ð14bÞ
_Bþ V � rBþ Br � ðV þ hdt _VÞ � B � rV ¼ 0: ð14cÞ

Substitution of Eq. (14b) and (14c) to eliminate _p and _B from Eq. (14a), and keeping only those terms in Eq. (14b) and (14c)
which multiply _V yields

_V � ðhdtÞ2 1
q
r ðcpþ B2Þr � _V
h i

¼ �V � rV � 1
q
r pþ 1

2l0
B2

	 

þ 1

ql0
B � rB: ð15aÞ

The semi-implicit method now introduces a constant, A2
0, and replaces Eq. (15a) with the following modified form:

_V � ðdtÞ2A2
0rr � _V ¼ �V � rV � 1

q
r pþ 1

2l0
B2

	 

þ 1

ql0
B � rB: ð15bÞ
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The discrete version of Eq. (15b) is obtained by substituting _V ¼ ðVnþ1 � VnÞ=dt and applying central finite differences and/or
a Fourier series expansion. This, together with the discrete forms of Eqs. (14b) and (14c) with h P 1/2, is shown to be numer-
ically stable for time steps that exceed the CFL condition for the fast wave (but not the Alfven wave) as long as
A2

0 P ð1=4q0Þðcp0 þ B2
0Þ� This was implemented in a predictor–corrector algorithm in which the explicit forms (with h = 0)

of Eq. (14) were used to calculate predicted values of V, B, and p. Then, the velocity at the new time level, Vn+1, was calculated
from Eq. (15b). This and the predicted values of B and p were then used in Eqs. (14b) and (14c) to get new time values of
these quantities.

3.4. Semi-implicit treatment of the alfven and fast waves

Not long after the semi-implicit operator for the fast wave in Eq. (15b) was derived, it was extended by Harned and
Schnack [19] to include the Alfven wave. Consider the full ideal MHD equations applied to a uniform magnetic field config-
uration, but with all the terms that lead to wave solutions evaluated at the advanced time. The analogue of Eq. (14) is

_V þ V � rV þ 1
q
rðpþ hdt _pÞ ¼ þ 1

ql0
r� ðBþ hdt _BÞ
h i

� B; ð16aÞ

_pþ V � rpþ cpr � ðV þ hdt _VÞ ¼ 0; ð16bÞ
_B ¼ r� ðV þ hdt _VÞ � B

h i
: ð16cÞ

Using Eqs. (16b) and (16c) to eliminate _p and _B from Eq. (16a), and keeping only the terms in the substitution proportional to
_V gives the following operator equation for the time derivative of the velocity:

_V � ðhdtÞ2 1
q
r cpr � _V
� �

� 1
ql0
ðhdtÞ2 r� r� ½ _V � B�

� �h i
� B ¼ �V � rV � 1

q
rpþ 1

ql0
½r � B� � B: ð17aÞ

The semi-implicit operator used in [19] replaced the magnetic field on the left in Eq. (17) by a vector quantity with constant
coefficients: C0 ¼ Cxx̂þ Cyŷþ Czẑ. The pressure term is dropped, with the reasoning that it does not enter into the Alfvén
wave and enters into the fast wave with the same form as the perpendicular magnetic field. Therefore, the semi-implicit
approximation to Eq. (17a) is just

_V � 1
q0l0

dt2 r� r� _V � C0

h i� �h i
� C0 ¼ �V � rV � 1

q
rpþ 1

ql0
½r � B� � B: ð17bÞ

This was implemented in Cartesian geometry in [19] in the following way: first the velocity and field quantities are updated
explicitly to a provisional time value (	) in a predictor step by using Eq. (16) with h = 0. These provisional values are used to
advance the velocity from time n to n + 1 using the semi-implicit Eq. (17b). They then use an average of the velocity at from
time n and n + 1 and the field quantities at time value (	) to perform a corrector step to advance the field variables from time
n to n + 1. However, for the magnetic field (or vector potential), they then perform a final split semi-implicit advance where
the resistive part of the MHD equations is included.

It is shown in [19] that this algorithm is unconditionally stable as long as Ci P Bi everywhere for i = x, y, z with the crucial
modification that all terms that appear in the semi-implicit operator as products as CiCj be replaced by Ci Cjdij, where dij is the
Kronecker delta.

This work was extended in [20] to cylindrical geometry where a spectral representation was used in the periodic poloidal
and axial coordinates. Define the semi-implicit operator in Eq. (17b) as

Gf _Vg � r� r� _V � C0

h i� �h i
� C0; ð18aÞ

Besides retaining only terms proportional to C2
a, where now a = r,h,z, they further ignored any coupling between VZ and

(Vr,Vh), allowing the algorithm to retain a 2 � 2 block tridiagonal structure. An additional approximation that was considered
in [20] was to approximate Eq. (18a) by the much simpler isotropic operator

Gf _Vg ¼ C2
0r2 _V: ð18bÞ

They present comparisons of long time simulations using Eqs. (18a) and Eqs. (18b) and conclude that the accuracy of the
linear modes for a given time-step size is improved by using Eq. (18a) (including the modifications discussed above), but
that far into the nonlinear phase of a reversed field pinch simulation the results of using the two approximate operators
are similar.

It is also noteworthy in [20] that the leap-frog method was combined with the semi-implicit method in a way that re-
duced the dissipation of the algorithm. They define the field quantities at times offset from the velocity by half a time step.
After performing a predictor–corrector step just for the field quantities which includes an implicit treatment of the resistive
term, and a predictor step for the velocity that includes only the convective derivative term, they use these on the right side
to Eq. (17b) to advance the velocity to the new time level.
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The algorithm presented in [20] was later found to be unstable if significant plasma flow was present. However, it was
shown that if the semi-implicit operator was included in both the predictor and corrector steps for the velocity, a method
that was stable for CFL numbers based on the flow speed up to 1 could be obtained [21]. This was also demonstrated in [22].

3.5. The method of differential approximation

Consider now the ideal MHD equations where all the terms containing the pressure and magnetic field in the momentum
equation are evaluated at the advanced time, as are all the terms containing the velocity in the pressure and magnetic field
equations. The analogue of (14) and (16) is

_V þ V � rV þ 1
q
rðpþ hdt _pÞ ¼ þ 1

ql0
r� ðBþ hdt _BÞ
h i

� ðBþ hdt _BÞ; ð19aÞ

_pþ ðV þ hdt _VÞ � rpþ cpr � ðV þ hdt _VÞ ¼ 0; ð19bÞ
_B ¼ r� ðV þ hdt _VÞ � B

h i
: ð19cÞ

In a manner closely analogous to the above, we linearized Eq. (19a) in the terms involving dt, and then use Eqs. (19b) and
(19c) to eliminate _p and _B from the linearized Eq. (19a). This yields

_V � 1
q
ðhdtÞ2Gf _Vg ¼ 1

q
ðhdtÞGfVg � V � rV � 1

q
rpþ 1

ql0
ðr � BÞ � B: ð20aÞ

Here, G is the full ideal MHD operator [23]

Gf _Vg ¼ r� r� ð _V � BÞ
h i

� Bþ ðr� BÞ � r� ð _V � BÞ
h i

þr _V � rpþ cpr � _V
h i

: ð20bÞ

Caramana [24] noted that it is the numerical dispersion coming from the implicit operator acting on _V, i.e. the second term
on the left in Eq. (20a), that is the primary numerical stabilization mechanism, rather than the first term on the right, that
provides numerical dissipation. Thus, implicit methods can get rid of numerical dissipation by dropping that term and com-
bining with leap-frog for the field advance equations (or by setting h = 1/2 in a h-implicit scheme) and still have numerical
stability with an arbitrarily large time step. He therefore replaced Eq. (20a) with [24]

_V � 1
q
ðhdtÞ2Gf _Vg ¼ �V � rV � 1

q
rpþ 1

ql0
ðr � BÞ � B: ð20cÞ

The system given by Eqs. (20c), (20b), (19b) and (19c) looks very similar to the semi-implicit method, Eq. (17b), but it has one
important advantage. Since no additional approximations to the operator G were made, the eigenvalues of G are the same as
the eigenvalues of the ideal MHD equations. This means that there is no mixing of the linear eigenvalues and thus the system
given by Eqs. (20b), (20c), (19b) and (19c) can be used to faithfully compute eigenvectors of the original system. In particular,
there is no intrinsic ‘‘spectral pollution’’ [25] introduced in this algorithm whereby eigenmodes associated with the fast
waves will produce artificial stabilization of the possibly unstable eigenmodes associated with the Alfven and/or slow wave
branches. The disadvantage of this technique is that it requires the inversion of a complicated linear operator each time step
in the calculation.

The semi-implicit XTOR code [22,26] goes partway towards implementing the full ideal MHD operator as given in Eq.
(20b). Their method approximates the full ideal MHD operator in Eq. (20b) as the full ideal MHD operator based on the equi-
librium fields plus a small coefficient multiplying the Laplacian as follows:

Gf _Vg ! G0f _Vg þ cr2f _Vg: ð21Þ

Thus, the constant c in Eq. (21) could be very small compared to that used in [20] since it is needed only for the small depar-
ture of the computed nonlinear solutions from their linear eigenmodes. This was implemented in toroidal geometry using a
spectral representation in both the poloidal and toroidal angles. The stabilizing implicit operator G was included in both
steps of a predictor–corrector scheme in [22] and in only the second step of a modified predictor–corrector scheme in
[26]. Resistive terms are included in an implicit resistive advance for the magnetic field in a separate step after the corrector
step.

The NIMROD code [27,28] uses basically the same implicit operator as given in Eq. (21), but combines this with an explicit
leap-frog scheme. However, they also include the symmetric part of the deviation of the solution from equilibrium in the
operator G0 in Eq. (21), and the constant c is computed to be the maximum difference between the actual and equilibrium
fast wave speed. This has been implemented using high-order finite elements in the poloidal plane and a spectral represen-
tation in the toroidal angle.

The M3D-C1 code line has implemented a similar algorithm for nonlinear calculations in 2D [29,30] and linear calcula-
tions in 3D [31,32] in which the full ideal MHD operator in Eq. (20b) has been implemented. In [30] they describe imple-
menting a general method which can be invoked as either the semi-implicit method using the full implicit operator
(which they call the Caramana method [24]) or as the split h-implicit method which one obtains if Eqs. (19b) and (19c)
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are substituted into Eq. (19a) and all terms are retained. Consider now the general algorithm that has three implicit param-
eters: h, a, /, and offset time levels.

ðqI� h2dt2GÞVnþ1 ¼ ðqI� adt2GÞVn þ dt �rpþ 1
l0
ðr � BÞ � B

	 
m

� qdt ð1� 2hÞVn � rVn þ hðVnþ1 � rVn þ Vn � rVnþ1Þ
h i

ð22aÞ

p

B

	 
mþ1

¼
p

B

	 
m

þ dt/
f ðpmþ1;Vnþ1Þ
gðBmþ1;Vnþ1Þ

" #
þ dtð1� /Þ

f ðpmþ1;VnÞ
gðBmþ1;VnÞ

" #
; ð22bÞ

Here, G is the full ideal MHD operator given in Eq. (20b), I is the identity operator, and f and g are the functions implied by
Eqs. (19b) and (19c). Setting m = n + 1/2 corresponds to the leap-frog treatment of the explicit terms. If we linearized about a
configuration with V = 0 and consider an eigenmode such that G{V} = kiV, defining D � �dt2ki, we find that the amplification
factor, r, satisfies the quadratic equation

ð1þ h2DÞðr � 1Þ2 þ Dðh2 þ /� aÞðr � 1Þ þ D ¼ 0: ð23Þ

Analysis of the roots of Eq. (23) shows that for the Caramana method, for which / = 1 and a = h2, we have jrj2 = 1 correspond-
ing to linear stability and no-dissipation for h P 1/2. Truncation error analysis shows the time discretization error to be sec-
ond-order in dt for any stable value of h. This method has the additional feature that the multiplier of the operator G is the
same on both sides of Eq. (22a), so that in steady state, when Vn+1 = Vn, the operator will have no effect on the solution.

For the split h-implicit method, for which / = h and a = h(h � 1), the amplification factor is less than or equal to 1 (and
hence stable) when h P 1/2. However in this case jrj2 = 1 only when h = 1/2 as the method is dissipative forh > 1/2. It is also
second-order accurate only for h = 1/2. When the resistive terms are treated implicitly in the time advance for B (but not
included in the operator G) it does not affect the numerical stability.

Breslau and Fu [33] have found that the approximate (of order e) separation of the MHD wave characteristics into differ-
ent components of the momentum equation in M3D allows them to approximately split the operator in Eq. (20) and to use a
different operator in different projections of the momentum equation to obtain stability to both the fast wave and shear Alf-
ven wave for a range of time steps. Thus, for the divergence of the momentum equation, they replace G with the semi-
implicit operator: (B2 + c p)R2r�R�2r, while for the toroidal component of the curl of the momentum equation and for
the toroidal component, they replace the operator G with the semi-implicit operator: (B�r)B�r. While not providing numer-
ical stability for an arbitrarily large time step, this allowed approximately an order of magnitude increase in time step over
that allowed by the CFL condition for the Alfven wave.

3.6. Non-linear implicit methods

The implicit methods discussed so far utilize a linearization either about the initial equilibrium or about the current state
in order to construct the implicit operator needed to advance to the next time step. Another class of methods [34,35] use
Jacobian-free Newton–Krylov techniques [36] to solve iteratively for the new time values that self-consistently satisfy the
nonlinearly implicit equations. The entire system of discretized nonlinear MHD equations is considered as a single system
to which the nonlinear Newton–Krylov method is applied. However, it is found that it is much more efficient [34] to break
up the linear solves that occur during each Newton step into smaller subsystems and to iterate between these subsystems
using predictor corrector techniques to obtain a converged solution.

Let Vnþ1 be the approximate value of the new time velocity Vn+1, and define the difference as dV � Vnþ1 � Vnþ1. Adopting
similar notation for the other variables, the residual of the momentum equation at a given Newton iteration is defined as:

Rv ¼ qnþ1 Vnþ1 � Vn
� �

þ hdt qnþ1Vnþ1 � rVnþ1 þrpnþ1 � Jnþ1 � Bnþ1
h i

þ ð1� hÞdt qnVn � rVn þrpn � Jn � Bn½ �: ð24aÞ

Similarly, the residuals for the density, pressure, and magnetic field are given by:

Rq qnþ1
� �

¼ qnþ1 � qn
� �

þ hdtr � qnþ1Vnþ1 � Drqnþ1
� �

þ ð1� hÞdtr � ðqnVn � DrqnÞ; ð24bÞ

Rp pnþ1
� �

¼ pnþ1 � pn
� �

þ hdt Vnþ1 � rpnþ1 þ cpnþ1r � Vnþ1
h i

þ ð1� hÞdt Vn � rpn þ cpnr � Vn½ � þ r � q; ð24cÞ

RB Bnþ1
� �

¼ Bnþ1 � Bn
� �

þ hdt r� Vnþ1 � Bnþ1
� �

� g
l0
r�r� Bnþ1

	 

þ ð1� hÞdt r� Vn � Bnð Þ � g

l0
r�r� Bn

	 

: ð24dÞ

At each step in the Newton iteration, the corrections to the density, pressure, magnetic field and velocity are determined as
follows:
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Step 1: Predictor step for the field quantities at fixed velocity

dq	 ¼ � @Rq

@qnþ1

" #�1

� Rq; dp	 ¼ � @Rp

@pnþ1

" #�1

� Rp; dB	 ¼ � @RB

@Bnþ1

" #�1

� RB: ð25aÞ

Step 2: Velocity update

ðqI� h2dt2GÞdV ¼ �Rv þ hdt
�qdV � rV � qV � rdV � dq	V � rV �rdp	

þ 1
l0
ðr � dB	Þ � Bþ 1

l0
ðr � BÞ � dB	

" #
: ð25bÞ

Step 3: Corrector step for the field quantities

dq ¼ dq	 � hdtr � ðqdVÞ;
dp ¼ dp	 � hdt½dV � rpþ cpr � dV�;
dB ¼ dB	 þ hdtr� ðdV � BÞ:

ð25cÞ

The operator on the left in Eq. (25b) is the same as that in Eq. (22a). The authors of this method refers to the inclusion of this
term as ‘‘parabolization’’ of the equations, and to the technique as a ‘‘physics based preconditioner’’. It is implied that this
term is essential to obtain good performance in the iteration. Performing just a single Step 2 (with Vnþ1 ¼ Vn, etc.) and then
combining Steps 3 and 1 appears to be equivalent to the method in Eq. (22) with a = h2 and / = h so that this is seen to be a
way of generalizing that method to account for the non-linearity in the implicit solve.

This method has been implemented using a multi-grid preconditioner and FGMRES [37] as the Krylov solver for a Carte-
sian finite volume discretization [34]. A very similar nonlinearly implicit Newton–Krylov method has now been imple-
mented in the XTOR-2F code [35] using the NITSOL package [38]. The primary difference is that the XTOR-2F uses a
direct solver for the preconditioner and uses linear finite differences in the radial (equilibrium flux) coordinate and a Fourier
representation in the poloidal and toroidal angles.

3.7. Unsplit implicit solves

In the methods described in Sections 3.1–3.6 above, the implicit time advance is split in that the advance for the velocity
and the field quantities are done sequentially (although in the method in Section 3.6, these are cycled through iteratively
each time step so that the final solution at the end of a time step can be considered unsplit). There are also several algorithms
that advance the velocity and field variables on an equal footing in a full unsplit nonlinearly implicit [39–44] or linearly im-
plicit [45–48] solve. The matrices that enter the unsplit solves are known to be poorly conditioned. However these works
have shown that unsplit solves are feasible if direct matrix inversion methods or specially preconditioned iterative methods
are used. In algorithms in which the angular spatial coordinates are represented as Fourier series and only one coordinate is
represented by finite differences, the matrices take on a block tridiagonal form for which a direct solve is particularly effi-
cient [45,46,39].

There have also been efforts to solve the full implicit unsplit system using alternating direction implicit (ADI) methods
[49–51]. While stable solutions have been obtained with time steps 10 or more times the CFL limit for a purely explicit meth-
od, it has not yet been demonstrated that this is a viable technique for use in a highly anisotropic configuration such as one
with realistic geometry as shown in Fig. 1 and with parameters of a magnetic fusion experiment.

A finite volume implicit method is presented in [52] that is based on an approximate Riemann solver for the hyperbolic
fluxes [53] and central differencing for the parabolic fluxes. The implicit operator is inverted using an iterative lower upper
symmetric Gauss–Seidel technique [54]. It was demonstrated for a problem in model geometry that this technique could
produce a CPU savings of a factor of 3 compared to a comparable explicit method.

Several papers have also appeared recently in which a Newton–Krylov solver with an operator-based preconditioner
based on directional splitting [55,56] and multi-grid techniques [57] have been applied to the MHD equations in model
geometry. While these initial studies look promising, it remains to be seen the applicability of these methods to the calcu-
lation of global dynamics of magnetic fusion devices with realistic parameters and geometry.

3.8. Time discretization error

The implicit methods discussed in Sections 3.1–3.6 are of at most 2nd order accurate in time, which means that there is a
term in the truncation error proportional to the square of the time step, (dt)2. It is natural to ask how this term affects the
solution as dt becomes large. We can gain some insight into this question by examining the amplification and phase factors
as a function of the linear eigenvalues of the operator G as given in the dispersion relation Eq. (23). For this analysis, we as-
sume isotropic plane wave solutions so that G{V} = �k2c2q0V, where k and c are the wave number and wave velocity asso-
ciated with eigenvalue k of the operator G, and q0 is the plasma density (assumed constant). This implies that the quantity D
that appears in Eq. (23) is given by D = dt2k2c2q0. Letting r = jrjexp[ixt], we plot both the amplification factor jrj and the effec-
tive normalized plane wave velocity u � xdt=

ffiffiffiffiffiffiffiffiffiffiffiffi
D=q0

p
� x=kc as a function of the dimensionless quantity dt k c. These are
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shown in Fig. 2a for the Caramana method ð/ ¼ 1; h ¼ 1
2 ; a ¼ h2Þ and in Fig. 2b for the split h-implicit method

/ ¼ 1
2 ; h ¼ 1

2 ; a ¼ � 1
2

� �
.

An intuitive way to interpret Fig. 2 is that if we associate an ‘‘effective wavelength’’ Dxeff � 1/k with a perturbation with
wavenumber k, then using a time step that exceeds the ‘‘effective Courant condition’’ for that wavelength dt > Dxeff/c = 1/kc
(or dtk c > 1) will lead to errors for that perturbation. In the Caramana method (a), these are strictly errors in the propagation
velocity (dispersion), whereas in the h-implicit method (b) these show up as both errors in the magnitude (dissipation) and
in the dispersion.

Some additional insight into the time discretization error of the Caramana method can be obtained by approximating the
form of Eq. (22a) linearized about an equilibrium with zero velocity as the partial differential equation

q0I� 1
4

dt2G

 �

@2n

@t2 ¼ Gfng: ð26Þ

Here we have introduced the linearized plasma displacement n(x,t), related to the velocity by V = @ n/@t[23], Taylor expanded
the velocities Vn and Vn+1 about time point m = n + 1/2, and only kept the lowest order terms in the Taylor series involving
the operator G[58]. It is clear from Eq. (26) that the effect of the implicit time differencing is to introduce an effective ‘‘k-
dependent density’’ to the MHD equations that will preferentially slow down the short wavelength disturbances for dt large.
If we now let @2n/ @t2 ? �x2n and G{n} ? �k2c2q0n, we see that the dispersion relation associated with Eq. (26) becomes

x
k
¼ c

1þ 1
4 dt2k2c2

h i1=2 : ð27Þ

Eq. (27) shows explicitly that the propagation velocity for a disturbance with a given wavenumber k will be reduced as the
denominator on the right becomes large. If we again introduce the effective wavelength Dxeff = 1/k associated with a pertur-
bation with wavenumber k, we find that the effective Courant number for that wavelength becomes

dt
Dxeff

x
k
¼ dt k

x
k
¼ dtkc

1þ 1
4 dt2k2c2

h i1=2 ð28Þ

The quantity on the right is seen to approach a constant as d t ?1, so that the effective Courant number associated with a
disturbance of a fixed size does not increase without bound as the time step is increased. This property has been used to
show that when implicit differencing is applied to the Navier–Stokes equations, there is a close relation to the Navier–Stokes
a (NS-a) equations [59] that filter the fluid motion that occurs below some length scale, a � dt/c [60].

We conclude that if the accurate dynamics of structures of size D xeff that propagate with speed c are required, then the
time step of the implicit method should be limited to Dt < D xeff/c for accuracy considerations. However, if the problem of
interest involves slow dynamics such as the resistive timescale growth of a global structure such as a magnetic island, then
the inertial terms in the momentum equation are negligible and so the wave dispersion introduced by the implicit time ad-
vance should not lead to inaccuracies as long as the mode growth is small compared to the timestep, dt@/@t 6 1.

4. Spatial representation

It has been recognized since the 1970s that special care must be given to the spatial representation of the magnetic and
velocity vector fields in highly magnetized plasma if interest lies in computing unstable motions. Not only must the diver-
gence of the magnetic field be constrained to vanish, but the treatment must be such as to accurately describe a flow field
that avoids compressing the strong externally imposed magnetic field to a large degree [61]. In linear MHD, this latter
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Fig. 2. The amplification factor jrj and the effective normalized wave velocity u � xdt=
ffiffiffiffiffiffiffiffiffiffiffiffi
D=q0

p
� x=kc, where k and c are the wave number and wave

velocity associated with the operator G with eigenvalue k = �q0k2c2: (a) for the Caramana method / ¼ 1; h ¼ 1
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property has been called the avoidance of spectral pollution [25]. There have been several approaches to satisfying these
requirements.

One approach is to construct a representation based on ordering assumptions using the toroidal aspect ratio e as a small
parameter. To lowest order in this parameter, unstable motions of tokamaks can be well described by just two scalar func-
tions: a flux function for the magnetic field and a stream function for the incompressible flow field. This was first introduced
in 2D cylindrical geometry [62] and then generalized to 3D [63,64] and extended to higher order in e and more variables [65–
67]. This led to a fully general representation of the velocity and magnetic vector potential fields involving five scalar quan-
tities. If we use a cylindrical (R, /, Z) coordinate system, and denote byr\ the gradient in the (R, Z) plane, the vector fields in
a tokamak can be represented as [31]:

V ¼ R2rU �r/þ R2xr/þ R�2r?v; ð29aÞ
A ¼ R2r/�rf þ wr/� F0 ln RbZ : ð29bÞ

Here F0 is a constant proportional to the total current in the toroidal field coils. The particular representation for the vector
potential in Eq. (29b) has the associated gauge condition r\�R�2A = 0. This has been found to be convenient [68,31], but is
certainly not the only choice possible.

The first two terms in Eq. (29a) do not compress the strong externally imposed toroidal field and will thus be the dom-
inant contribution to the flow field describing a global instability in a tokamak. (The second term in Eq. (29a) has also been
taken to be in the direction of the magnetic field, B =r� A [48,68].) Approximate formulations based on an aspect ratio
expansion will omit the second and/or third term in Eq. (29a) to obtain a ‘‘reduced’’ set of equations that is capable of
describing the dominant plasma motion but is free of this compressible term that leads to the fast wave [67,48]. If this third
term is kept, taking appropriate projections of the momentum equation will approximately isolate the fast wave motion to
separate equations, which are then solved by implicit techniques, and this term will effectively serve as a small correction to
the dominantly compression-free motion [31]. The factor of R�2 in the last term in Eq. (29a) is shown to make the first and
last terms in that equation orthogonal in the sense that the cross product involving these will vanish when V2 is integrated
over the torus volume (note that in cylindrical geometry, the factors of R2 or R�2 become constants [45,69].) Implicit methods
that are based on finite elements that use these and similar representations contain higher order spatial derivatives than
occur when using scalar projections of the vector fields and thus benefit from using elements with continuous first deriva-
tives that can represent spatial derivatives up to 4th order when applying the Galerkin method [73,47].

The other technique that has been shown to be effective is to use high-order spatial discretization to represent the scalar
projections of the vector fields in a cylindrical or other coordinate system. In addition, it is desirable to separate out equi-
librium from non-equilibrium fields, and to use the equilibrium equation to analytically remove the zero order terms. This
has been demonstrated using high-order Lagrangian finite elements [28] and high-order spectral elements [40,42,83]. If the
magnetic field is advanced rather than the magnetic vector potential, divergence cleaning can be used to enforce the condi-
tion r� B = 0[28]. In addition, the form used for the momentum equation can have a large impact on the cumulative error
when there is a r�B error present [70].

A number of published algorithms have used a spectral representation in two of the angle coordinates as a way of accu-
rately computing derivatives of scalar fields [12,15,19,69,20,46,22,39,26]. While this technique has proven effective in rep-
resenting internal instabilities in mildly shaped tokamaks, it is not clear how effective it will be in representing more shaped,
separatrix limited plasmas, where the solution domain is extended to the highly resistive plasma on the open field lines out
to the vacuum vessel wall. (However, [71] demonstrates that this is feasible to some extent, at least in 2D). In contrast, recent
studies have shown that the use of high-order finite elements in the poloidal plane can handle this geometry to very high
accuracy [72,32].

5. The heat-flux term

The thermal conductivity in a high-temperature magnetized plasma is extremely anisotropic due to the fact that charged
particles can free-stream parallel to the magnetic field but are confined perpendicular to it. Consider the temperature evo-
lution equation in the presence of anisotropic thermal conduction. Neglecting terms arising from convection and compres-
sion, we have

3
2

n
@

@t
T ¼ �r � qþ S; ð30aÞ

where the heat flux vector is of the form

q ¼ �n vkbbþ v?ðI� bbÞ
h i

� rT: ð30bÞ

Here, vk and v\ are the thermal conductivities parallel and perpendicular to the direction of the magnetic field, b is a unit
vector in the direction of the magnetic field, I is the identity matrix, and S represents a volumetric source term. Since this is
an equation for the temperature that depends only on the temperature, it can normally be solved separately from the other
equations in a ‘‘time step splitting’’ fashion.
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The concern in solving this equation is that if vk 
 v\, errors proportional to vk will tend to dominate the solution in the
perpendicular direction, making the effective value of v\ much larger than the specified value. It has been demonstrated that
by using high order finite elements, values of vk up to 108times larger than v\ can be used without causing unacceptable
pollution in the perpendicular direction [28,73]. Lutjens [26] reports solving anisotropic thermal conduction with a ratio
vk/v\ ’ 3 � 104 using a preconditioned conjugate gradient method in a mixed spectral/finite difference representation. It
has also been reported that high order spectral elements yield a given accuracy with less total degrees of freedom than low-
er-order elements, especially when significant grid misalignment was present [74,42].

Günter, et al. [75,76] demonstrated that even low order finite differences or finite elements can be used to compute highly
anisotropic heat conduction accurately if a certain procedure is followed. The prescription is to first calculate temperature
gradients at locations staggered from the locations where the temperatures are defined. These gradients are used to calculate
parallel heat flux vectors at those same locations. The divergence of the parallel heat flux is then calculated in a conservative
manner that maintains the self-adjointness of the operator.

Park, et al. [77,78] introduced an ‘‘artificial sound’’ method to represent the fast thermal equilibration along field lines.
Instead of solving an equation like Eq. (30), they solve additional wave equations for the temperature:

@T
@t
¼ s

q
B � ru; ð31aÞ

@u
@t
¼ sB � rT � mr2u: ð31bÞ

The wave speed, a constant s times B/q1/2 (the Alfvén speed), represents the free streaming velocity of electrons with a
dissipation m. The thermal energy inside a flux tube is conserved with this technique, and the asymptotic state satisfies
B�rT = 0. An explicit difference method can be used to advance Eq. (31) and the temperature will equilibrate much faster than
it would if solving Eq. (30) with an explicit method. There is a close connection between this technique and that of dynamic
relaxation [2].

6. Two-fluid terms

The basic techniques described here have been extended to the two-fluid description of plasma [79–82,30,83,35].
When applying the method of differential approximation, the stabilizing operator that appears in the momentum equa-
tion is the same as that used for MHD [30,83,35]. The implicit treatment of the J � B term that now appears in the time
evolution equation for the magnetic field is handled by some much the same way as the V�rV term is treated in the
momentum equation in Eq. (22a). Thus, in a split leap-frog implicit time advance where the velocity is defined at integer
time levels and the magnetic field and pressure are defined at half time levels, the magnetic field time advance can be
written as

_B ¼ r� �g Jnþ1=2 þ hdt_J
� �

� Vnþ1 � Bnþ1=2 þ hdt _B
� �

þ 1
ne

Jnþ1=2 þ hdt_J
� �

� Bnþ1=2 þ hdt _B
� �

� 1
ne
r�pnþ1

e

	 

: ð32Þ

In Eq. (32), _B � ðBnþ3=2 � Bnþ1=2Þ=dt; _J � r� _B, and a bar over a quantity means evaluating the quantity centered in time.
Time centering corresponds to choosing the implicit parameter h = 1/2. A linearly implicit implementation of Eq. (32) will
ignore the term proportional to dt2 [81,30], whereas a nonlinearly implicit implementation will include this with a Newton
iteration [83].

The question arises if there is an effective semi-implicit operator for use in the two-fluid magnetic field advance Eq. (32),
either to improve the conditioning of the matrix in a semi-implicit time advance or as a ‘‘physics based’’ preconditioner in a
nonlinear implicit advance. Harned and Mikic [79] proposed the following semi-implicit modification of the left side of Eq.
(32):

ðI� GÞ _B ¼ � � �

G ¼ �h2dt2

ðnel0Þ
2 ðB0 � rÞ2r2

ð33Þ

They report favorable results with this semi-implicit operator for h P 1/2 and using for B0 a large externally imposed field
and implementing either using leap-frog centering with the velocity, or using a separate predictor–corrector step for the
magnetic field advance. Their application was a 2D helical symmetry calculation where spectral methods were used in
the helical coordinate and finite differences were used in the radial coordinate.

Techniques for evaluating the operator in Eq. (33) and using it as a preconditioner for a nonlinear Newton–Krylov solve in
2D reduced 2F MHD are given in [84]. However, a more general analysis of this operator included in a split linearly implicit
time advance, such as in Eq. (22) with m = n + 1/2, and making some reasonable assumptions regarding the time levels that
different quantities are evaluated at shows the presence of a numerical instability in the general case, even if the equivalent
of the magnetic field advance, Eq. (22b) is replaced with a predictor–corrector step [83].
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A semi-implicit operator of the form of that in Eq. (33) has been successfully implemented as part of an iterative semi-
implicit method using a spectral representation of reduced MHD in2D [85]. In [87] they describe a semi-implicit operator
based on Eq. (33) implemented in a third-order Runge–Kutta time advance using a spectral method in 3D. In [86] they
describe a local specially preconditioned Jacobi-like iteration based on this operator that they demonstrate is effective when
used in a multigrid scheme with Cartesian coordinates in 2D.

7. Summary and discussion

Returning to Fig. 1, it is interesting to review what groups have actually attempted to simulate this configuration. Most of
the papers cited here have utilized simulation domains that have made some approximations to this geometry. In Table 1 we
list the published codes which solve the 3D MHD equations. Papers using the codes CTD (in 2D) [71], M3D [88,89], M3D-
C1[32], NIMROD[72], and JOREK[Huysmans] have reported on calculations that extend outside the separatrix surface to
the vacuum vessel, and M3D [89] has included resistivity in the vacuum vessel and thereby extended the solution domain
to infinity.

A largely unanswered question has to do with what is the relative advantage of using a nonlinear implicit method [34,41],
[42] over one that is linearized about each timestep (which we call here linearly implicit) [83,48]. It is possible that this is
problem dependent. In [35], one such comparison is made for the XTOR code and it is stated that the Newton–Krylov non-
linearly implicit method is about a factor of 3 more costly than the linearly implicit method for the same accuracy for the
resistive MHD case. However, this is likely not a general result.

Another comparison of interest is that between split and unsplit linearly implicit methods, and similarly between un-pre-
conditioned and preconditioned nonlinear implicit methods. One such comparison is made in [30] where it was found that
by most measures, the split and unsplit linearly implicit methods had very similar accuracy for the same time step, but that
the matrices in the unsplit case were rank 8 N as opposed to two rank 3 N and two rank N matrices in the split linearly im-
plicit case, and thus considerable more effort was required for direct inversion. However, it was found that in one case a non-
linear instability occurred in the split case when the transport coefficients were strong functions of the changing
temperature, but that a single predictor–corrector iteration corrected this and allowed the split linearly implicit timestep
to increase by several orders of magnitude and remain stable. For the Newton–Krylov nonlinear implicit methods, several
authors have indicated that including the same operator preconditioner used in the split linearly implicit methods, Eq.
(20b), led to greatly improved performance in the iterative solves [34,35].

A great amount of progress has been made since the first papers appeared in which any implicit algorithms for the MHD
equations in magnetized plasma were mentioned. Further progress will result from finding the preferred combination of im-
plicit algorithm, spatial representation, and solver methodology, and adapting these techniques to perform efficiently on to-
day’s massively parallel computers. This is an area where close collaboration between theoretical and computational
physicists, applied mathematicians, and computer scientists will bring great benefits.

Table 1
Summary of 3D MHD codes referenced in text.

Reference Name Geometry Discretization Time advance Div B constraint Vector fields

[50] IMP Curvilinear FD (3) ADI-Newton Vector potential Coordinate projections
[12] CTD Cylindrical FD (1), SP (2) Semi-implicit Vector potential Cylindrical components
[15] Cartesian FD (1), SP (2) Semi-implicit Vector potential Cartesian components
[19] Cartesian/

cylindrical
FD (1), SP (2) Semi-implicit Vector potential Cartesian/cylindrical

components
[20] DEBS Cylindrical FD (1), SP (2) Semi-implicit Vector potential Cylindrical components
[46] FAR Torus FD (1), SP (2) Unsplit, direct solve Vector potential Potentials for velocity
[22] Cylinder FD (1), SP (2) Semi-implicit Cylindrical components
[39] Torus FD (1), SP (2) Unsplit non-linear implicit, Enforced using BR Co and contra
[26] XTOR Torus FD (1), SP (2) Semi-implicit Co and contra
[14] M3D Toroidal FE (2),FD (1) Partially-implicit Vector potential Stream ftn./potential
[31] M3D-C1 Toroidal C1 FE (3) Split linearly implicit Vector potential Stream ftn./potential
[83] NIMROD Toroidal FE (2), SP (1) Split linearly implicit Divergence cleaning Toroidal components
[34] PIXIE3D Cartesian Finite volume Preconditioned Newton–

Krylov
Solenoidal
differencing

Cartesian components

[48] JOREK Toroidal Bezier FE (2), SP
(1)

Unsplit linearly implicit Vector potential Reduced MHD

[41] BOUT++ Toroidal field
align.

Finite difference Unsplit Newton Krylov
(CVODE)

Vector potential Reduced MHD

[35] XTOR-
2F

Torus FD (1), SP (2) Preconditioned Newton–
Krylov

Co and contra

[42] HiFi Flexible
(Cartesian)

Spectral FE Unsplit Newton–Krylov Vector potential Flexible (Cartesian)
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Appendix A. Implicit hyperbolic algorithms and relation to Schur complement

First consider the simple wave equation in 1D with constant propagation velocity c:

@V
@t
¼ c

@p
@x
;

@p
@t
¼ c

@V
@x

: ðA-1aÞ

The two equations in Eq. (A-1a) could also be written as a single wave equation for either p or V, i.e.

@2V
@t2 ¼ c2 @

2V
@x2 ðA-1bÞ

or

@2p
@t2 ¼ c2 @

2p
@x2 : ðA-1cÞ

Introduce s � cdt/dx, where dt and dx are the time and space increments. A centered in space, backward in time, implicit finite
difference method for Eq. (A-1a) corresponds to:

Vnþ1
j ¼ Vn

j þ s pnþ1
jþ1=2 � pnþ1

j�1=2

h i
ðA-2aÞ

pnþ1
jþ1=2 ¼ pn

jþ1=2 þ s Vnþ1
jþ1 � Vnþ1

j

h i
ðA-2bÞ

A centered in space, backward in time, implicit finite difference method for Eq. (A-1a) is likewise given by

Vnþ1
j � 2Vn

j þ Vn�1
j ¼ s2 Vnþ1

jþ1 � 2Vnþ1
j þ Vnþ1

j�1

h i
: ðA-2cÞ

Note that we can add Eq. (A-2a), with n ? n � 1, to Eq. (A-2c), and move the advanced time value to the left side of the equa-
tion to obtain

Vnþ1
j � s2 Vnþ1

jþ1 � 2Vnþ1
j þ Vnþ1

j�1

h i
¼ Vn

j þ s pn
jþ1=2 � pn

j�1=2

h i
ðA-2dÞ

Eq. (A-2d) is also obtained if we use Eq. (A-2b) to algebraically eliminate both pnþ1
jþ1=2 and pnþ1

j�1=2 from Eq. (A-2a). This can be
solved either iteratively or directly (tridiagonal in 1D) for the new time velocity Vnþ1

j , which is then, in turn, used in Eq. (A-
2b) to solve for the new time pressure pnþ1

jþ1=2.
In this 1D simple example where the pressure and velocity appear symmetrically, we could equally as well have used Eq.

(A-2a) to eliminate the new time velocity from Eq. (A-2b), and solved an equation identical in form to Eq. (A-2d) to first solve
for the new time pressure, and then used this in Eq. (A-2a) to solve for the new time velocity.

Alternatively, as another way of obtaining this same result, we could start with Eqs. (A-2a) and (A-2b) in matrix form:

1n n+
A B V V

C D P P
ðA-3Þ

Here A and D are identity matrices, and B and C are lower and upper triangular matrices of the form (ignoring boundary
conditions):

B ¼

. . .

s �s

s �s

s �s

s � � �

266666664

377777775; C ¼ �BT ¼

. . .

s �s

s �s

s �s

� � �

266666664

377777775; V ¼

� � �
Vj�1

Vj

Vjþ1

� � �

266666664

377777775; P ¼

� � �
Vj�1=2

Vjþ1=2

Vjþ3=2

� � �

266666664

377777775:

Eq. (A-2d) can also be written in matrix form as

A0Vnþ1 ¼ V0n: ðA-4Þ
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Here the matrix A0 and the vector V0n are given by

A0 ¼

� � �
�s2 1þ 2s2 �s2

�s2 1þ 2s2 �s2

�s2 1þ 2s2 �s2

� � �

26666664

37777775; V0n ¼

� � �
Vj�1 þ sðpj�1=2 � pj�3=2Þ
Vj þ sðpjþ1=2 � pj�1=2Þ
Vj þ sðpjþ3=2 � pjþ1=2Þ

� � �

26666664

37777775

n

:

This is seen to be simply the Schur Complement of the matrix in Eq. 33, i.e. A0 = A � BD�1C, V0n = Vn � BD�1Pn The matrix in
Eq. (A-4) is seen to be half the rank of that in Eq. 33, and is diagonally dominant and symmetric. Once the new time velocity
is solved for, the pressure is updated from Eq. (A-2b) without need for further matrix inversion.

Appendix B. The MHD equations

In this paper, we are concerned with three fluid models: ideal MHD, resistive MHD, and two-fluid (2F) MHD. A more com-
plete description of these models can be found in [2]. The equations for the three models are given here. The continuity equa-
tion for the number density is:

@n
@t
þr � ðnVÞ ¼ 0: ðB-1Þ

MHD assumes that there is no net charge density. For a single species of singly charged ions, the electron and ion densities
are therefore equal: ne = ni � n. Assuming the electron mass is much smaller than the ion mass, me�Mi, the momentum
equation for the mass averaged velocity takes the form:

nMi
@V
@t
þ V � rV

� �
þrp� J� B ¼ 0 ideal MHD

¼ �r �Pi resistive MHD
¼ �r �P2F 2F MHD:

ðB-2Þ

The magnetic field must be initialized with r�B = 0. It then evolves according to Faraday’s law:

@B
@t
¼ �r� E: ðB-3Þ

The divergence condition will remain satisfied by Eq. (33). However, it is often enforced by introducing a vector potential A
such that B =r� A, and time advancing A rather than B. In MHD, the electrical current density is defined as [SI units]

l0J ¼ r� B: ðB-4Þ

The generalized Ohm’s law equation for the electric field is

Eþ V � B ¼ 0 ideal MHD
¼ gJ resistive MHD

¼ gJþ 1
ne

J� B�rpe½ � 2F MHD:

ðB-5Þ

Here, g is the electrical resistivity and e is the electron charge. The internal energy equation is

3
2
@p
@t
þr � ðpVÞ

	 

þ pr � V ¼ 0 ideal MHD

¼ �r � qþ gJ2 �Pi : rV resistive MHD:
ðB-6Þ

The pressure is related to the density and the temperature by p = pe + pi = nkB(Te + Ti). In ideal and resistive MHD it is nor-
mally assumed the electron and ion temperatures are equal. The heat flux vector occurring in Eq. (B-6) is normally of the
anisotropic form given in Eq. (30b). In 2F MHD, the energy equation is somewhat more complicated and an additional energy
equation needs to be added for either the ions or electrons. For this, and the definition and some common approximations to
the stress tensor terms occurring in Eqs. (B-2) and (B-6), the reader is referred to [2].
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