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Abstract

A model which incorporates the effects of electron cyclotron current
drive (ECCD) into the magnetohydrodynamic (MHD) equations is imple-
mented in the NIMROD code [C. R. Sovinec et al., J. Comp. Phys. 195,
355 (2004)] and used to investigate the effect of ECCD injection on the
stability, growth, and dynamical behavior of magnetic islands associated
with resistive tearing modes. In addition to qualitatively and quantita-
tively agreeing with numerical results obtained from the inclusion of local-
ized ECCD deposition in static equilibrium solvers [A. Pletzer and F. W.
Perkins, Phys. Plasmas 6, 1589 (1999)], predictions from the model fur-
ther elaborate the role which rational surface motion plays in these results.
The complete suppression of the (2, 1) resistive tearing mode by ECCD
is demonstrated and the relevant stabilization mechanism is determined.
Consequences of the shifting of the mode rational surface in response to
the injected current are explored, and the characteristic short–time re-
sponses of resistive tearing modes to spatial ECCD alignments which are
stabilizing are also noted. We discuss the relevance of this work to the
development of more comprehensive predictive models for ECCD–based
mitigation and control of neoclassical tearing modes.
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I Introduction

Tearing modes are slowly growing, nonideal magnetohydrodynamic instabilities
which produce magnetic islands at low–order rational surfaces in toroidal plas-
mas. Neoclassical tearing modes (NTMs) [1, 2] can be triggered by magnetic
perturbations which induce a local flattening in the plasma pressure profile. If
this flattening is sufficient to suppress the local bootstrap current (which de-
pends on the local pressure gradient), the resulting helical modification to the
current profile reinforces the initial magnetic perturbation, yielding magnetic is-
land growth until nonlinear saturation is attained. When present, these modes
can slow plasma rotation [3], reduce core electron density and temperature [4, 5],
and possibly lead to disruption [6, 7, 8].

While various methods for the mitigation and control of tearing modes have
been implemented in existing experiments [9, 10, 11], the most successful has
been the use of external current drive to stabilize the magnetic islands. Elec-
tron cyclotron current drive has localized deposition [12] which enables the
driven currents to both locally modify the equilibrium [13] and compete with
the perturbed island currents [14, 15]. Experimental results have successfully
demonstrated stabilization on several devices [16, 17, 18, 19, 20]. Sophisticated
active feedback control can be used to locate islands and drive time–modulated
currents as the island rotates; alternatively, continuously driven current whose
spatial alignment is tailored to yield a net stabilizing effect on the NTM may
be employed [10, 11, 21, 22, 23, 24].

Although efforts to suppress and/or control NTMs in existing experiments
have met with notable success, further developments are needed to remove un-
certainties in the scaling of current experimental results to ITER [25, 26, 27, 28].
The development of predictive computational models to simulate the interac-
tion of MHD with ECCD and other forms of RF would help remove these
uncertainties, but such simulations remain a significant challenge [29]. In part,
this is due to the disparity in the relevant timescales; the Alfvén time char-
acterizing MHD phenomena may vary by orders of magnitude from both the
more rapid electron cyclotron period and the slower resistive timescales asso-
ciated with NTMs. The major difficulty, however, is that kinetic effects, such
as RF–modified heat transport and its effect on the pressure profile and boot-
strap current [30], are difficult to calculate self-consistently. The conventional
method of using a bounce–averaged Fokker–Planck equation to kinetically cal-
culate driven current and heating [31] is insufficient for the calculation of the
kinetic distortions that occur in the presence of a three-dimensional island. The
best way of calculating these kinetic effects is a subject of ongoing research.

Though a fully-coupled, self–consistent model for ECCD/MHD interaction
is not realized in this work, we explore a number of physics issues relevant to
this coupling in the context of a theoretical framework [32] which allows such
a model. In Section II of this paper, we present the equations that are used
and discuss their relevance to the physics we wish to study. In Section III we
implement this model in the NIMROD code [33]. An unstable equilibrium is
used to investigate current–induced modification of the tearing mode stabil-
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ity parameter and the motion of rational surfaces. Rational surface motion is
shown to account for and yield greater insight into data obtained by Pletzer and
Perkins [13] modeling the stability of Grad–Shafronov equilibria modified by RF
currents. Section IV discusses the dynamic response of the plasma to ECCD
deposition on shorter timescales, and the competing mechanisms for tearing
mode stabilization are analyzed. Finally, Section V summarizes key results and
discusses the relevance of this simulation model to the more general problem of
simulating ECCD stabilization of NTMs.

II Preliminary ECRF/MHD model

Previous efforts in the numerical modeling of ECCD stabilization in MHD codes
can be roughly categorized into two types of simulations. In the first type [34,
35, 36, 37], the current source is given by modifying the resistive Ohm’s law,

E + u×B =
η

µ0
(J− JRF ) , (1)

and various heuristic models for the current driven by the applied electric field
are used. In the second type of simulations [38, 39], the basic model of Eq. (1)
for the driven current is retained, but auxiliary drag/diffusion equation for the
RF source is added to model the kinetic equilibration of the RF current:

∂JRF
∂t

= ∇ · (χ‖∇‖JRF ) +∇ · (χ⊥∇⊥JRF ) + ν(J − JRF ) . (2)

Equation (2) is heuristically derived based on the Fokker-Planck equation [40],
and we refer to this model as the Giruzzi model.

Recently, a more rigorous formalism for modeling the inclusion of ECCD
sources into the fluid equations has been developed [32]. In addition to the
pre-Maxwell equations

∇×B = µ0J , ∇ ·B = 0 , ∇×E = −∂B
∂t

, (3)

the equations describing the interaction of MHD with ECRF sources may be
written as

∂ρ

∂t
+∇ · (ρu) = 0 , (4)

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇p+ J×B−∇·
↔
Π +

∑
α

Frfα , (5)

E + u×B = ηJ +
Frfe
n|qe|

, (6)

3
2
n

(
∂T

∂t
+ (u · ∇)T

)
+ p∇ · u = −∇ · q−

↔
Π: ∇u +Q+

∑
α

Srfα . (7)
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The variable definitions and details of the various terms are summarized in
Appendix A. The RF fields transfer momentum (Frfα ) and energy (Srfα ) to each
species of the plasma, and the self–consistent specification of the heat flux q
and the anisotropic stress tensor Π closes the system of equations.

With appropriate closures, this model theoretically captures the full MHD
dynamics of the coupled RF/MHD system, including physics traditionally mod-
eled using a Fokker–Planck equation such as the Fisch-Boozer effect [12]. The
development of a suitable closure for numerical simulations remains an ongo-
ing research effort, though important theoretical work [32, 41, 42, 43] in the
development of self–consistent forms for the fluid equations, the collision/RF
operators, and the closures has been carried out. The model also includes the
equilibration of the current parallel to the magnetic field lines that is featured
in the Giruzzi model. We have chosen not to implement the Giruzzi model;
rather, we specify the term in Eq. (6) as

Frfe
n|qe|

= −ηλBf(x, t)
µ0

, (8)

wherein λ has units of inverse length and is associated with the ECCD am-
plitude. The function f(x, t) is dimensionless and stipulates the temporal and
spatial (radial, poloidal, and toroidal) localization of RF deposition. In this
work, we will use the form

f(x, t) = exp

(
− (R−Rrf )2 + (Z − Zrf )2

w2
rf

)
1
2

[
tanh

(
t− to
tp

)
+ tanh

(
to
tp

)]
.

(9)
for simplicity. Subscripted quantities are simulation parameters, with wrf de-
noting the characteristic width (“spot size”) about a central deposition point
(Rrf , Zrf ). Following an offset to, the time–dependent term ramps up from zero
to asymptotically approach unity on a timescale tp � τR.

Because we do not directly evolve the RF–induced current according to a
Giruzzi model, we first wish to show that we have the physics of RF current
equilibration that the latter model includes. The additional term in Eq. (6),
which has the form given in Eq. (8), acts as an effective electromotive force
and launches both co– and counter–propagating Alfvén waves along the mag-
netic field lines it intercepts. Assuming such field lines lie in rational surfaces,
each wave, after traversing half the closed helical path of the field line, will
meet its counterpart, leading to wave superposition on timescales of order the
Alfvén time. Nonlinearly the interplay between these waves, along with a small
amount of resistive diffusion, yields a local flattening of the parallel current
profile µ ≡ µ0J · B/B2, which we demonstrate explicitly using the NIMROD
code (plasma and code parameters are given in section A). In Figure 1, a com-
putational grid and an axisymmetric equilibrium current distribution (which
monotonically decreases toward the plasma edge) are shown for a typical toka-
mak geometry. NIMROD uses a finite element representation in the poloidal
plane, enabling grid packing about the q = 2 and q = 3 rational surfaces [q(ψ)
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Figure 1: (Color online) The axisymmetric, equilibrium parallel current profile
µ for a toroidal plasma, along with the finite element mesh of biquartic elements
used to simulate the evolution of the RF/MHD equations in the NIMROD code.
Mesh packing is used near the initial positions of the q = 2 (inner) and q = 3
(outer) rational surfaces.

is shown in Figure 3a]. We restrict the RF source term to be a narrow Gaussian
function in the poloidal plane (centered at the q = 2 surface on the outboard
midplane) and to span only one–tenth of the tokamak’s toroidal extent. We then
evolve the MHD equations over several thousand Alfvén times and examine the
resultant modifications to the µ profile. Figure 2 demonstrates that the profile
perturbations indeed have a helical structure consistent with the localization of
the RF near the q = 2 surface; poloidal cross–sections separated by π radians in
the toroidal angle contain µ profiles whose maxima are rotated by π/2 radians
relative to one another. Superposing the perturbations of Figure 2 with the
equilibrium profile of Figure 1 shows that the parallel current profile has been
locally flattened by the ECCD, along a helical path whose helicity corresponds
to the helicity of the rational surface on which the ECCD was injected. At this
point in time, a steady-state has not been reached, a point we return to in the
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Figure 2: (Color online) In response to a poloidally and toroidally localized RF
source, flattening of the µ profile of Figure 1 occurs along a helical path. The
RF source is deposited where the q = 2 surface meets the outboard midplane,
is a Gaussian in the poloidal plane, and spans only one–tenth of the toroidal
coordinate ζ.

next section.
Because the direction of wave propagation is parallel to the magnetic field,

the timescale for equilibration will be proportional to k‖, which goes to zero on
the magnetic surfaces and thus varies depending on distance from the rational
surface. Although kinetic effects might alter the equilibration times, the rele-
vant time scale is still fast compared to the island growth time, and thus our
model accurately calculates the dominant physics of RF equilibration. As well,
it retains the dynamics of compressional Alfvén waves, which is absent in simu-
lations using the Giruzzi model (e.g. Ref. [38]) because reduced MHD equations
are used. We note that this equilibration is a nonlinear effect of the propagating
Alfvén waves, and is thus valid even in the cold plasma limit. Full wave RF
codes do not capture this equilibration in the cold plasma limit because they
use only linear theory, and the linear cold–plasma dispersion relation does not
contain the physics of parallel equilibration.
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A The Rutherford equation

The nonlinear growth of magnetic islands generated by tearing modes can be
described heuristically by a Rutherford equation [44], appropriately modified
to include the neoclassical effects associated with toroidal geometry. Such an
equation can be written in the form ([45, 46])

dw

dt
=
ρ2
s

τR
[∆′ +Dnc +DR +Dpol +DECCD +DECRH ] . (10)

In this equation, w is the width of the magnetic island, ρs is the value of the
radial coordinate ρ at the rational surface, and τR ≡ a2µ0/η is the conventional
resistive diffusion time of the plasma (with a being a representative scale length
on the order of the minor radius). The matching index ∆′ is the asymptotic
matching parameter of tearing mode theory that quantifies the free energy at-
tainable for resistive instability. The subscripted D quantities represent the
contribution of various perturbed currents (bootstrap, Pfirsch-Schluter, polar-
ization, and ECCD) and ECRF heating. Because these terms enter additively,
we will simplify this study by considering just the modifications resulting from
ECCD and neglecting all other terms. A representative Rutherford equation for
the study of RF–influenced island growth is then given by

dw

dt
=
ρ2
s

τR
[∆′(w) +DECCD(w)] . (11)

Though we do not explicitly solve Equation (11), it is instructive to consider
the effects of each term. The ∆′ parameter is based on the axisymmetric equi-
librium current profile and includes the saturation effects [47]. The DECCD(w)
term, which is zero in the limit of zero island size, measures the perturbed he-
lical current inside an island separatrix. Extrapolations of ECCD control and
mitigation experiments to ITER–relevant parameters have relied upon analysis
and understanding of the terms in the modified Rutherford equation [15, 27]
and how they scale. However, a fundamental difficulty is that ECCD influences
both terms on the right–hand side of Eq. (11), modifying the ∆′ parameter
as well as driving perturbed current within the island. Sorting out the effects
of both terms independently is difficult, but important if the physics is to be
correctly understood.

Using the NIMROD code, we demonstrate the simulation of the nonlinear
growth of a tearing mode in the absence of ECCD, and its ability to be described
by the Rutherford equation, in Figure 3. The β value for the initial plasma equi-
librium is extremely low (of order 10−6 near the magnetic axis). The growth of
the n = 1 Fourier component of the magnetic energy [corresponding to tearing
mode growth of a mode with helicity (m,n) = (2, 1)] is initially exponential,
but is followed by a period of slower growth and saturation. Because the re-
sistive tearing mode obtains its free energy from current profile gradients, the
flux–surface average of the parallel current profile µ (denoted 〈µ〉) is a useful
diagnostic of its long–time behavior. In Figure 4 we demonstrate this effect; the
initial 〈µ〉 profile (monotonically decreasing toward the plasma edge) undergoes
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Figure 3: (Color online) (a) The initial q(ψ) and pressure profiles for the toroidal
plasmas considered in this work. The equilibrium is unstable to (m,n) = (2, 1)
tearing modes at the q = 2 rational surface. (b) Time evolution of various
Fourier components (corresponding to variation in toroidal angle ξ) of the total
magnetic energy as the tearing mode grows. The n = 1 component predom-
inates, initially growing exponentially and then saturating; magnetic energy
scales with island width w as Emag ∼ w4.

a net flattening due to current perturbations near the q = 2 rational surface
(positioned at the cross in the figure inset) as the tearing mode grows and satu-
rates. Hence, the flattening of the averaged profile near the rational surface can
be associated with stability, and additional stabilizing or destabilizing contribu-
tions may be expected as ECCD–induced current perturbations locally flatten
or steepen this profile further. It should also be noted that the rational surface
position is determined (both here and in the remaining sections of this work)
by tracing individual field lines in the area of interest and searching for closed
helical paths.

We next discuss RF–induced modifications of the plasma’s equilibrium cur-
rent profile, i.e. preemptive ∆′ modifications, to prevent island growth.

III ∆′ modification in NIMROD

The modification of ∆′ by the ECCD is particularly easy to simulate using the
NIMROD code [33]. Because NIMROD uses a spectral representation for the
toroidal direction, the toroidally symmetric modifications induced by the RF
can thus be simulated by initially evolving only the n = 0 components until a
new equilibrium is reached. Our simulations proceed as follows:
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Figure 4: (Color online) Time evolution of the 〈µ〉 profile due to the growth and
saturation of a tearing mode. The resonant rational surface is initially located
at
√
ψpol = 0.525. (inset) Close–up of the 〈µ〉 profile, wherein the rational

surface position is denoted by a cross. As the mode saturates (Fig. 3b), a local
flattening of the profile is observed near this point, but relatively little motion
of the rational surface ensues.

• Begin with an ideally stable, resistive–tearing–mode unstable equilibrium;

• Evolve only the axisymmetric (n = 0) Fourier components of the simula-
tion in response to applied electric field (Eq. 9).

• After the new steady–state has been obtained, begin evolving the higher–
order Fourier harmonics;

• Measure the observed growth rate to determine the modification of ∆′.

Because the mode growth rate is proportional to a near–unity power of ∆′,
comparison of the growth rate in the presence or absence of ECCD reveals the
influence of the applied RF on this parameter. This approach uses NIMROD’s
dynamical modeling capability to address the same question posed by Pletzer
and Perkins [13], who used the PEST–3 code to calculate ∆′ modifications
in modified Grad–Shafranov equilibria due to toroidally symmetric, poloidally
Gaussian current profiles at or near the mode rational surface.

To reach a new steady-state will take a characteristic time, and it is instruc-
tive to consider this time scale not only to understand these simulations, but to
understand how this work relates to the dynamic cases we will consider in the
next section. The effect of the applied electromotive force introduced by the
RF can be best understood by taking the dot product of Eq. (6) with the line
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element dl which traces the path C of a field line in a rational surface. Faraday’s
law can be used to represent the first term in terms of magnetic flux through
the topological surface S bounded by the helical line element C, such that

−
∫
S

∂B
∂t
· dA = η

∫
C

J · dl− ηλ

µ0

∫
C

f(x, t)B · dl . (12)

Equation (12) exhibits the physics of a driven LR circuit, with the first and
second terms acting as the inductive and dissipative elements and the last term
driving current. The time scale for reaching a steady state is the characteristic
L/R time and will depend on the plasma geometry and the plasma resistive
time scale τR = µ0a

2/η, where a is the minor radius of the plasma. If the RF
rampup is rapid relative to the latter timescale and remains constant thereafter,
curve fits to the normalized, perturbed toroidal plasma current (corresponding
to dissipation in the circuit) are well approximated by the form 1− exp(t/τLR),
where τLR is the L/R time and has the value τLR ≈ 0.22 s for the simulations in
this work. The comparitive resistive time scale is τR = 1.0 s for this simulation.

In addition to the parallel equilibration, which occurs on an Alfvénic time
scale and reaches steady state on the τLR time scale, there will be effects from
the change of the line element itself. Because the direction of the unit vector
b̂(x, t) is altered by perturbed magnetic fields, the path traversed by solutions
of the nonlinear Eq. (12) will vary in space and time, and as the set of such
paths constitutes the rational surface, the location of the rational surface will
also vary in space and time.

The results of using RF to modify ∆′ are shown in Figure 5. The ECCD
profiles (with half–width wrf = 3.7 cm and centered on the outboard midplane)
are shown on the left. The ECCD amplitudes λ for the various datapoints are
chosen such that in the long–time limit, the ratio of the ECCD–induced toroidal
current IRF to initial toroidal current I0 (from the equilibrium configuration)
ranges from 1–4%. The top right pane of Figure 5 shows the shifted radial
position of the q = 2 rational surface for various profile locations and amplitudes;
the magnitude of the shifts increases as the RF input power is increased. For
these shifts, it is instructive to estimate whether the bulk of the RF power is
deposited inboard or outboard from the original rational surface position R2,1(=
202.7 cm). This can be done by considering the area under the various profile
curves in the left of the figure; the fraction of this area which lies above zero on
the y–axis is equivalent to the fraction of RF power deposited outboard from
the original rational surface. Radially outward rational surface shifts occur even
when upwards of 80% of the RF deposition occurs outside the initial rational
surface.

La Haye [22] has noted the critical need for accurate spatial alignment of
RF deposition for the mitigation and control of NTMs, and examination of the
modified growth rates which result from ECCD–induced alterations of ∆′ at
long times in our model also affirm the need for accurate spatial alignment of
the RF. In the bottom right pane of Figure 5, growth rates are shown which
correspond to the various deposition profiles in the left for differing values of
the amplitude λ. We will later (Figure 9) show that the saturated (2, 1) island
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Figure 5: (Color online) (left) On a resistive timescale, ECCD deposition at
different input powers and deposition locations shifts the rational surface loca-
tion relative to its original position, R2,1 = 202.7 cm. The growth rate of the
(2, 1) tearing mode, and thus the numerical value of ∆′, is also influenced by
the input power and location of the ECCD deposition (bottom right).

half–width for this plasma in the absence of RF is w0 = 6.5 cm, and this width
can be compared with the quantity δR ≡ Rrf −R2,1, where Rrf is the position
of the peak ECCD deposition. One observes that relatively minor alterations
to the growth rate occur for |δR| & w0, i.e. for RF depositions which are
highly misaligned with the rational surface. The deposition profiles which peak
at δR = −8.5 cm and 6.3 cm are particularly inefficient at mode stabilization
because the rational surface has moved in the wrong direction relative to the
induced current peak. More notable effects occur for |δR| < w0; relevant values
are δR = −4.8 cm, −1.1 cm, and 2.6 cm respectively. For small, negative values
of δR, the growth rate of the tearing modes is significantly increased. When δR
is small and positive, however, the deposition of RF just outside the rational
surface completely stabilizes the tearing mode.

These results are consistent with Figure 6 in the work by Pletzer and Perkins
[13], where localized Gaussian current sources (wrf = 0.03) cause significant
destabilizing effects inside the rational surface but are stabilizing outside. How-
ever, interpreting their data in light of rational surface motion and current profile
modification provides a more intuitive understanding of their results, since the
shift in the position of the rational surface in response to RF injection also has
important effects on the stabilization or destabilization of the tearing mode.
Consider, for example, the growth rates corresponding to deposition peaked at
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δR = 4.8 cm inboard from the rational surface. Initially these growth rates
are increased by low–amplitude RF injection, but increasing the RF amplitude
(and thus the current ratio) appears to have little effect on the growth rates for
current ratios above 2%. Figure 6 demonstrates the reason for this effect; the
RF steepens the 〈µ〉 profile just inside the rational surface (leading to instabil-
ity), but as the RF power is increased, the position of the rational surface is
shifted outward away from the profile modifications. Another consequence of
this phenomena can be seen in Figure 7, wherein the long–time effects of RF
drive peaked at 2.6 cm outside the rational surface stabilize the mode completely
at high input powers. Here, the 〈µ〉 profile modifications reduce the current gra-
dient at the rational surface, even reversing its direction for high current ratios.
However, as the RF power (or, alternatively, the current ratio) is increased, the
position of the rational surface is shifted outward. At higher RF powers, as the
rational surface crosses the peak of the RF–induced perturbation of 〈µ〉, the
resulting sign change of the current gradient will yield instability. This effect
is conspicuously present in Figure 6 of the work by Pletzer and Perkins (the
black diamonds in their plot); the destabilizing effect of RF deposition centered
on the rational surface and applied at increasingly high powers arises from the
associated outward shift of the rational surface.

These results suggest that ∆′ stabilization of the resistive tearing modes in
this model exhibits sensitivity not only to the location of the ECCD deposition
(as is also the case in experimental efforts to suppress NTMs) but also to the
shifts in rational surface position which this deposition induces. Effectively, one
is attempting to hit a moving target; the ∆′–stabilizing effect of RF is maximized
by highly localized deposition just outside the mode rational surface, but the
surface itself also moves in response to the RF perturbation. Nevertheless, we
have demonstrated that complete stabilization of the mode is possible, provided
that the RF is preemptively applied at the appropriate place and that sufficient
time has elapsed for global resistive diffusion of the induced current to occur.
We now consider more experimentally relevant effects, namely, the dynamic
response of existing islands to the application of ECCD sources.

IV Dynamic response to RF current sources

A ECCD effects on saturated tearing modes

We now wish to determine if the complete stabilization of (2, 1) tearing modes
at the nonlinear saturation stage can be achieved by the same ECCD injection
which, when applied preemptively, modifies ∆′ to yield a stable equilibrium.
This is one method for determining the relative importance of the DECCD(w)
term of Eq. (11) for an axisymmetric source, since the timescale on which the
mode is influenced can be compared to the relevant timescale for ∆′ stabilization
(τLR) which we have already examined. We have seen that RF injected just
outside the rational surface (δR = 2.6 cm, in Figure 5) preemptively stabilizes
tearing modes at RF input powers > 1%. In Figures 8 and 9, where the current
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Figure 6: (Color online) Response of the flux–surface averaged µ profile of the
plasma to RF sources of increasing current ratio CR ≡ IRF /I0 centered 4.8
cm inward from the original rational surface position. (Inset) Crosses denote
the (2, 1) rational surface position for each profile, with increasing numbers
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little influence on the growth rate (as the “o” markers of the bottom right pane
of Figure 5 indicate).
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Figure 7: (Color online) Response of the flux–surface averaged µ profile of the
plasma to RF sources of increasing current ratio centered 2.6 cm outward from
the original rational surface position, with rational surface locations in inset.
RF sources initially flatten the profile near the rational surface, yielding a net
stabilizing effect. As the current ratio increases, however, the position of the
rational surface moves outward toward the RF–induced peak in 〈µ〉. Instability
will result if the RF power is sufficiently large, due to the change in the local
profile gradient as the peak is crossed.
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ratio or input power δInorm ≡ IRF (t)/IRF (t = ∞) ≈ 3% and 4% for two
separate simulations, we apply ECCD at this position subsequent to the growth
and saturation of the mode. In Figure 8a, the low–order Fourier components of
the total magnetic energy are plotted as the discharge evolves. Initial linear and
Rutherford–type growth of the (2, 1) magnetic islands raises the n = 1 magnetic
energy to a saturated state at approximately t = 0.09 seconds. As the ECCD
amplitude begins to rise (see Figure 8b), the value of the magnetic energy (which
scales as Emag ∼ w4 where w is the island width) begins to decay. As δInorm
becomes large, the island width is increasingly reduced. Explicit plots of the
saturated (2, 1) island structure (∼ 13 cm wide) are given in Figure 9a for the
4% current ratio case, and also reveal the presence of (3, 1) islands arising from
toroidal coupling. Figure 9b, obtained roughly halfway through the discharge,
shows that the width of the (2, 1) island is reduced in response to the RF and
that the (3, 1) island has completely vanished. By t = 0.35 s, Poincaré plots
similar to those of Figure 9 reveal no island structures.

One might expect these simulations to most clearly illustrate the relative
importance of the DECCD(w) term in Eq. (11); because DECCD(w) is a measure
of the amount of current contained within the island, its effect is expected to be
most pronounced when current is added while the island is large. However, we
observe that the islands are suppressed on a timescale of roughly 0.2− 0.25 s ≈
τLR = 0.22, suggesting that ∆′ modification remains the dominant stabilization
mechanism in these simulations. This behavior is likely related to the relative
inefficiency imposed by the toroidally symmetric form of the RF; its intersection
with the helical island structure induces currents both favorable and unfavorable
to island suppression.

Experimentally, RF current is generally applied while the islands are grow-
ing. In the next section, we investigate this more experimentally relevant case,
and attempt to determine useful information about the short–time (t � τLR)
behavior of ∆′ modifications (associated with electric fields and corresponding
to the inductive component in the circuit model).

B ECCD effects on growing tearing modes - rational sur-
face response

To examine the short–time effects of applied ECCD on the behavior of grow-
ing tearing modes, we repeat the previous simulations without suppressing the
n > 0 Fourier modes and use an immediate onset time of the RF source (yield-
ing RF–induced rational surface motion before tearing modes begin to grow).
We demonstrate this behavior in Figure 10, wherein the vertical axis represents
radial distance along the outboard midplane while the horizontal axis repre-
sents evolution in time; unlabeled axes signify normalized quantities. In the
leftmost plot, the deposition profiles of the (toroidally symmetric) ECCD on
the outboard midplane are shown, together with the original position of the ra-
tional surface. In the topmost plot, the normalized time variation of the ECCD
amplitude and the induced toroidal current are shown, with δInorm again rep-
resenting the fraction of the total RF–induced toroidal current which has been
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Figure 8: (Color online) (a) Low–order Fourier components of the total mag-
netic energy for two simulations wherein ECCD sources of different amplitudes
are applied to a saturated (2,1) tearing mode. Subsequent to mode satura-
tion, ECCD injection applied on the outboard midplane yields a reduction in
the magnetic energy as toroidal current is induced in the plasma. Complete
stabilization of the mode is achieved. (b) Behavior of RF amplitude and in-
duced toroidal current (both normalized) in time. Here, δInorm is the fraction
of the toroidal current IRF which will ultimately be driven by the ECCD; it is
small compared to the equilibrium toroidal current I0 [IRF (t =∞) ≈ 0.03I0 or
0.04I0]. Plots of induced current for the two cases overlay one another when
normalized; thus, only one is shown.
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Figure 8 with 4% current ratio. The saturated state of (2, 1) and (3, 1) magnetic
islands, before ECCD is applied, is shown on the left plot. As ECCD is applied
these islands are reduced in size (right plot) and ultimately vanish.

induced at a given point in time. Arrangement of the figures in this manner
demonstrates the response of the rational surface (found in the largest plot) to
both the spatial and temporal behavior of the ECCD. The initial introduction
of ECCD induces parallel electric fields in response to the applied electromotive
force of the RF, and effectively “pushes” the rational surface away from the
region of peak deposition. Thereafter, as the induced current begins to rise,
the rational surface position on the outboard midplane moves radially outward
with its asymptotic limit being the rightmost set of points in Figure 5. Notably,
when ECCD is deposited just outside the rational surface, the initial inward,
electric–field dominated motion of the rational surface is countered at longer
times by outward, current–induced motion. In addition, characteristics of the
short–time growth of the tearing mode in this case can be associated with long–
time stability. These signatures of proper ECCD alignment will be discussed
further in the next section.

C Numerical experiments - short–time ∆′ behavior due to
inductive response

To further investigate the effect of short–time (t � τLR) ∆′ modification in
response to rational surface motion (assuming that the competing DECCD term
in the Rutherford equation plays a minimal role), we follow the procedure used
to investigate ∆′ modifications in Section III and vary the onset time of the
RF source in an effort to separate short–time and long–time effects. We note
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Figure 10: (Color online) (left) Spatial profiles of ECCD deposition centered at
various radial locations on the plasma’s outboard midplane, in relation to the
original position of the q = 2 rational surface on the midplane. (top) Temporal
behavior of the deposited ECCD profiles and the toroidal current which they
induce. (bottom right) Spatiotemporal evolution of the rational surface position
in response to ECCD deposition. The initial response of the rational surface is
to move away from the peak deposition region. At long times, induced toroidal
current moves the surface radially outward.

that this method could also be used to assess the relative contributions from
the ∆′ and DECCD(w) terms as the simulation evolves, in cases where the
latter term plays a greater role than in the previous section. However, because
this DECCD(w) contributes little to the stabilization even for large islands, we
expect that its effects on the linearly growing islands will be minimal in these
particular simulations. Our modified procedure is as follows:

• Begin with an ideally stable, resistive–tearing–mode unstable equilibrium;

• Evolve only the axisymmetric (n = 0) Fourier components of the simula-
tion in response to ECCD of the form (8) – (9);

• After some characteristic onset time tn>0 � τR, begin evolving the higher–
order Fourier harmonics;

• Measure the observed growth rate and compare with other scans.

Stated differently, we are creating a sequence of new axisymmetric equilibria
with this form of the RF source, rather than introducing any helical contribu-
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Figure 11: (Color online) Normalized growth rates of the (2, 1) tearing mode
in response to RF deposition of various powers and locations on the outboard
midplane. The n = 0 Fourier components of the simulation evolve continuously,
while the n > 0 components are turned on after various onset times tn>0 (nor-
malized to τLR = 0.22). Growth rates are measured for the various onset times,
with the longest value of onset time corresponding to the growth rates obtained
in Section III.

tions from the RF. Longer delays before non-axisymmetric components are al-
lowed to evolve can be associated with greater contributions of the steady–state
∆′ effects term in the modified Rutherford equation. ECCD–driven current
rises to 99% of its peak value in roughly τR, which is roughly 4.5τLR; if the
onset times tn>0 are also on that time scale, the ∆′ modifications of Section III
will result. For shorter onset times, we expect short–time modifications to ∆′

(associated with the inductive, electric field component of the LR circuit model)
to dominate. By varying the non-axisymmetric onset time, information about
these effects can be separated.

Figure 11 demonstrates the modifications to the tearing mode growth rate
observed in these simulations, and includes the long–time ∆′ modifications dis-
cussed previously (Section III). When alignment with the rational surface
is poor, growth rates generally decrease with increasing onset time (δR =
−8.5,−4.8, 6.3 cm), However, they are enhanced relative to the case without
ECCD, and this enhancement persists (raising the growth rate by nearly an
order of magnitude) when the deposition occurs immediately inboard from the
rational surface. However, for δR = 2.6 cm, wherein the long–time ∆′ modifi-
cations yield stability or extremely slow growth, low–power RF injection signifi-
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cantly reduces the growth rate without fully stabilizing the mode at short times.
From this we conclude that the plasma’s response to short–time ∆′ modifica-
tions is rather volatile relative to the long–term effects arising from background
profile modification. However, this volatility can also significantly reduce the
growth rate of the mode on short timescales when RF alignments are favorable
and will ultimately lead to long–term stability of the mode. This reduction can
serve as a signature of proper RF alignment, while immediate enhancements to
the growth rate suggest that the alignment is poor.

It is also noteworthy that RF current ratios > 3% (which are stabilizing in
the long–time limit) initially act to destabilize the mode at short times. Again,
the motion of the rational surface is responsible; at short times, the resonant
surface is moved radially inward (away from the deposition point which is just
outside the rational surface in this case). For adequately large RF amplitudes,
the short–time displacement of the surface carries it out of the region where
RF effects influence the slope of the current profile and the long–time stability
properties. Consequently, attempts to determine proper RF alignment by the
method above will be most reliable at low RF input powers; the low power
ensures that the short–time displacement of the rational surface will be relatively
small.

Returning again to the simulations of Figure 8, in which the ECCD param-
eters are given by IRF /I0 = 0.0286 or 0.0381, and δR = 2.6 cm, comparison
with the bottom left pane of Figure 11 indicates that the mode growth rate, and
thus ∆′, is increased at short times by the RF deposition for the higher current
ratio and decreased for the lower current ratio. By t ≈ 0.15 s in the simulation,
this behavior is evident; the saturated mode amplitude for the higher current
discharge is slightly elevated relative to its lower–current counterpart. Short–
time modifications of ∆′, and the associated rational surface motion, may thus
prove consequential for mode stabilization. The qualitatively similar responses
of both discharges to the increasing toroidal current induced by the RF on the
τLR timescale, however, suggest that contributions from the D(w)ECCD term
of Eq. (11) are significant neither at short nor long times for these simulations.
This term is expected to play a larger role, however, when toroidally localized
RF is applied to saturated islands.

V Summary and conclusions

A simple model for RF stabilization has been implemented in the NIMROD code
and used to investigate the effect of ECCD injection on the stability, growth,
and dynamical behavior of magnetic islands. The work here does not include
a model for the parallel equilibration of the driven current [30]. Because our
model uses the full set of inductive equations and includes Faraday’s law, unlike
the previous reduced MHD simulations [38], an inductive time scale is required
for the current to reach a steady state, and not a pure collisional time scale. This
results in a slower time scale for our current to reach a steady-state (compare
Figure 8 in this paper to Figure 3 in Ref. [38]). While the use of a lower resistivity
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in Eq. (8) corresponding to the lower collisionality of fast electrons would yield a
faster equilibration time, we have found that Alfvén wave propagation, together
with small amounts of dissipation, yields the requisite parallel equilibration
on a time scale that is still much faster than the growth time of the mode
growth and the ramp times used in the simulations. We expect that once more
complete closures for the electron stress tensor are implemented [32, 41, 43],
this equilibration time will be even faster (akin to how the Braginskii heat flux
closure equilibrates temperature faster than sound waves). For the present work,
the correct time scale ordering ensures that the model is valid for our numerical
experiments.

This work also differs from Ref. [38] in that a toroidally symmetric elec-
tromotive force (induced by RF) was used as a source. In experiments, the
dominant toroidal rotation of the island implies the the source will have a fi-
nite toroidal width associated with it, even in the case of modulation. Ref. [38]
applied a source that was deposited helically, using the justification that the de-
position was helical. In this work, we are taking the limit of large rotation and
no modulation which corresponds to a toroidally symmetric source. In future
work, we will include toroidal localization and finite rotation. In combination
with the parallel equilibration physics associated with more complete closures,
this will enable more direct comparisons with Ref. [38].

We first tested our model by reproducing the results of Pletzer and Perkins
[13]. This test exploits the ability of NIMROD to easily simulate just the ax-
isymmetric evolution of the plasma to reach a new steady state. The optimal
position for RF deposition has been verified to be immediately outside the ini-
tial rational surface on which the mode grows. The ∆′ destabilization at high
RF input powers demonstrated by Pletzer and Perkins has been shown to arise
from rational surface motion. By explaining features of their data in terms
of rational surface movement relative to the parallel current density gradient,
we gained experience in analysis which proved useful for explaining subsequent
numerical experiments.

We have demonstrated the stabilization of initially saturated tearing modes
by the application of toroidally symmetric ECCD at the (2, 1) surface. The
timescale for this stabilization has been shown to be approximately equal to τLR,
the L/R time associated with the evolution of RF–induced current perturbations
toward a modified, steady–state equilibrium. We conclude that ∆′ modification
is the dominant stabilization mechanism in this case, even though the RF is
applied at a time where the island is large and its intersection with the helical
island [as quantified by theDECCD(w) term] is maximized. In these simulations,
the rational surface motion was also shown to be important in interpreting the
results; high–power RF injection can, for instance, initially be destabilizing due
to rational surface motion even if its long–time behavior yields stability.

We have further examined these ideas by varying the times at which the non-
axisymmetric MHD perturbations of the simulations were permitted to evolve.
By evolving the n = 0 components continuously and varying the onset time of
higher–order components, the relative effects of inductive electric fields (on short
timescales, t � τLR) were compared with the effects of driven currents arising
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on the τLR timescale. Though the plasma response to ∆′ modifications on
the former timescale is comparatively more volatile, signatures of favorable RF
alignment with the rational surface can be deduced by observing the plasma’s
response to low–power RF injection on these short timescales. In the latter
simulations DECCD(w) remains relatively unimportant due to the small island
size and the relatively low overlap of the toroidally symmetric RF with the
helical island.

The use of an axisymmetric RF source in these simulations allowed for sim-
plicity in the analysis and facilitated the study of ∆′ effects in isolation. A
toroidally-localized RF source should be considerably more effective in con-
tributing to DECCD(w) stabilization of existing islands on experimentally useful
timescales [14]. In future work, we will investigate these effects. However, our
model for setting up numerical experiments to determine the relative importance
of terms in the Rutherford equation (11) is a useful paradigm. The significance
of rational surface motion in response to injected ECCD, both at short and
long times, has also been presented. This effect is not easily represented within
the modified Rutherford equation, and while alluded to in other papers [13], we
have found it necessary to explain the (possibly temporary) destabilization of
the tearing modes at higher RF input powers.

This work represents a first step in the development of integrated, predic-
tive models for ECCD/MHD interactions (such as, for example, might be used
to determine optimum NTM stabilization approaches in ITER). In the future,
we plan to use data from ray tracing codes [48] as the NIMROD simulation
progresses to determine the amplitude and spatial localization of the ECCD–
induced electromotive forces. In this scenario, NIMROD’s magnetic geometry
can be exported to the GENRAY and CQL3D codes, which can then calculate
ray trajectories and power deposition associated with a particular ECCD con-
figuration. In addition, because these simulations are occuring on the plasma
transport time scale, we plan to use more realistic models for plasma heat trans-
port and sources to achieve greater fidelity with experimental observations. One
difficulty associated with this type of modeling is that it provides another mech-
anism for the rational surface to move (in addition to the RF sources discussed
above), greatly complicating the simulations. Consequently, we anticipate that
accurate calculations of the power required to stabilize islands will require nu-
merical implementation of the same feedback mechanisms which are used in
experiments. Relevant examples include the active feedback control systems of
DIII-D [23, 24], which induces small variations in the plasma toroidal field or
major radius, and of JT-60U [10], which alters the ECCD injection angle.

Effects arising from the development of accurate closure models (which ac-
count for the effects of RF on higher–order velocity moments) can also be com-
pared with the results obtained herein to determine the additional physics im-
parted by the closures. These developments, along with the rigorous verification
of self–consistency among collision operators, quasilinear operators, and fluid
equations, will serve as future steps of importance in the development of an
integrated ECCD/MHD model.
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A The coupled RF/MHD equations

In this section, the relationship of Eqs. (3 - 7) to the more fully self–consistent
interaction of RF ECCD injection with MHD [32, 43] is briefly discussed. When
localized ECCD is applied, both the distribution function f̃α and the fields Ẽ, B̃
can vary on the rapid timescales associated with the propagation of RF waves
through the plasma (we signify such rapid variation with the tilde notation).
The dynamics of interest, however, are the slower, self–consistent interaction
of fields and distribution functions. To proceed, one averages over a few wave
periods of the rapid timescale (denoted 〈·〉t) and make a quasilinear approxi-
mation [49, 50] for the ECCD effects. The kinetic equation for the averaged
distribution function fα ≡ 〈f̃α〉t is then

∂fα
∂t

+ v · ∇fα +
qα
mα

[E(x, t) + v ×B(x, t)] · ∂fα
∂v

= C(fα) +Q(fα) , (A.1)

where Q(fe) is the quasilinear operator and contains the physics associated with
the rapid oscillation of the electromagnetic fields. The ions are presumed to be
unaffected by the RF, i.e. Q(fi) = 0. As velocity moments of the kinetic equa-
tion are taken to obtain the fluid equations, we obtain velocity–space integrals
over Q(fe).

The direct integration of Eq. (A.1) over the velocity space yields a continuity
equation for the ion and electron fluids. Since ECCD neither creates nor destroys
particles in fusion plasmas, the fluid continuity equations, Eq. (4), are unaffected
by the RF. The product of mαv and the kinetic equation (A.1), when integrated
over the velocity space, yields momentum equations for the ion and electron
fluids,

mαnα
∂uα
∂t

+mαnα(uα ·∇)uα = −∇pα−∇·
↔
Πα +nαqα[E+uα×B]+Rα+Frfα

(A.2)
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where the subscripted quantities n,u, p,Π,R, and Frf are respectively the den-
sity, velocity, scalar pressure, anisotropic pressure tensor, and momentum trans-
fer due to collisional friction/RF injection for species α. Summing Eq. (A.2)
over species yields an MHD momentum equation, Eq. (5); in addition to the
normal terms, the transfer of momentum from RF waves to electrons is also
represented. Because of the large mass ratio, however, this additional term
is small relative to the ion momentum and is neglected. Assuming an MHD-
ordering [51], the electron momentum equation is used to write the generalized
Ohm’s law as:

E + u×B = ηJ +
Frfe
n|qe|

(A.3)

where the final term incorporates the RF effects and has the form

Frfe =
∫
mevQ(fe)d3v . (A.4)

This term captures the dominant physics of the ECCD/MHD interaction.
Integration of the product of mα(v−uα)·(v−uα)/2 with the kinetic equation

(A.1) yields an equation for the temperature Tα of a given species;

3
2
nα
∂Tα
∂t

+
3
2
nα(uα · ∇)Tα + nαTα∇ · uα = −∇ · qα−

↔
Πα: [∇uα] +Qα + Srfα ,

(A.5)
wherein the subscripted quantities q andQ represent the heat flux and collisional
heating experienced by fluids of species α. Likewise, the RF heating experienced
by species α is represented by

Srfα ≡
∫
mα

2
(v − uα) · (v − uα)Q(fα)d3v . (A.6)

Summing this equation over species and dropping small terms yields the stan-
dard MHD equation (7) describing the evolution of plasma temperature, as well
as a new term representing the effects of localized electron heating imparted by
the ECCD. Since our primary focus is to explore the physics of ECCD rather
than ECRH, we neglect this term.

A Closures and numerical parameters

The fluid theory closure problem requires the determination of values for heat
fluxes (q) and stresses (Π) as functions of lower–order fluid moments. In addi-
tion to the complexities of the standard closure problem [41], the calculation of
a physically consistent closure for our coupled ECCD/MHD model must take
into account the presence of the quasilinear RF operator Q(fe) in the kinetic
equation. In this work, we neglect these details and consider simple models for
the closure relations. Specifically, we use

24



Π = −ρν∇u (A.7)

q = −3n
2

[
κ‖b̂b̂+ κ⊥(I− b̂b̂)

]
· ∇T (A.8)

where I is the unit tensor, and b̂ is the direction of the local magnetic field.
The parameters ν, κ‖, and κ⊥(� κ‖) are the kinematic viscosity and paral-

lel/perpendicular heat diffusivity. In this work, typical values for these param-
eters are respectively 4.3× 10−2 m2/s, 4.3× 107 m2/s, and 4.3× 101 m2/s.

Other parameters relevant to these simulations include the plasma’s Lund-
quist and Prandtl numbers (respectively S = 1.67 × 106 and Pr = 0.1), the
Alfvén and resistive times (respectively τA ≈ 6 × 10−7 s and τR ≈ 1.0 s),
the plasma resistivity η/µ0 ≈ 0.423 m2/s, the major radius R0 = 1.70 m, the
magnetic field strength at the magnetic axis (B ≈ 1.84 T) and the poloidal
grid resolution (44 radial by 64 axial meshpoints). Fourth–order polynomial
interpolation was used within individual finite elements in the poloidal plane.
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