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Abstract

Numerical study of plasma relaxation and self-organization in two-dimensional incom-
pressible magnetohydrodynamic (MHD) systems is presented. A large semi-periodic
tearing unstable reversed magnetic field configuration in flat Cartesian geometry and
a driven tokamak-like kink-unstable screw pinch in helical geometry are considered.
Special emphasis is made on the coupling between global and local scales by way of
magnetic reconnection. The influence of the global system’s size and geometry on
the magnetic reconnection phenomenon and associated current sheet dynamics are
evaluated in different collisionality regimes. Questions of plasmoid formation by way
of current sheet break-up and onset of fast reconnection in a semi-collisional regime
are investigated. Visco-resistive, electron and Hall MHD plasma fluid models are
employed in the study. In helical geometry, application of Ohmic current drive to
the periodic screw-pinch with large axial magnetic field and hollow resistivity profile
are shown to result in “sawtooth-like” limit cycle behavior which is independent of
the exact initial conditions. Incomplete reconnection sawteeth, maintaining the value
of safety factor ¢ in the central plasma region below unity throughout the cycle, are
demonstrated for the first time in numerical simulations. Sensitivity of sawtooth char-
acteristics to a number of plasma parameters is evaluated. The initial value problems
described above are solved with an adaptive fully implicit parallel macroscopic model-
ing code SEL, which is capable of evolving a large range of extended MHD equations.

The structure, key features, and thorough testing of the code are described in detail.
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Chapter 1

Introduction

In the last few decades, it has been increasingly recognized that “complexity” and the
laws that govern the behavior of complex systems are no less fundamental than those
which describe its elementary constituents and the ways in which the constituents
interact. In fact, the idea of self-organization, the central concepts in the study of
complexity, was first proposed by a cyberneticist, W. Ross Ashby|3], and the field has
since consisted of an inter-disciplinary collection of contributions from a wide range
of scientific fields — from mathematics, to biology and sociology|71, 103|.

Starting with the work by Maxwell, Boltzmann and others in the mid-19th century,
physicists began to study the complexity of the collective behavior of a large set
of known particles interacting individually via a set of known forces. Statistical
mechanics, kinetic theory of gases, solid state physics are all areas of the current
physics research rooted in these early works. Likewise, the field of plasma physics
concerns itself with describing the behavior of a large set of charged unbound particles
(a plasma) interacting microscopically via electro-magnetic forces among themselves
and, often, macroscopically with self-generated and externally imposed electric and

magnetic fields.



Magnetized plasma is a prototypical complex system in the realm of physics, and
self-organization is known to be a very important and often necessary component in
the system’s evolution (see Sato[130] and references therein). In this Dissertation,
we numerically study a two-dimensional helical magnetohydrodynamic (MHD) sys-
tem that manifestly exhibits self-organization dynamics; and, in detail, the physical

process that allows it to take place — magnetic reconnection.

1.1 Magnetic reconnection

The phenomenon of magnetic reconnection, observed under many different conditions,
is one of the key physical processes that allow coherent self-organization and relaxation
on time-scales faster than the global dissipation time in magnetized plasmas.

What is magnetic reconnection? One could describe it as local reconfiguration
and annihilation of magnetic field resulting in relaxation of the global topology of the
magnetic configuration and transfer of the energy stored in the magnetic field into
the kinetic and thermal energy of the plasma.

In the ideal MHD approximation of a magnetized plasma, Lorentz force perfectly
binds both ions and electrons to magnetic field-lines by assuming the Larmor radii of
particles’ gyration around the field-lines to be infinitely small. Then, Faraday’s law
insures that the magnetic field-lines move together with the quasi-neutral plasma —
i.e., magnetic field is “frozen” into the plasma fluid when collisional and inertial effects
are ignored. As a result, ideal MHD allows no change in the topology of magnetic
field immersed in plasma fluid and is therefore incapable of describing the process of
magnetic reconnection.

In order to allow the magnetic field to reconnect, dissipative and other physical



processes that become important locally on spatial scales smaller than the system
size have to be included in the plasma description. Depending on the magnitude
of the ambient magnetic field, surrounding plasma temperature and density, various
“non-ideal” effects can become the main mechanism for breaking the magnetic field
lines. These include, but are not limited to — collisional resistivity, inertial separation
of ion and electron fluids due to their mass density difference, anisotropy due to finite
ion and electron Larmor radius effects, and combinations thereof.

Below, we briefly describe what is known to date about the magnetic reconnection

phenomenon.

1.1.1 Observations of magnetic reconnection.

In nature, the phenomenon has been directly measured in the solar wind[118|, the
Earth’s magnetotail[105] and magnetopause[54, 148]. There is much evidence that
magnetic reconnection is responsible for the generation and evolution of solar flares[92,
101] and coronal mass ejections (CMEs)[91], while it has also been proposed as the
mechanism for solar coronal heating|50]. And although presently there is much less
astrophysical data available, magnetic reconnection processes have been conjectured
to play an important role in heating of the interstellar, intergalactic and intracluster
media, acceleration and relaxation of jets, and dynamics of accreting systems|58, 36].

In the laboratory environment, and particularly in toroidal magnetic fusion de-
vices, magnetic reconnection has been identified as one of the most important mech-
anisms of energy redistribution and magnetic field relaxation|[26, 131]. While it often
has the destructive effect of ruining the magnetic confinement[59], it has also been
proposed as a mechanism that is active in non-inductive coaxial helicity injection

current drive[123]. Signatures of magnetic reconnection, such as the formation of a



finite amplitude current sheet which is spatially and temporally correlated with mag-
netic field reconfiguration and/or plasma heating has also been directly observed in a
reversed-field pinch[41], field-reversed configurations(FRC)[38, 106, 140], spheromak
interactions|27, 107], and reconnection-focused experiments|39, 48, 56, 158|.

The plasma conditions under which reconnection is observed could not be more
diverse. In the Earth’s magnetotail and plasma sheet, plasma number density n is
of order .1em™3, electron (7.) and ion (T;) temperatures are of order 100eV and
103 — 10%eV, respectively, magnetic field B outside of the reconnection region is
about 107G, and the scale size of the system is about 10 — 10°km[49]. With these
parameters, Debye length is Ap ~ .1 — 1km, electron gyroradius is p. ~ 1 — 10km,
ion gyroradius and ion skin depth are p; ~ (c/wy) =~ 10%°km, electron mean free
path (mfp) is A\ ~ 10''km, and ion mfp is \; ~ 10%km. Under such conditions,
essentially no assumptions about the degree of plasma isotropization can be made.
Furthermore, because the mfp for both electrons and ions is so much longer than
the system size, no obvious mechanism for magnetic energy dissipation is available —
magnetic reconnection under these conditions is called collisionless reconnection.

On the other hand, the environment of the solar corona, where the solar flares are
observed, is distinctly different: n ~ 10° — 10em =3, T, ~ T; ~ 100 eV, reconnecting
magnetic field B ~ 103G and the scale size L ~ 10° — 105km[104]. These give the
ion and electron mfp of A\, =& \; & 1 — 10km, which is much less than the system
size; and p. < p; < (¢/wy;) = Im, which implies that while one still has to treat the
ion and electron fluids separately (i.e. include the two-fluid effects), certain degree of
plasma isotropization can be assumed. Yet another parameter regime is observed in

the solar photosphere, where the solar flare and CME generation is presumed to take



place. There, plasma number density is about 10*cm™3 and T; ~ T, ~ 1eV[104],
which implies that A\, ~ \; = 1072 — 10~ 'cm. Assuming the magnetic field strength
of the emerging flux ropes to be about the same as in the corona, we observe that
in the solar photosphere \; ~ p; < (¢/wpi) < L, which implies that the plasma is
collistonal and a single-fluid resistive MHD description may suffice.

In a typical large tokamak plasma, such as the Joint European Torus (JET)
tokamak, the system scale is approximately 1 — 5m, plasma number density n =~
1 — 5% 10"em =3, toroidal magnetic field B ~ 10* — 10°G and plasma temperature
varies from T, ~ T; ~ 1 — 5 keV in the tokamak core to near room temperature at
the walls|89]. In the tokamak core region, these plasma parameters translate into
pe = 2.5x1073cm, p; ~ 0.1em, (c/wy;) & 1.5em, and A, = \; ~ 500m, with rising col-
lisionality and falling ion and electron mfp and Larmor radii towards the plasma edge.
While strongly anisotropic and collisionless in the direction parallel to the dominant
toroidal magnetic field, these parameters show that in the poloidal plane tokamak
plasmas are very well bound to the magnetic field. Yet, since (c/wpi) > pi > pe,
local two-fluid effects should not be ignored and can play an important role in internal
reconnection events of the tokamak core.

In addition, we note that unlike the plasmas of Earth’s magnetosphere and solar
corona and photosphere, magnetic field configuration of a tokamak, particularly an
idealized tokamak, is a closed and periodic system. This, in itself, may have important
consequences for the dynamics of magnetic reconnection, as we show in Chapter 4

below.



1.1.2 Phenomenology of magnetic reconnection.

Though magnetic reconnection is undoubtedly a three-dimensional (3D) phenomenon,
to date, no agreed upon true 3D phenomenological description of magnetic reconnec-
tion exists in the community. Since in this work we investigate only two-dimensional
(2D) systems, here we limit the discussion to that of 2D magnetic reconnection, as
well.

Two phenomenological descriptions of 2D steady-state magnetic reconnection in
the resistive MHD limit were proposed early on. One, by Sweet|141] and Parker|[115],
known as Sweet-Parker reconnection, describes evolution of a long and thin current
layer, whose length is of the order of the system size and width is proportional to
square root of resistivity. The other, by Petschek|[116], proposed a localized recon-
nection region (Petschek proposed that such localization would be accomplished by
slow shocks along the magnetic field separatrices) which would allow for faster plasma
inflow and faster reconnection of magnetic field lines. The Sweet-Parker description
of resistive reconnection has been confirmed by numerous numerical simulations (for
example, see Uzdensky and Kulsrud[147]), however its predicted reconnection rate is
too slow for that observed both in space[13] and in laboratory experiments|39, 158].

On the other hand, while there is no experimental or computational evidence of
slow shocks emanating from the reconnection region, as proposed by Petschek|[116],
localization of the reconnection layer appears to be the key to the so-called “fast recon-
nection”, which allows for release of magnetic energy in a period of time consistent with
observations|90, 134]. Numerical simulations have confirmed that both of the mech-
anisms proposed to produce such localization — instability-induced locally enhanced

resistivity|95] and two-fluid and/or kinetic effects|13| — lead to fast reconnection|25].



(Presence of ambient “guide” magnetic field appears to somewhat slow down but does
not qualitatively change the character of two-fluid reconnection [73, 142].) There is
also experimental evidence to support both models[148, 78, 124, 97|.

However, despite numerous and primarily numerical publications on the subject,
understanding of the fast reconnection phenomenon is still incomplete. In particular,
a self-consistent description and understanding of the evolution of the laminar recon-
nection layer in the two-fluid regime is distinctly lacking. In this work, we attempt
to advance the understanding of the fast reconnection phenomenon and its relevance

to the self-organization dynamics observed in toroidal magnetic fusion devices.

1.2 Internal kink mode and sawtooth oscillations.

The m=1 internal kink mode has long been considered to be either the direct cause
or at least a major component in the dynamics of the so-called sawtooth oscillations
in tokamaks (see [67, 98, 149| and references therein). Beginning with linear growth
rate calculations for the ideal[28, 129], resistive[37]| and visco-resistive [5, 119] internal
kink modes (from here on, unless stated otherwise, it will be assumed that m—n—1
mode is being considered), a large body of work exists on the subject.

There is consistent experimental evidence that the internal kink mode and /or some
other m = n = 1 plasma activity play an important role in the onset of sawtooth
oscillations|46, 47, 64, 111, 152]|. Its primary manifestations in rotating tokamak plas-
mas are the appearance of the so-called pre-cursor oscillation in stationary diagnostics
with a period corresponding to a single plasma rotation and measurements of per-
turbations localized to the ¢ = 1 rational surface prior to the sawtooth temperature

crash itself.



Multiple phenomenological theories with some support from analytical and nu-
merical calculations have been proposed as to how the small m=n=1 island develops
and /or couples to the rest of the plasma in such a way that the tokamak core confine-
ment is rapidly lost and temperature crash can occur |7, 16, 17, 45, 46, 69, 79, 80, 85,
88, 120, 150, 159|. These are primarily based on the original complete resistive recon-
nection model by Kadomtsev|79], where the plasma core is assumed to reconnect out
completely, thus leading to the loss of temperature confinement. The two main points
of disagreement of the Kadomtsev theory with the experimental observations — loss of
confinement on time-scales much faster than resistive Sweet-Parker reconnection and
little change in the toroidal current profile relative to that expected from complete
reconnection — are what all of the following theories have attempted to remedy. It
has been shown that the former could possibly be recovered when the geometric and
relevant collisionless effects are included in the analysis. However, with the notable
exception of the work by Dubois et. al.[45, 46| where onset of kinematic plasma tur-
bulence around an m = n = 1 island was proposed to be responsible for both loss
of confinement and stabilization of the internal kink at small amplitude, none of the
other theories have suggested a mechanism for preventing complete core reconnec-
tion in any appreciable fraction of the plasma parameter space in which sawtooth
oscillations are observed.

A number of numerical simulations of the internal kink mode and sawtooth oscilla-
tions with various degrees of sophistication, physical models and simplifying assump-
tions have also been conducted in the attempts to understand the experimentally

observed sawtooth dynamics |4, 5, 6, 18, 44, 112, 114, 127, 143, 145, 146, 160, 161].



These fall into two categories: (1) resistive and two-fluid simulations of a single in-
ternal kink reconnection event from a somewhat arbitrary ideally unstable initial
condition; and (2) resistive long-term sawtooth simulations in 2D and 3D, includ-
ing toroidal effects, anisotropic heat conduction, resistive plasma heating and tem-
perature dependent Spitzer resistivity. Simulations in the first category have been
able to demonstrate that fast reconnection might account for the observed sawtooth
crash rates by including various two-fluid effects — Biskamp et.al.[14, 17], Aydemir|6],
Rogers and Zakharov [127], Zhukov|[160, 161] by including electron inertia and the
Hall term [(d;/ne) * (J x B — Vp,)|, and Aydemir[5], Rogers and Zakharov[127], and
Zhukov|161] by including electron viscosity in place of the resistive dissipation. Fur-
thermore, Biskamp and Sato|18| have shown that strong diamagnetic rotation can also
stabilize the internal kink mode in the two-fluid regime resulting in partial reconnec-
tion of the plasma core. (The conditions for that to happen require large equilibrium
density gradients within the ¢ = 1 surface, which are not generally expected to be
there.) However, simulations in the second category have consistently predicted com-
plete Kadomtsev reconnection sawteeth with crash times too long relative to the
experimental measurements |4, 44, 114, 143, 146]. There is also no computational
confirmation of the Dubois kinematic theory[45, 46| described above.

Thus, no coherent conclusion on the role of the internal kink mode in the sawtooth
cycle has been achieved to date. Two review papers by Migliuolo[98] and Hastie|67]
and several of the latest publications|7, 18, 111, 161] summarize the extent of the
present understanding of the internal kink mode dynamics and its role in the tokamak
sawtooth oscillations.

In this work, we do not attempt to fully resolve the relationship between the



observed development of the internal kink mode and sawtooth oscillations. If the
present state of understanding is to be a guide, such an attempt would require a full 3D
toroidal simulation that allows for non-linear coupling between multiple helical modes
and a possibility of kinetic extensions appropriate to highly collision-less plasmas
that exist in the hot tokamak core, both of which are beyond the scope of this work.
Instead, we attempt to characterize the evolution of the internal kink mode and
investigate the possibility of sawtooth generation in 2D helical geometry (i.e. without
3D mode coupling) within a minimal model that allows for self-organization of a
magnetized screw-pinch|51]. These studies are done both within the single-fluid visco-
resistive and the two-fluid incompressible models, thus, for the first time, evaluating

some of the effects of fast two-fluid reconnection on sawtooth dynamics.

1.3 Numerical methods.

The main numerical tool with which we achieve the above described goals is the new
adaptive parallel spectral element macroscopic modeling code SEL|61]. SEL employs
an adaptive implicit time-stepping and adaptive grid techniques with high order C°
spectral element representation|70, 82| of the quantities being evolved in time. These
allow for efficient and precise modeling of systems with disparate spatial and temporal
scales, including those with dispersive waves which are characteristic of the two-fluid
MHD systems.

The code is capable of following very sharp features of the solution in time by con-
centrating the grid where necessary using the harmonic grid generation techniques|93|.
And the adaptive time-step used by the code is limited only by the non-linear dy-

namics of observable changes to the solution. The general flux-source formulation of
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partial differential equations (PDEs) that can be solved by and the modular struc-
ture of the code also allow for a large variety of physical systems to be studied with
SEL without any modifications to the core numerical scheme itself. We take exten-
sive advantage of this feature for solving a number of different PDE systems in the
simulations described below.

As shown in Chapter 2 below, SEL is non-dissipative and has been thoroughly

tested both in linear and non-linear regimes.

1.4 Outline of the Dissertation.

We now briefly outline the content of this Dissertation.

In Chapter 2, we in detail describe the numerical techniques of and both linear
and non-linear verification studies conducted with the SEL code. We conclude that
its accuracy is more than adequate for the long time-integration of strongly non-linear
single and two-fluid MHD simulations it is used for in the later chapters.

In Chapter 3, we qualitatively describe the structure of a reconnection region and
then proceed to model a large scale semi-open tearing unstable magnetic field con-
figuration in the visco-resistive, electron and two-fluid (Hall) MHD systems. Well
known visco-resistive result — slow Sweet-Parker reconnection through a macroscopic
system-size current layer — is reproduced. In electron MHD (EMHD), observed struc-
ture and scalings of characteristic quantities of a microscopic EMHD reconnection
region are shown to agree with the derived qualitative estimates. Width of the elec-
tron current layer is shown to be determined by electron viscosity, not electron inertia,
and observed electron current layer instability is derived and numerically confirmed

to be due to the interaction of electron inertia and frozen-in magnetic field effects,
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not Kelvin-Helmholtz instability of the sheared electron flow, as has been suggested
previously[18].

In Hall MHD, in the semi-collisional regime, the reconnection region is shown to
allow three different solutions: large aspect ratio system-size quasi-resistive reconnec-
tion region, localized X-point microscopic reconnection region, and an intermittent
solution of a plasmoid formation unstable electron current layer embedded within
a system-size reconnection region. The intermittent solution that we find to lie in
between the quasi-resistive and X-point magnetic reconnection configurations is dis-
tinctly different than that recently reported in the literature|33|. Based on these and
other reported two-fluid and collisionless particle simulation results, we propose an
explanation for the numerically observed structure of a two-fluid reconnection region
— 2-scale in the outflow direction and 4-scale in the inflow direction, and a general
principle that determines the dynamics, the structure and the rate of magnetic re-
connection in both collisional and collisionless systems.

In Chapter 4, we study an internal kink unstable helical screw-pinch system in
an incompressible cylindrical tokamak approximation. Ideal and resistive linear and
visco-resistive and Hall MHD non-linear simulations of the ideally unstable internal
kink mode are shown to reproduce the known asymptotic analytical and previous
numerical results. Over a longer time-integration period in driven systems with as-
sumed hollow resistivity profile, sawtooth oscillations and relaxation of the magnetic
field configuration is observed. Relying on similar results in simulations of reversed
field pinches, clear evidence of self-organization of a tokamak-like magnetic field con-
figuration is identified for the first time. Furthermore, for the first time, simulations

of m = 1 sawteeth which exhibit incomplete reconnection of the plasma core and
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maintain ¢ < 1 throughout the cycle are demonstrated.

During both the ideally unstable internal kink and the following sawtooth oscil-
lations, the coupling between the structure of the reconnection region and the global
magnetic field configuration is emphasized and shown to play an important role in
determining the observed reconnection rates. The results are well understood in the
context of the visco-resistive and two-fluid magnetic reconnection simulations de-
scribed in Chapter 3. In particular, during the sawtooth oscillations, presence of the
Hall physics in shown to accelerate the non-linear development of the internal kink
mode, while having little effect on the dynamics and time-scales observed during the
remainder of a sawtooth cycle.

Finally, in Chapter 5, we conclude with a discussion of the results and future

directions of the work described in this Dissertation.
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Chapter 2

Numerical Tool

In this chapter we describe the framework of and some of the milestones achieved
by the macroscopic modeling code SEL employed for all of the numerical simulations
described in this Dissertation. The code has been co-developed by A.H. Glasser of

Los Alamos National Laboratory and V.S. Lukin.

2.1 The SEL Framework

2.1.1 Generalized flux-source formulation.

Here, a generalization of the flux-source formulation|61] of a set of partial differential
equations (PDEs) is presented. The flux-source form allows for solving a large family
of initial and /or boundary value problems describable by appropriate systems of PDEs
within the same SEL framework, while only a minimal effort is necessary to add any
new system of PDEs to be solved by the code. The generalized formulation described
below adds to this capability by allowing for the computation to proceed on a 2D
logically rectangular computational domain of arbitrary shape and curvature, thus

allowing for adaptive grid re-mapping and a wider variety of physical domain shapes.

Any system of coupled PDEs to be evolved in time by SEL has to be expressible
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in the following general flux-source form as some M number of PDEs of M physical
variables {U"(Z)},_, 5, (e.g. density, magnetic flux, etc.):
{Z A’“WjLV-F’“:S’“} (2.1.1)
’L:l,M k:l,M

FF = F*t, 2, {U Y im10, {V2U Vi)
SF = S*(t, 2, AU Yic1ia0, {V2U Vicimr),

where A¥ = AF(Z) | F* and S* are arbitrary functions of the given variables and
Z = (z,y) denotes a two-dimensional point vector in the physical metric space X’ in
which PDEs are expressed. (Such as Cartesian, polar, or helical coordinate systems.)
In order to show how this general form is discretized over any logically rectangular
domain, we consider a single PDE of the form of Eq. (2.1.1) and therefore drop the
superscript k. The extension to any M number of PDEs is straightforward.

In any curvilinear metric space =, an equation of the form of Eq. (2.1.1) can be
expressed as:

oU - oU 0

(JF -V = 78, (2.1.2)

where {£'} = (£, ) are the coordinates of = in which calculations are performed and
J(En) = (2-Va x Vy)(2-VE x Vn)~!is the Jacobian of the transformation from
X to =. (Note, in the equation above and everywhere below we assume the usual
Einstein summation convention.) For the time being, we assume that z = z(£,n) and
y = y(&,n) are known — we come back to this point in Section 2.1.5.

In order to be able to evaluate Eq. (2.1.2), it is necessary to know the coordinate
transformation V¢ = (0€'/0x?)Va?:

RS 23 _On on
V¢ = axVx—f- ayVy, Vn = (%Vx—l— ayVy,
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where expressions (0¢'/0x7) have to be evaluated in Z. In order to do so, we note

that

J == ——= — - _>_1

o0& on  On o€ Ordy Oyox

As a demonstration, we find an expression for (0¢/0x) as a function of (§,7n) and J.

drdy 0xdy _ {8& on 0 87)]_

From
oy __onoc ooy
on dxdn  dyon’
we have:

¢ 43 (87} Ox L on on 83/) 7 (93/ o (85 Ox L% ¢ Gy)

ox Oz \ Ox on  Oyon 877 dxdn  Oydn
o y Mo _ 10y(&n)
= Tl o = o (2.1.3)

Having the coordinate transformations at hand, the rest of the computations are
done in the = metric space. We call = the logical space, as the computational domain
in Z is a square (£,7n) € ([0, 1] x [0,1]) with grid distributed uniformly in £ and 7. A
mappings (M : = — X) then allows the computational domain in the physical space
to have an arbitrary shape and curvature of the grid, as long as its topology can be

reproduced by identifying corresponding edges of a structured square grid.
2.1.2 Spatial discretization.

SEL’s computational domains are spatially discretized using the method of spec-
tral/(hp) elements|70, 82|. High order spectral element (or similarly finite element)
representation combines the flexibility of an adaptable grid that can be shaped to
fit any given physical domain and parallelization by domain decomposition with the
exponential spatial convergence and low artificial wave dispersion of purely spectral
codes. Its basic premise is to have a relatively coarse grid of cells (elements) with sep-

arate high order polynomial expansions within each cell. Thus, each basis function of
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the overall expansion is identically zero in all but one or at most several neighboring
cells. The exact set of basis functions and their coupling across the cell boundaries
can vary. Among the codes presently employed or being developed in the extended
MHD community, M3D-C1 code[76] uses a set of C''-continuous finite elements which
are constrained to be differentiable as well continuous across the cell boundaries, while
NIMROD code[139] uses a set of CP-continuous finite elements which only guarantee
the continuity of the solution, but not of its gradients across the cell boundaries.
The set of basis functions presently implemented in SEL is the C%-continuous set
of spectral elements {A’} given by Jacobi polynomials[1] (See Figure 2.1), where all
but the linear basis functions identically vanish at the cell boundaries. The linear
basis functions are the only ones that provide the continuity of the solution and the
coupling between the cells in each direction. Representation in £ and 7 directions
of the logical grid described above is done separately with the complete basis of
2D functions formed by the set of non-zero Cartesian products of two unidirectional
basis functions o®(&,n) = AY(€)AJ(n). Any physical variable U(t, z(&,n),y(€,m)) is

expanded in o(¢,n) and time-dependent amplitudes u;(t):

U(t, ) = ui(t)a' (€,7)
o [0a0 08 0atan
Ualt, ) = alt) {ag a: oy ax}
o dat 06 0ot On
Uy(t,7) = u;(t) [85 3y + an ay] :
We note that z(£,7n) and y(&,n) can be represented similarly as:

Ov _ 0a'  Ox _ Od
oc —Trog om Ton’

ete.

ZL‘(&, 77) - CCZ‘OZi(f7 77)7

Thus, if at some time ¢y during a simulation it becomes desirable to move the calcu-

lation from a grid in the physical space represented by a mapping (M : Z — X)) to
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Figure 2.1: A one-dimensional illustration of spectral element basis functions A* used

in SEL. Shown are two neighboring cells with Jacobi polynomial {Ai}i:07np:8 basis
functions in each cell: A = (1 —z)/2, A = (1+z)/2, and A’ = (1 — z2) P (2),
for i = 1,n, — 1. In these definitions, z € [—1, 1] is renormalized from z € [z¢ +

ndx, o+ (n+1)dz]. Note that A" from a cell on the left is joined with A° of the cell
on the right to form a single basis function to insure continuity, while all other basis
functions vanish at x = xg + dx.

a new grid represented by a new mapping (M’ = LM : = — X'), where L is some
mapping (£ : E — E); Ul(to, x,y), x(&,n), and y(&,n) would all be remapped in the

Same mamnner.

Finally, Eq. (2.1.2) can be rewritten as:

I
+ (,fn[(F Vx)J +(F v )Jg’ﬂ J8. (2.1.4)

Reformulating the equation in the weak form and defining F,: = F. Vz', we have:

0€ Do L on on 0o’
ox 85 ox 87)

{Mjiu'i = (o/, JAaNi; = /jdfdn [Saj + I, (
J J
F, <8§ da?  On Do

_ _ 1.
5y O¢ + - 9 O )] + boundary = 7 (t, {Uk}k_l,N)} , o (2.1.5)

j=1,N
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where N is the size of the spectral element basis and therefore is the number of degrees
of freedom in this time-dependent vector equation.’

With the derivation above, we have shown how the generalized flux-source formu-
lation allows for advancing spatially discretized set of PDEs in an arbitrary logically
rectangular domain, while the physical equations can be specified in an unrelated co-
ordinate system most convenient for one’s particular application. We note that fluxes
F,, F, and sources S completely specify the physics of any given problem, coordinate
transformation maps z(§,n) and y(&,n) specify its geometry, and with those as input,
Eq. (2.1.5) contains all necessary information about SEL’s spatial discretization to
have the solution advanced in time. Such separation of physics, geometry and solution

algorithm is the key to the structural organization of the SEL code.

2.1.3 Adaptive temporal advance algorithm.

The implicit temporal advance in SEL is generally accomplished by the Newton-
Krylov iterative method|[61]. However, like the rest of the code, the time-advance
module of SEL is designed to be easily modifiable for any number of particular
time-discretization schemes. The principle time-dependent equation to be solved is

Eq. (2.1.5), which can be written as a vector equation:
Mu = r(¢, u). (2.1.6)

Presently, two well known algorithms are implemented to solve Eq. (2.1.6): the ©-
scheme, with an adjustable time-centering parameter 6; and a 2" order backward dif-

ferencing formula (BDF2)[8]. Below, we briefly outline each of the time-discretization

'For a system of M PDEs on a logical grid with n, and n, cells in z- and y-directions, respectively,
and polynomial basis expansion up to the n,-th order, the total number of degrees of freedom is

N:M*nm*ny*ng.
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schemes. We then describe the implementation of the Newton-Krylov iterative ad-

vance itself and the adaptive time-stepping algorithm.
©-scheme:

Equation (2.1.6) is discretized as:

s N
M (T) =0r ("™ u"t) + (1—0)r (t",u"), (2.1.7)
where h = 6t""! = "1 — " is the size of the (n + 1)-st time-step. With 6 = .5,
the ©-scheme is known as the Crank-Nicholson method and is an implicit second
order non-dissipative time-discretizetion method. Unless stated otherwise, all of the
simulation results presented in this Dissertation were computed by advancing PDEs
describing appropriate physical systems with the Crank-Nicholson method. However,
with 6 as a run-time input parameter, both 6 = 0 explicit and # = 1 first order

dissipative implicit methods have been used for purposes of testing the code.

In order to solve Eq. (2.1.7) for u™*! by Newton’s iterations, an initial guess is set

touj ™ = u”, the change in the solution being sought is denoted by du; = u};;' —ul*',
the residual R is defined as
R (u/*!) = Mou; — h [0r (", uf™) 4+ (1 = 0)r (¢",u™)] — 0, (2.1.8)
and the Jacobian of the iteration is defined as
J9 = MY — h { o } . (2.1.9)
du; t=tn+1 u=ur
BDF2 scheme:
Equation (2.1.6) is discretized as:
M (un+1 - a‘;n i bun_1> — (2.1.10)
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where
(0t + oty

“= 5tn (5t + 26tn 1)’

. (5tn+1>2
oot (0t + 20t

h _ 5tn+l <5tn + 5tn+l)

60 + 200 1)
§t" = t" — "1 and §t"t = "1 — " Here, an initial guess is set to ul™! =
n+1l

au™ —bu"!, change in the solution is again du; = ul;!' —u}"", the residual is defined

as

R (u!*") = Méu; — hr (", ul™") — 0, (2.1.11)

and the Jacobian of the iteration is

Ji = M —h{gr } . (2.1.12)
U t=tnt+1l u=un

Like Crank-Nicholson, BDF2 is also a second order time-discretization method. How-

ever, straightforward analysis of Equation (2.1.10) demonstrates that BDF2 damps
high time-frequency modes of the solution, thus providing numerical dissipation in the
algorithm. When using the BDF2 scheme, we resolve the issue of the first time-step
by making the first time-step with the ©-scheme, and then taking the initial condition
and the first time-step as the (n—1)-st and the n-th values of u, respectively. We also
note that Eqs. (2.1.10)-(2.1.12) explicitly allow for §t"* # §t", which is necessary to
have an adaptive time-stepping algorithm.

Using either of the time-discretization schemes described above, time advance is

accomplished by iterating on:

R, +Ju;=0 — du=-J"R, — uil=u/""+0ou,(i=i+1) (2.1.13)
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until the condition 9(R;) < ny, is satisfied, where N is the L2 norm of R; normalized
to Ry and ny,; is a run-time input parameter determining the tolerance of the Newton
iteration convergence. Once the Newton iteration has converged, the solution vector
is advanced by setting u"*! = ul;}.

The above Newton iteration procedure includes a non-trivial step of solving the
matrix J, which is an N x N sparse matrix, where N is the total number of degrees of
freedom. In fact, J describes the exact coupling between each of the degrees of freedom
at time t = t". However, due to the C” nature of the basis functions employed in SEL
(see discussion in Sec. 2.1.2), only “skeletons” representing the linear basis functions
(linear in at least one direction) within each cell are coupled to each other across the
cell boundaries. The so-called static condensation procedure|70, 82| allows to separate
the skeletons from the interiors of the cells and use separate local solves for each of the
cell’s interiors[61]. By doing so, static condensation both greatly reduces the size of
the global matrix to be solved and significantly improves the parallel efficiency of the
code. We note that in order to enable the static condensation algorithm, the matrix
{0r'/0u;} involved in calculating J in both Eq. (2.1.9) and Eq. (2.1.12) has to be
calculated explicitly by taking derivatives of Eq. (2.1.5) with respect to all degrees of
freedom in the system. This is accomplished by specifying the analytical derivatives
of the fluxes F,, F, and sources S with respect to the evolved physical variables U
and their gradient components U, and U,. Though somewhat time-consuming both
in coding and operation of SEL, this method allows for much greater accuracy of the
time-advance algorithm.

The remaining global matrix is solved in parallel using the PETSc libraries|117]

with the linear solvers available and appropriate for any given problem. Choice of
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any particular solver, such as direct LU factorization or the Generalized Minimal
Residual (GMRES) method is made at run-time and requires no modifications to the
code. Local solves are accomplished with LAPACK routines.

We now return to Equation (2.1.13) and consider what happens if a time step
5t"*! taken in Eq. (2.1.7) for ©-scheme or in Eq. (2.1.10) for BDF2 is either unneces-
sarily small, so that Newton iterations converge too quickly, or so large that too many
iterations are necessary for convergence. Run time input parameters newt,,,, and
newt,;, define those limits for each particular simulation run. The automatic adap-
tivity of the time-step is accomplished by decreasing 6" by some fraction fgee. < 1
and recalculating the Jacobian whenever Eq. (2.1.13) has not converged after newt, 4,
Newton iterations. Conversely, 0t" "1 is set to 6t" ! = finer0t”, finer > 1, whenever the
Newton iterations of the previous time-step converged in less than newt,,;, number of
iterations. For iterative linear solvers such as GMRES, the number of GMRES itera-
tions can be an additional factor in determining whether or not to increase/decrease
the time step. As shown elsewhere in this Dissertation, this simple algorithm has
proven to be very robust and useful in modeling systems that have both long peri-
ods of slow and/or linear evolution and bursts of activity with very short non-linear
dynamical time-scales.

Additional performance gain has been achieved by re-evaluating the Jacobian J
only during those time-steps when the number of Newton iterations ity taken during
the previous time-step was equal or greater than newt,,.,.. However, if newt,,,, >

ity > newt,,, the Jacobian matrix used during the previous time-step is re-used
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without being re-evaluated. While allowing for significant gain in performance, par-
ticularly during quasi-linear periods of evolution in any number of non-linear sim-
ulations, this technique does not lead to any deterioration in the accuracy of the

computation.

2.1.4 Formulation of boundary conditions.

As indicated in Eq. (2.1.5), formulation of boundary conditions in SEL is integrated
into the overall flux-source form. All quantities are advanced in time on the boundary
and in the interior of the domain in a single time-step by solving the main system of
PDEs in the interior together with a separate system of PDEs describing the boundary
conditions on the boundary nodes.

Similarly to the flux-source form of interior PDEs (Eq. (2.1.1)), the most general

form of the boundary PDEs is:

_oU ! ,
A% + Bk~ (. VU = GF 2.1.14
{ A }MM (2.1.14)

Sk = 5% (6,2, {UYici,m, {VaU iz, {VazU' Yizim)
where A% = A*(Z), B* = B¥*(%), and S* are arbitrary functions of the given
variables and n denotes an outward unit vector normal to the boundary of the domain.

However, several special boundary condition options are also available. These are:

e Periodic boundary condition: whenever one or more of the physical vari-
ables evolved by the code are periodic in any one direction, their values on
the right/top boundary are identified with the corresponding values on the
left /bottom boundary, while the contribution of the interior PDEs (correspond-
ing to those physical variables) to both boundaries is added together and eval-

uated in place of the boundary PDEs;
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e Polar “r = 0” boundary condition: whenever the logically rectangular grid
is wrapped into a circle in a manner identical to polar coordinates (£ logical di-
rection is quasi-radial and n-direction is quasi-angular periodic) with no interior
boundary in the physical domain, one of the boundaries of the logical domain is
shrunk into a point and no explicit boundary conditions can be specified there.
For such logical boundary, similarly to the periodic boundary, all boundary
nodes are identified with each other and the contribution of the interior PDEs

on those nodes is added together and evaluated in place of the boundary PDEs;

e “Natural” boundary condition: whenever no explicit physical boundary
condition exists for some physical variable, the interior PDE corresponding to
that variable is taken to evaluate it at the boundary, as well. In such case,
special care has to be taken to partially integrate the flux terms of Eq. (2.1.4)
to account for the flux through the boundary of the domain being integrated

over.

2.1.5 Adaptive grid generation and static rezoning algorithm.

There is a number of strategies and approaches that have been attempted to enable
accurate and efficient grid adaptation for solving initial-value problems with multi-

scale spatial behavior. These can be divided into two primary groups:

1. Adaptive mesh refinement (AMR), where parts of the grid with insufficient

resolution are refined by effectively subdividing the existing grid cells|9, 10];

2. Dynamic Arbitrary-Lagrangian-Eulerian (ALE) techniques|72, 75, 83| and/or
variational principle based harmonic grid generation|22, 23, 87|, where an evolv-

ing mapping between some logical grid of a fixed size and the physical domain
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provides the necessary adaptation by concentrating and rarefying the grid ac-

cording to some prescribed rules or functionals.

Algorithms that combine the two approaches above are also beginning to be developed|2].
While each of the methods has its advantages and drawbacks in flexibility, accuracy
and parallel efficiency, we have chosen to pursue a harmonic grid generation method
which appears to be highly accurate, relatively flexible and does not in any way inhibit
the parallel efficiency of the SEL code.

We have collaborated with Liseikin[93] in the development of such grid generation
algorithm capable of finding an optimal mapping M between a logical domain =
and given physical domain X with an available directional spatial convergence error
estimator G(z,y). Higher density of the grid in the physical domain results wherever
maximum norm ||G|| = MAX(G% G") is higher that its average magnitude and
lower density wherever ||G|| is lower that its average magnitude over the full domain,
with additional flexibility introduced by the directional properties of G, as described
below. Our approach has been developed in parallel and in consultation with Chacon

and Lapenta|34].

Static rezoning

The mesh adaptation algorithm we employ is based upon having an initial mapping
M :Z — X, 2%(&7)] from the logical domain to the physical domain of identical topol-
ogy but arbitrary shape. Successive computational mesh transformations amount to
an evolution of mappings, where the generation of each new mapping is triggered
and determined by the spatial discretization error estimator G(z,y) of the spectral
element representation on the logical domain with the existing mapping. (See Fig-

ure 2.2 for sample grids having been generated mid-way through highly non-linear
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Figure 2.2: Examples of automatically generated 2D mappings from a structured
rectangular logical domain (£,7) to physical domains of interest (z,y), where high
density of the grid indicates regions of the physical domain where the solution required
improved resolution.

simulations.) Unlike the ALE approach, where the computational grid is continuously
evolved in time together with the physical variables|72|, so far we have chosen the
so-called static rezoning method, where the main computation is stopped whenever
the measure of the overall spatial discretization error A,,q., defined below, exceeds
some pre-set limit D,,,,. Then, a new mapping is found, and the solutions are inter-
polated using the new mapping before the main computation proceeds. This choice
has been motivated by the relative simplicity of the implementation and efficiency

considerations, alike.?

The initial mapping [M : = — X, 2°(&7)], as well as all of the modified mappings

2For a system of M coupled PDEs in two spatial dimensions, introducing ALE grid adaptation
means effectively increasing the size of the coupled system of PDEs to be solved for every time
step to M + 2. For implicit time advance algorithms, that includes solving large sparse matrices as
described in Section 2.1.3, where CPU time and memory required to find a solution scale with both
the size and the degree of row-to-row coupling of the matrix. Therefore, for systems where necessary
local spatial resolution requirements are expected to change slowly relative to the size of an implicit
time-step, static regrid is preferable to ALE methods whenever computational and accuracy costs
associated with interpolation are small relative to those of the time-advance itself.
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M : 2 — X,2%(£))] and intermediate interpolation mappings [£ : & — Z, &7 (€))] are
represented on the logical domain by the same basis set of high order spectral elements
as the physical variables U. Furthermore, a new mapping is requested whenever
spatial convergence error becomes significant, but before it begins to compromise the
smoothness of the representation with the existing mapping. Thus, the mapping and

interpolation procedures do not compromise the accuracy of the overall computation.
Mesh generation

Each new mapping is generated by solving a set of Beltrami Equations[93| on the

whole computational domain:

V . . v l s

where w(&,n) is a weight function specifying the desired local density of the grid and

(g(f, n)/\/g) is a [2 X 2] symmetric tensor

. < gl gt )
g g2
normalized by its determinant g and designed to determine the shape and curvature

of the desired grid in the physical space. (Solving Equation (2.1.15) is also equivalent

to minimizing a variational
L= 1/ Lo vavédeae,
2 Q w\/§

with respect to £'(£7), where integral is taken over the whole logical domain 2.) We
note that in a two-dimensional space any deformation of an infinitesimally small patch
of space can be decomposed into three distinct operations: expansion/contraction,

area preserving change in aspect ratio, and rotation. In Eqgs. (2.1.15) above, w(&, n) is
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responsible for expansion /contraction of the grid at [x(&,n), y(£,n)], ratio of eigenval-
ues of g(&,n) is responsible for the elongation at [z(&,7n),y(£,n)], and the off-diagonal
term ¢'2(¢,m) = ¢**(€,n) is responsible for rotation of the grid at [z(&,n),y(¢,n)],
relative to the corresponding grid deformations everywhere else in the domain. Since
2(¢7) is known, Egs. (2.1.15) are formulated to be solved for £(&7) with the goal

of finding an improved mapping [M : = — X,27(£")]. However, in order to find
[M : 2 — Z — X, an inverse mapping &7 (€!) has to be known instead. Tt is found by
expressing the divergence in Eqs. (2.1.15) in the new & logical coordinates to derive
the following system of two coupled PDEs to be solved for §j(£~l):

) 1 g 9EL g™
— — -—— | =0, [=1,2 2.1.16
oé (jw NS ) e 2110

where J = Det[0¢7 /0€"] and the derivatives with respect to & are then inverted as
shown in Eq. (2.1.3)[62].

We note that Equations (2.1.16) are already in the flux-source form described in
Section 2.1.1 and can be solved by the core SEL algorithm for given functions w(&, n)

and g(&,n), where £ and 7 are treated as dependent variables.
Spatial convergence error estimator.

Functions w(&,n) and g(&,n) are computed from the directional spatial convergence
error estimator G(z,y) by making direct use of the spectral element representation
described above. Since well resolved spectral element representation of a quantity U
over the grid has the property that the amplitudes u,, corresponding to high order
basis function A™ should fall off exponentially with increasing degree of the basis
function polynomial[82|, monitoring the amplitudes corresponding to the highest or-

der polynomials of a given basis set in each direction relative to the L norm of U,
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provides a good measure of spatial convergence. (For U with spectral element repre-

sentation U(E,n) = umn,A™(§)A"(n), the L? norm of U over a cell ©;; is defined as

U7 = \/IQJ U2(&,m)dédn.) Defining the contribution of the highest order polyno-
mial basis function A” in each logical direction as dU¢(€,n) = up,AY(£)A™(n) and
6U,(&,m) = upm, pA™(E)AF (n), the spatial discretization error of U over €2;; is defined

in each separate direction as

S\ o, 0U2(€ mdgdn

v = —

i G
o, SURE mdgdy

U = e

Maximum of the discretization error over all physical variables is taken in order to
define two directional and a global spatial discretization error in each (i, j) cell: Gt

YRl
G

ij» and d;; = MAX (Gg G;). Finally, cell-by-cell step-function approximation G of

R

the desired directional spatial convergence error estimator G is given by
—_— 5i; \"
||G||ij =l+a (Amaz) ;
_ Gso\’
G =1+a (Ami) : (2.1.17)

) NG
G?jzl—i-a(Am;) ,

where Ay, = MAX(6;;) with maximum taken over all cells of the domain, and «

and p are run-time input parameters to be adjusted to optimize adaptivity for each
particular application®. A continuous and differentiable least squares bicubic spline

fit § of quantities calculated in Eqs. (2.1.17) is then used to generate C'* smooth

3Common ranges for the grid adaptation input parameters are o ~ 0.5 — 1.0, p ~ 0.25 — 0.5.
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G = F(G). Functions w(¢,7n) and g(€,n) necessary to solve the Beltrami harmonic

grid generation system of Equations (2.1.16) are found as:

w = [|Gl[;

gl = G?j

922 = ij
g2 =g =0

Note that in the present formulation only two of the three local degrees of freedom
afforded by Eq. (2.1.15) were put to use. Other formulations allowing for alignment
of the grid lines with or perpendicular to magnetic field lines (see Brackbill[23] and
Glasser et.al.|62]) or for any other desired properties of the computational grid relative

to the solution U at the time of re-mapping make use of the full g tensor.

2.2 Code Verification.

Following the development of a new code to be applied to some of the more challenging
problems in computational plasma physics, such is SEL, we have considered it a
priority to thoroughly verify and validate the accuracy, efficiency and robustness of
its numerical techniques and the code as a whole. Below, we describe some of the

linear and non-linear verification studies SEL has been subjected to.

2.2.1 Complex linear problems with known analytical solu-
tions in reduced MHD.

There is a number of linear problems SEL has been applied to in order to test its

accuracy and efficiency. Linear study of the ideal and resistive internal kink modes
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is described in Section 4.2 of this Dissertation and is not reproduced here. There, it
is shown that superior accuracy in reproducing both the ideal and resistive growth
rates is achieved with the Crank-Nicholson time advance on a strongly non-uniform

grid, thus proving the non-dissipative nature of the SEL formulation.
Resistive tearing mode in reduced MHD.

Another problem that has been considered is that of an incompressible resistive tear-
ing mode in an infinite slab with perfectly conducting outer walls. The usual reduced

resistive MHD equations

0
a—f+v-v¢=ﬁv2¢
2
WH.V(W) =BV (V%) +uV's

with poloidal magnetic field B = 2 x V4 represented by flux function v, poloidal
plasma flow v = 2 X V¢ represented by stream function ¢, resistivity n and viscosity
i have been solved in the [z,y| plane.

Reversed magnetic field layer in the form of the Harris current sheet|66] 1y =
aln[cosh(y/a)] of width o and without plasma flow has been taken as the initial
equilibrium on a computational domain with periodic boundary conditions in the z-
direction at x = +L and perfectly conducting wall boundary conditions — (0v/0t) =
0, ¢ =0, and V?¢ = 0 — in the g-direction at y = +a. A perturbation of the form
51 = ecos [kyx)] exp [—(2y/a)?], with € = 2% 1077 and k, = 7/L has been added to
the equilibrium at ¢ = 0 to initialize the tearing mode. Additionally, a current source
term designed to support the Harris current sheet against resistive decay has been
added to the equations above to exactly preserve the initial equilibrium and viscosity

1 has been set to zero while studying the linear tearing mode problem.
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In the limit of very small resistivity (i.e. width of the resistive layer much smaller
than the width of the current layer), analytical growth rate v of an incompressible
resistive tearing mode v (k,,y) with wave number k, in an infinitely long current
layer described by some magnetic flux function 1y(y) is given by a well known general

dispersion relation[94]:

()
A= _g75/47/1‘/272/4p (@) 7 (2.2.1)
4
where \ = 7 A/?’TR , Ta = 1/(ky¥(],=0) is the poloidal Alfvén time, 7 = (1/n) is
the resistive time and A’ is a characteristic parameter of the tearing mode theory[57]
defined as

A = ‘8(1n Y1) y=0
dy

y=0~—

and found as the solution to the following equation:
02 02
o < LYY *1/11> % x4y, (2.2.2)

subject to appropriate boundary conditions on ¢y as y — 4o0.

It can be shown|94|, that for the Harris equilibrium ty(y) specified above and

lim, .1 %1 =0, the A" parameter is given by

2 1
Al ==
o (ak:x z)

However, in order to directly compare the results of the numerical simulations to

the analytical growth rates given by Eq. (2.2.1), Eq. (2.2.2) has to be solved and
appropriate expression for A’ has to be found when ¢, (k,,y) vanishes at y = +a, as

prescribed by the specified above boundary conditions of the simulations. Fortunately,
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an analytic expression for such A’ also exists and is given by*:

2 (1 ak, — tanh(a/a) tanh(ak,)
( x) ak, tanh(ak,) — tanh(a/a)’

Ba= a \ak,

The growth rates 7. of the tearing modes for varying values of n, L = w/k,,
«a and a obtained from the SEL simulations are summarized and compared to the
analytically predicted values v, given by Eq. (2.2.1) in Table 2.1. Also given, are
the corresponding growth rates 7., obtained from Eq. (2.2.1) for the case of a — 0.
Though SEL simulations were fully non-linear by design and it was only possible to
extract the linear growth rate 7. due to the smallness of the initial perturbation,
remarkable agreement of better than 1% with the analytically predicted growth rate
Yo is evident for all simulation runs with n = 1. * 1075, However, for n > 1. % 1074,
the computed growth rates are observed to be 5-10% lower than the analytically
predicted ones. In light of the superior agreement for smaller 7, the observed lower
growth rates are attributed to the breakdown of the asymptotic approximation of the
resistive width being much much smaller than a. We also note that for L/a 2 2, the
stabilizing effect of the ideal wall at y = +a is at least as strong as that of the finite
width of the resistive layer and is well captured by the SEL results. We therefore

conclude that SEL captures the growth rate of the resistive tearing mode as well (or

better) as one could hope.

2.2.2 Formulation and linear wave tests in Extended MHD.

The following set of Extended MHD equations represents one of the most complex
sets of coupled non-linear PDEs that has been coded into SEL to date.

on
% V-(nve) =0 (2.2.3)

4The analytic expression was found using the Mathematica 5.2 software package.
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la | n | LJa Yo | v | v |
1. | 1.%107% | 12 | 6 [ 3.38%107% | 3.38%107* | 3.80 x10~*
1. | 1.x107% | 16 | 6 [ 3.45%107% [ 347x107% | 4.32x10°%
1. | 1.x107% [ 24 [ 6 [329%10°*]3.32%10°* | 5.03%10°*
1. | 1.x10% [ 32| 6 [3.08%x10°*[3.09%10°* | 5.49% 10~*
1. | 1.%107% | 32 [12]4.67%107* | 4.66+107% | 5.49 % 10~*
1. | 1.x107% | 32 [18[5.20%10°* | 5.23%x10~* | 549 % 10~*
1. | 1.x107% | 32 |24 [ 5.41%10°* | 541%10~* | 549 10~*
1. | 1.%107% | 128 [ 24 [ 4.43%10* | 4.45%10~* | 5.83 % 10~*
1. | 1.«107* | 4 | 5 [ 1.73%1072 | 1.92% 1072 | 1.93% 1073
1. | 1.x107* | 12 | 5 [ 4.46%1073 | 4.62% 1073 | 549 1073
05 | 1.x107* [8/3] 5 | 9.19%1073 | 9.84 %1073 | 9.84 1073
05 | 1.«107* [ 4 | 5 [1.30%x10°2]1.36%1072 | 1.37% 1072
05 | 1.«107* [ 8 | 5 [1.61%x102]1.66%10"2|1.71%1072
025 1.%107* | 8/3 | 5 [ 4.36%1072 | 4.55% 1072 | 4.55 * 1072
05 (25107 [8/3 | 5 | 1.54%1072 | 1.69 %1072 | 1.69 102
05 | 25104 4 | 5 [216%x102[230%10°2[2.30%10°2
05 [25%x107%| 8 | 5 [257%1072]2.65%x1072 | 2.73% 1072
05 [25%x107% | 12 | 5 [2.38%1072 | 247% 1072 | 2.66 % 1072
05 [ 25107 ] 18 | 5 [2.02%1072[2.12%10°2 | 2.39% 1072
05 [25%x107%] 24 | 5 [ 1.74%x1072 [ 1.85% 1072 | 2.14 % 102

Table 2.1: Computed growth rates 7. of the resistive tearing mode for varying values
of the equilibrium current layer width «, resistivity 7, half-wavelength of the mode L
and half-width of the mode a obtained from the SEL simulations and compared to
the analytically predicted values v, and 7. for a mode of half-width a and infinite

width, respectively.

35



: A 1 ; X B
Onvi) + V- (nviv; +1I') = =——Vp; + < (nE PO LR )
ot my; i C
71 ~7 -
_ e MR (2.2.4)
m;o m; n
1 B
dnve) + V- (nveve +11°) = —Vp, — < (nE p e 2 )
ot M Me c
J 71 e\ 2]
+ oen S _TIn [V (73—) ~b} b (2.2.5)
MO Me n

. {%m ~392% [ (2 ] z;}

2 0t 2 m; n
. 3m.
— iV evi—mill: Vv, + (Pe — i) (2.2.6)
m;Te

3 Ope 3 T, De NI
StV {§peve + e K.?l(ve —vi) 325V <E>) -b} b}

3me

= _peV Ve — meHe : VVe + ] (pz - pe)
en 7 De 7
— I (ve—vi)+ Tln [(W —v,) - b] [v (g) .b] (2.2.7)
Vi =0 (2.2.8)
9 4mne 4m
V:A-V(V-A)= . (Ve —vy) = —?J (2.2.9)
10A
E=——— 2.
L (2.2.10)
B=VxA, b=B/B (2.2.11)
: DiTi 1 Ov; DeTe 10v,
I, = —. o+ = II¢, = —. =
. 96 - (sza + 5 83:&) o 73 . (Vvea + 3 8a:a)

where plasma conductivity o = 1.96ne?7./m., electron collision time 7, = 1.1311 %

102(p%? /n5/?)sec and ion collision time 7; = 6.8544  10%(p./? /n/?)sec. The above

two-fluid set of equations includes, among other effect, electron inertia, parallel ther-

mal force, anisotropic ion and electron heat conduction, parallel frictional heat flux,
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and isotropic ion and electron pressure tensors with corresponding temperature and
density dependent coefficients taken to be those derived by Braginskii(1965)[24]. (The
Coulomb logarithm A is taken to be A = 15 in deriving the numerical values given

above.)

Choice of gauge

The particular choice of a gauge made in deriving Eqgs. (2.2.8-2.2.9) above, was as-
sumed in order to be able to exclude from the system one of the dependent vari-
ables, namely ¢, in solving problems where no external electric field is applied at the
boundaries of the computational domain. Below, we show how Eqs. (2.2.8-2.2.9) are
derived from the Maxwell equations and the definitions of E, B in terms of A, ¢ in
Egs. (2.2.10-2.2.11), given an appropriate choice of a gauge.

Assume the following form of Maxwell equations:

V-E =4nmp (2.2.12)
V-B=0 (2.2.13)
10B
E=—— 2.2.14
VX c Ot ( )
10E 4w

B=—4+—4J 2.2.1

VX c Ot + c ( 5)

In considering phenomena much slower than the speed of light, (1/¢)(0E/0t) term
in Eq. (2.2.15) can be ignored and Eq. (2.2.13) justifies the choice of B = V x A.5
Using Egs. (2.2.10-2.2.11), we can rewrite Eq. (2.2.12) and Eq. (2.2.15) as:

19(V - A)
V2+ -2 o
¢ c Ot P
®Note that the approximation (0E/0t) < J in Eq. (2.2.15) leads to the statement of plasma
quasi-neutrality V - J ~ 0, which implies that (0p/0t) ~ 0. Thus, in MHD, neither charge density
nor electric field are explicitly advanced in time, but E-field is calculated from the generalized Ohm’s
Law and “effective charge density” can then be computed from Eq. (2.2.12).
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VA -V(V-A)= —%TJ, (2.2.16)

where we still have the freedom of transforming A and ¢ according to:

A—A'=A+VA

10A

0T =0

for arbitrary A(t,x) without modifying B and E.
We now note that by choosing A in such a way as to make V2¢' = 0, Egs. (2.2.16)

can be rewritten as follows:

V2(¢_18_A) — V2¢/:O:

c ot
10[V - (A + VA)] 19(V - AY)
= = —Agp =22 2y
c ot i ot P
4
VA —V(V-A) = —%J

It is these A’ and ¢’ that are the independent variables in Eqgs. (2.2.3-2.2.11). Fur-
thermore, we observe that the combination of Egs. (2.2.4-2.2.5) provide the means to

evaluate the “effective charge density” p in the plasma.
Energy Conservation

Below, we show that Eqs. (2.2.3-2.2.11) conserve total energy. We define total energy

as:

minv?+menv§+3 +3 +BZ
2 2 Tl TRl T g

£

(Note that since E and B are both presumed to be order one and (Ey/By) =
(va/c) => (E?/B?) = (va/c)* < 1, we ignore the (E?/87) term in the definition

of £, which is also consistent with ignoring the displacement current in Eq. (2.2.15).)
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From Egs. (2.2.3-2.2.5), the change in kinetic energy Ex = (m;nv? + menv?)/2 is:
0K m;nu? Menv> 4
Ky, iy c —mevs - (V- ITF) — (V- II¢
T v ( 5 Vi + 5 Ve myv; - (V ) —meve - (V )
J? - ~
Vi - Vpi = Ve Vpe — — + E-J+ .7TIn|[VT, - b][(v; — V) - b].
o

(2.2.6-2.2.7), the change in thermal energy Er = 3(p; + pe)/2 is:

From Eqgs.
a(c;T o 3 DiTi 7\ 7 PeTe 7\ 7
= = -V [§(pivi+peve) ~3.90 (vn : b) h— 320" (VTe - b) b]

piV Vi — pV - ve — mII' : Vv, — m ¢ : Vv,
J? - -
+ — +.71T.b- V[n(v; — v.) - b].
o
And from Egs. (2.2.10-2.2.11), the change in magnetic energy £y = B?/8 is:

8€M C

Finally, putting them all together, we have:

o€ minuv? menv? 5
- + V- vi+ Ve + 5 (PiVi + peve)
2 2 2
b

ot
+ myv; - TP+ myv, - 11 + 4iE x B+ .71pel; [(Ve —v;) - A]
T

_ 3ol (Vﬂ : 6) b — 320 (VTe . zS) 13} —0,

Me

my

where

Frg = m;v; - I+ MV * He,

Fre = Tlpd [(ve ) 13} _3.987 (Vﬂ : 13) b— 320 (VTe : 13) b
my; Me

are kinetic, thermal, electro-magnetic, frictional heat and parallel heat conduction

fluxes, respectively.
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Normalization and flux-source form

The system of Eqs. (2.2.3-2.2.11) can be normalized by setting V = (1/L)V, 8/t =
(1/74)0/0%, Vo = vaVq, where vg = Lo /74, n = i, B = BB, where B = v4y/Amm;n,
A = BLyA, E = (Bua/c)E, ¢ = (BuaLg/c)o, and p, = miiv?pa.

Dropping hats for normalized quantities, substituting for E and B from Eqgs. (2.2.10-
2.2.11), combining Eq. (2.2.4) and Eq. (2.2.5), and defining € = m./m;, d; = (¢/wy;)/Lo =
(cmi/eLoy/Ammin), ke = €747 = (2.226 % 100774 /L3)(n5/2 /p2/%), and k; = 74/7; =

(6.7444 % 1011ﬁ7ﬁ/Lg)(n5/2/p3/2), the normalized Egs. (2.2.3-2.2.11) are equivalent to:

(2

on

5 +V-(nv)=0 (2.2.17)
O(€nvea + nvia) + V- [(Pz +pe) &+ nvi—m}m + env, [Wea + 1T + He]
ot n n
nv; — NV 0A
= ! . — VA 2.2.1
di <axoc V a) ( 8)

O(enveq — nAL/d;)
ot

ex 1
+ V. {ped + env, MWea d—nveAa + He}
n i

n O0¢ nv, OA Ke
Eaxa o . 0z, + 1.96
— 71 [(Vpe - %w) : 13] ba (2.2.19)

(NViq — NVeq)

2 B 208 (g P i)
2n n

_ Vp, — 1T, - [V(nvm) — Wi Vn] + 3k (pe — pi) (2:2.20)

n

288];6 + V- {@&nve — %Zﬁ [(Vpe — %Vn) l;} b+ .71% [(nve —nv;) - ZA)} l;}
— n;fe - Vpe + 3ke(ps — pe) — %Hg : [V(nvea) — m:a Vn]

Ke |nve —nvyl?

1.96 n

+ e [(nve —nv;) - ZA)} [(Vpe - %Vn) : I;] (2.2.21)
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Vi =0 (2.2.22)

NUeq — NVjq

V- [VA, = (V- A)a) = e,

(2.2.23)

where

7/\/8141 0A; B 0A; 0A,,
— Caby ox 0%y, 0Ty, Oy Oy

Y  MWia 19(nv;) 1lnv; On
I, = '96n/<ai [V(nvm) . Vn + 3 0. 30 Du
€Pe NVeq 1 (9(nve) 1nv, On

¢ = —. — Z
@ 73n/<;e {V(nvea) n v+ 3 0r, 3 n Oz,

In the particular two-fluid extended MHD formulation described in this Section, Equa-
tions (2.2.17-2.2.23) represent thirteen equations advanced by SEL in time in order to
evolve the following thirteen primary variables: plasma density n, three components
of ion momentum nwv,,, three components of electron momentum nv.,, ion pressure
pi, electron pressure p,., electrostatic potential ¢, and three components of the vector
potential A,. As presented, the equations are already in the flux-source form required

by the code and are therefore coded-in exactly as shown above.
Linearization

In order to conduct linear wave tests of the SEL implementation of Egs. (2.2.17-
2.2.23), the dispersion relation and eigenmodes of the system in a uniform magnetized
medium have been found. Eqs. (2.2.17-2.2.23) have been linearized assuming equi-
librium of the form: By = By (i.e. Ag = Agyz), ng > 0, pio = peo = po > 0, Viop =
Veo = 0, ¢ = 0; and the perturbation is of the form: u; = @ expli(kjz + ki y — Qt)].

Figure 2.3 shows real and imaginary parts of three branches of the dispersion
relation derived from linearized Eqs. (2.2.17-2.2.23) for = = 5 % 10" em™ Ly =

10 em, 74 = 4 % 1078 sec,ng = 1, and py = 107%, for which the real part w of
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Figure 2.3: Real and imaginary parts of three branches of the dispersion relation
derived from linearized Eqs. (2.2.17-2.2.23) for the following parameters: n = 5 %
108 em™2, Lo = 10 em, 74 = 4% 1078 sec,ng = 1,pg = 107*, By = 1,k, = 1. Note,
the three branches shown are the ones for which the real part w of Q = w + i is
positive.
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) = w + 47 is positive. Several things should be noted in Figure 2.3. It is easily
observed that for all three waves damping () relatively quickly becomes as large (or
larger) as the real part of (2. However, upon inspecting the dispersion relation with
all of the dissipation coefficients “turned oft”, one can quickly identify the three panels
shown in all four figures as the slow magnetosonic (sound) wave, the modified shear
Alfven wave and the modified fast magnetosonic (compressional Alfven) waves, from
top to bottom, respectively. (Since plasma beta 3 = 2 % py/B2 is taken to be much
smaller than unity, the names given for the waves in parenthesis are in the limit of
B —0)

The “modified” in the names above refers to the dispersion relation modifications
due to the two-fluid effects. In particular, the modified shear Alfven wave is observed
to asymptote to some wy;; as k| — oo, which is explained by the fact that in the
two-fluid regime the shear Alfven wave is supported mostly by the motion of ions
(not electrons), whose inertia does not allow them to develop w higher than some
wyr1. Similarly, in the two-fluid regime, the compressional Alfven wave is observed
to transform into the Whistler wave where w ~ kzﬁ for & < 50 and also asymptotes
to some wye > wyn as k| > oo. It is interesting to note that wye/win = m;/me,
which confirms that the upper limit on the frequency of Whistler waves is set by the

effects of electron inertia.b
Implementation and Quasi-Linear Test Results

When the system of linearized Eqs. (2.2.17-2.2.23) is solved for €2 in terms of kj,

k1, By, ng, po and given normalization quantities Ly, v4, 7, eight non-zero roots are

6See the dispersion relation, Eq. 3.3.2, and follow up comments in the investigation of the electron
MHD system in Section 3.3 below.
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found.” Of these, for moderate parameter values, six roots form three pairs of waves
with both real and imaginary non-zero parts ¢ = £wi23 — i7123 The other
two roots have purely negative imaginary roots €27g = —i745 and represent purely
decaying perturbations.

In order to test SEL, for each §2;, corresponding set of complex eigenmodes is found
and coded up as an initial condition with the perturbation amplitude of 1073, Tt is
important to note that since the full non-linear system of equations is used to compute
these linear waves in the code, in order to test the total energy conservation, both
the equilibrium and the perturbation must be evolved together as a single quantity
for plasma density and pressures, while the uniform equilibrium magnetic field can
be added to the Eqgs. (2.2.17-2.2.23) and is therefore not a part of the evolved set
of variables. The waves are set up in a doubly periodic box [0, L,| x [0, L,], where
L, = 2n/kj and L, = 2m/k, on a 6 x 6 spectral element grid with the 5th order
polynomial expansion in each grid cell. Each computation is performed for 20 full
wave periods with a fixed time-step dt = (27/w)/50, that is with 50 time-steps per
period for a total of 1000 time steps.

The following set of plasma parameters has been chosen for these linear wave
tests: =5 x 103 em ™3, Ly = 10 em, 74 = 4 x 1078 sec. The resulting dimensionless
parameters are: d; = .322, k; = 8.633 % 10-8(nl/? /p2/%), k. = 2.849 % 10~°(n]/? /p/?).
The results of the SEL runs are summarized in Table 2.2, where all of the presented
data was produced with By = 1, ng = 1 and py = 10~%. Here, only the results for
linear modes with non-zero real and imaginary parts of €} are given. In examining

the data shown in Table 2.2, it should be noted that for both sets of parameters, the

"The system of equations has no analytical solution and is solved numerically using Mathematica
5 software package.
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Ry | ko Q=w—1vy dx/L, Ye 0E/E ity | itx
1.75% 1073 —46.51 %« 10°% | 221 %« 107* [ 6.17*107* [ 25%x107° [ 1-2 | 1
1] 11999%x102—-46.46%x10*[ 131102 [637«10°*[7.0«10%] 2 | 1
1.01 —i8.32 % 107* 1601073 [ 828107 * [ 391077 [ 23| 1
1.81 %1072 —48.77%107° | 1.24% 1073 | 859% 107> | 1.6 %1072 | 1-2 | 1
1.1 1999%x102—4i1.28+ 10 [ 1.31% 1072 [ 1.26%x107° | 2.8 %1077 | 2 1
142%x 1077 —41.46%107° | 1.28 %1073 [ 1.44%10°° [ 4.2% 1077 [ 2 1

Table 2.2: Results from non-linear propagation of eigenmodes of the system of PDEs
given by Egs. (2.2.17-2.2.23) and linearized in uniform magnetized medium. Here,
dx/L, is a measure of the phase-shift of a wave over 50 time steps (one analytically
calculated wave period); 7. is the wave damping rate calculated from the magnetic
energy decay rate; 6€/E is a ratio of the variation of the total energy to the total
energy (minus BZ2/2, where By is not a part of the evolved set of variables); ity is the
number of Newton iterations per time step; and itx is the number of Krylov iterations
per Newton iteration.

first mode has both the slowest real frequency and the greatest v/w ratio. In fact,
in both cases the ratio is big enough, so that the mode begins to decay non-linearly
within the first couple wave periods. Therefore, for those runs, the damping rate was
measured at the very beginning of a run.

In all cases, the conservation of total energy is shown to be remarkably good,
with energy variation € being less than 1/10° of total energy and less than 1% of
the maximum individual energy variation. With a single calculation of the system’s
Jacobian required to take all 1000 time-steps and a very low number of both Newton
and Krylov iterations per time-step, it is clear that the semi-analytically calculated
eigenmodes of the linearized system of Eqgs. (2.2.17-2.2.23) are, in fact, also those of
the numerical system coded up in SEL. The phase shift 0x/L, of the numerically

advanced wave is shown to be ~ 0.1% of the period and numerical damping rate to

be within better than 2.5% in all cases except when v/w ~ 1.
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nr | ny | np ot ity | itx | Ny | Run time (sec)
12 | 12| 5 | 4.09176e-2 | 2-3 | 4-5 | 1 6.102 % 102
12 | 12| 5 | 8.18352e-2 | 3-4 | 4-5 | 1 6.556 * 107
12 | 12 | 5 1.6367e-1 | 3-4 | 5 1 7.286 % 102
12 |12 | 5 3.2734e-1 | 3-6 | 5-6 | 6 1.144 % 103
12 |12 | 5 6.5468e-1 | 4-8 | 5-7 | 13 1.665 * 10°

Table 2.3: Results from a test of the SEL’s implicit Newton-Krylov time-advance
algorithm. Linear combination of the system’s eigenmodes is propagated for 100
time-steps. |nx,ny,np| is the size of the logical grid; dt is the time step used; ity
and ity are the number of Newton iterations per time step and Krylov iterations per
Newton iteration, respectively; N; is the number of Jacobian calculations during the
run; Run time — total clock-time used by the run, including the start-up and I0.

Thus, we again conclude that the accuracy of the SEL code is more than satisfac-

tory even while advancing a set of equations as complex as Eqs. (2.2.17-2.2.23).
Nonlinear Newton-Krylov Solver Testing

Tests of the efficiency of the implicit Newton-Krylov solver used in SEL have been
conducted by means of running the following initial configuration with the ©-scheme
with 0 = .6 (see Eq. (2.1.7)), while scanning through several different fixed computa-

tional time steps.

3

b

The initial configuration consists of the equilibrium quantities: 7 = 5% 10 em™
Lo=10cm, 74 = 4% 1078 sec, ng = 1, pg = 10~*, By = 1, and a perturbation, which
is the sum of all three w > 0 modes computed for that equilibrium with &£, =k =1
and the perturbation amplitude of 4% 10~2 for each of the modes. (That is, the initial
condition is Uipit = Uequir + € * Uy + € * U + € * uz, Wwhere € = 4 1072.) All simulations
were conducted on 36 processors in a doubly periodic box [0,2L,] x [0,2L,], where
L, = 2n/kj and L, = 27 /k,, and were run for 100 fixed time steps, independent of

the size of the time step.
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Table 2.3 presents the results of these scans. There, 6t = 4.09176 * 1072 used in
the top row, is 1/100™ of the period of the fastest linear wave calculated to exist in
the given equilibrium. The Newton iterative solver is considered to have converged
when every component of the normalized residual is more than 10%*th times smaller
than its value before the first iteration (or is less than 1071°). Similarly, the Krylov
solver is considered to have converged when every component of the matrix-vector
equation agrees to within 10710 of its initial value. Note that for this initial condition,
which includes equal magnitudes of all three waves present in the system, once the
time-step becomes appreciable in comparison to the period of the fastest of the waves,
that wave is numerically damped within first few time-steps. That is exactly what
should be expected of an implicit ©-scheme with § > 1/2. The code then proceeds
to propagate the remaining wave(s) in a semi-linear fashion.

The benefits of the implicit time-stepping are apparent when comparing the total
run times to the sizes of the time-step 0t taken. While each next line of Table 2.3
shows a run with its time-step doubled, the total run-time is shown to increase by
only ~ 10 — 45%, with the greatest increase coming from the necessity to frequently

recalculate the Jacobian matrix due to the increased size of the time-steps.

2.2.3 Study of accuracy and efficiency of the static rezoning
algorithm.

We have systematically evaluated the benefits and potential drawbacks of the static

rezoning algorithm described in Section 2.1.5 using the reduced MHD systems of equa-

tions and somewhat modified tearing mode problem set-up described in Section 2.2.1.

In particular, the initial equilibrium has been modified to include reversed flow profile
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given by ¢g = M1y = Maln[cosh(y/a)], where M is the Mach number of the equi-
librium flow. The following initial condition and plasma parameters were considered:
resistivity n = 1074, viscosity p = 1074, half-period of the perturbed tearing mode
L = 2, width of the equilibrium current and flow shearing layers o = .2, half-distance
between the two perfectly conducting walls bounding the current layer a = .5, mag-
nitude of the initial perturbation € = 10, and Mach number of the equilibrium flow
M = .5. This problem set-up was also considered by Glasser et. al.[61] for initial
linear and non-linear testing of the SEL code on a fixed uniform grid.

Several runs of the code with and without adaptive grid capability and with dif-
ferent sizes of the logical grid have been completed. Each time, the code was run with
the same pre-fixed time-step size and the same number of time-steps. The final state
of the simulations is one of non-linear saturation of the tearing mode with a single
large magnetic island occupying most of the domain. Figure 2.4 shows zoomed-in
contour plots of the final state of vorticity w = V2¢ and plasma current j = V21
from three different simulation runs. Panels (a,b) show the final state of a simu-
lation conducted on a fixed, uniformly distributed (in physical space) grid of size
[ne, ny, np) = [6, 16, 12], where ng, n,, and n, are number of cells in {-direction, num-
ber of cells in n-direction, and polynomial order of each cell in each direction of the
logical grid, respectively. It is apparent that the uniform grid of the given size does
not adequately resolve either the X-point or separatrices around it, as numerical noise
is easily observed in the panels (a,b) of Figure 2.4. Panels (c¢,d) show the final state
of a run completed on a smaller logical grid with [n¢, n,,n,] = [6,16,10], but with
the adaptive grid feature turned on. The initial logical-to-physical grid mapping used

in this second run was also uniform. It is easily observed that none of the numerical
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noise present in panels (a,b) is there when grid adaptivity is turned on. Panels (e,f)
demonstrate the final state of a run completed on a yet smaller logical grid with
[ng, ny, ny) = [6,16,8] and the grid adaptivity turned on. Though marginally noisier
than panels (c,d), the final state achieved on this smallest adaptive grid is still much
cleaner than the one calculated on a fixed uniform grid of more than twice its size.®

Time evolution of the measure of the spatial discretization error A,,,, defined in
Section 2.1.5 is shown in Figure 2.5 for several simulation runs with varied polynomial
order n,, but the same number of cells [ng, n,| = [6, 16] of the logical grid. It is shown
that the simulation run with fixed uniform grid and n, = 12 has steadily increasing
Apar with the final value significantly exceeding that of the simulations with grid
adaptivity enabled. On the other hand, the simulations with adaptive grid and lower
n, value are shown to have significant decreases in A,,,, each time the maximum
allowed spatial discretization error D,,q, ~ 1.%1072 — 1.5 % 1072 is reached and a new
mapping between the logical and physical spaces is generated.

The code’s overall performance improvement due to grid adaptivity has been quan-
titatively evaluated by defining efficacy € of the algorithm as € = 1/(cpu time*A,,4.),
with A,,.. taken to be that of the final state. Table 2.4 presents the results for all
five simulation runs shown in Figure 2.5. Due to the varied size of the logical grid
used in these simulations, a different number of processors was used for different runs.
(More processors were used for larger problem sizes.) However, the number of pro-
cessors for each simulation run was chosen such that the amount of memory used per

processor was kept approximately constant at &~ 40 — 50% of the memory available

8Since each cell is expanded in n, polynomials in each direction, increase from n, = 8 to n, = 12
constitutes an increase of the total number of degrees of freedom in 2.25 times. Furthermore, due
to the exponential spatial convergence of the spectral element representation, an actual increase in
resolution that comes from increasing n,, is presumed to be significantly greater than that.

49



0.2
0.2

0.0
0.0

=02
=02

Figure 2.4: Zoomed-in contour plots of the final state of vorticity w = V?¢ (panels
a,c,f) and plasma current j = V%) (panels b,d,e) from three simulation runs con-
ducted on logical grids of different size and with /without grid adaptivity are shown.
Final state on a fixed, uniform grid with [ng,n,,n,] = [6, 16, 12] is shown in panels
(a,b); final state on adaptive grid with [ng, n,,n,] = [6,16,10] is shown in panels
(c,d); and final state on adaptive grid with [ng, n,, n,] = [6, 16, 8] is shown in panels

(e,f).
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Figure 2.5: Time evolution of the measure of the spatial discretization error A,
from several simulation runs of non-linear tearing mode is shown. All simulations
were conducted on logical grids with the same number of cells [ng, n,] = [6,16] but
varied polynomial order n,. For the simulations with adaptive grid, the maximum
allowed spatial discretization error was Diee ~ 1. % 1073 — 1.5 % 1073.
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ny cpu time Aoz efficacy | # of regrids | % of cpu time
€ for adaptivity

12 | 8.784 % 10* sec | 4.11 %1073 | 2.77% 1073 | fixed grid 0

11 | 8.774 % 10% sec | 4.69 % 107* | 2.43 % 102 3 7.4%

10 | 3.544 * 10* sec | 9.26  10~* | 3.04 * 1072 3 7.8%

9 | 2490 * 10* sec | 1.01 1072 | 3.97 % 1072 4 11.3%

8 | 1.696 * 10* sec | 1.53 %1072 | 3.85 % 1072 5 14.7%

Table 2.4: Quantitative evaluation of the performance of the adaptive re-gridding
algorithm on the non-linear tearing mode problem run from linear phase through
non-linear evolution to saturation.

per processor. Examining Table 2.4, it is apparent that the grid adaptivity not only
improves the spatial resolution and therefore the precision of the computation, but
can also decrease the amount of memory and time taken up by any given simulation.
It should be noted that for any given problem, there exists a minimum size of the
required logical grid. Furthermore, when such minimum size is approached, the over-
head due to increasing frequency of grid re-mappings can overtake the benefits of the

present adaptive grid algorithm.”

2.2.4 Verification of SEL against other non-linear numerical
simulations.

We have completed a number of non-linear studies in order to verify the accuracy

of SEL over long periods of time-integration both with and without making use of

adaptive temporal and spatial algorithms available in the code. These include both

detailed reproductions of numerical results that have been published prior to the

application of SEL to these problems and simultaneous collaborative numerical studies

9We also point out that the overhead due to grid adaptivity becomes smaller and smaller as a
fraction of total run-time, as the complexity of the physical equations and number of dependent
variables M increases.
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conducted for the sole purpose of cross-code verification. The physical phenomenon
of choice for the SEL verification studies has been magnetic reconnection. Besides
the obvious motivation of interest in the physical phenomenon itself (particularly so
by V.S. Lukin), magnetic reconnection was chosen as a test problem because it can
provide arbitrarily challenging conditions for numerical codes both in terms of spatial

and temporal scales involved in a single non-linear computation.
Verification against existing published results.

Making use of the flexible flux-source form of PDEs that can be evolved by SEL, the
code has been tested with several different physical models. In collaboration with L.
Chacon of LANL, reduced visco-resistive set of MHD equations (see Section 2.2.1)
was used to simulate the problem of magnetic island coalescence in order to reproduce
and cross-verify results subsequently published by Knoll and Chacén|86]. The SEL
simulations were conducted using the full adaptive re-gridding and time-stepping
capabilities and the results matched in detail those shown in Ref. [86].

By adding electron inertia effects to the reduced visco-resistive MHD (see Ref. [110]
for analysis and justification of such physical model), the numerical results on colli-
sionless reconnection in a regime dominated by electron inertia effects by Ottaviani
and Porcelli [109, 110] have also been reproduced. These doubly periodic simulations
of non-linear evolution of a tearing mode were conducted on a fixed but strongly
non-uniform grid and with a fixed time-step size. Plasma parameters and magnetic
equilibrium identical to those used by Ottaviani and Porcelli [109] were also used in
the SEL simulations, however the precise form and magnitude of the perturbation
was not known and therefore the time of the onset of non-linear regime could not be

verified. Sample contour plots of modified poloidal magnetic flux F = (1 — d?V?)4,
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Figure 2.6: Sample contour plots of (a) modified poloidal magnetic flux F' = (1 —
d?V?)y and (b) plasma current J = V%) from a doubly periodic simulation of non-
linear collisionless reconnection (@ =n = 0, d. = .25) reproducing simulation results
by Ottaviani and Porcelli [109, 110|. The quantities are shown at ¢t = 170.
where d, is the electron skin depth d?> = (m./nee?) and B = 2 x Vi, and plasma
current J = V%) for a simulation with y = 7 = 0 and d, = .25 are shown in Fig-
ure 2.6 and can be qualitatively compared with those of Figure 3 of Ottaviani and
Porcelli [109].

The model has been further extended by adding the effects of parallel electron
compressibility (and, correspondingly, perpendicular ion compressibility) in order to

verify SEL against the simulation results by Cafaro et.al.[29]. In this model, the

evolution equations are

1 1 e dJ
E+-vxB = nJ— —Vp, + =2
c noeé noe? dt
0 1
m;ng [8_: + (v V)V:| = EJ x B — Vp; + uV3v,

where plasma is assumed to be incompressible with density ng constant and uniform
and plasma flow velocity represented as v = 2 x V¢ with some stream function ¢.

Using the total momentum equation and the quasi-neutrality condition (V -J = 0),
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it can be shown that in an appropriate limit of large out-of-plane magnetic field
and non-negligible plasma pressure, the term (1/n¢e)Vp, in the Ohm’s Law can be
approximated to first order by p?z - Vw x V1), where the so-called ion sound radius
ps is defined as p? = (T./mw?), vorticity w = 2-V x v = V2¢, and 1 is the poloidal
magnetic flux. Then, by taking the Z-projection of curl of the first (total momentum)

equation and normalizing the equations appropriately, the following set of equations

results:
oF
o T [0, F] = pilw,¢] +nV?)
Oow 1 9
E—i_[(baw] - d_g[waF]—i_/l’v w,

where [A,B] = 2- VA x VB and F = (1 — d?V?)1.

It is well known|53, 94| that the inclusion of finite electron compressibility effects
into a reduced MHD system, as in the equations above, introduces a new scale (p;)
and modifies the dispersion relation in such a way as to bring in dispersive kinetic
Alfvén waves into the system. As discussed elsewhere in this Dissertation, these effects
serve to dramatically increase reconnection rate by shortening the current sheet and
opening up the outflow part of a reconnection region.

Figure 2.7 shows sample contour plots of modified poloidal magnetic flux F' and
plasma current J from a doubly periodic simulation of non-linear evolution of a tearing
mode qualitatively reproducing the result of Cafaro, et.al.[29]. (Compare to Figure 1
of Ref. [29]). These results were obtained on a fixed but strongly non-uniform grid,
with a constant time-step size, and plasma parameters of u = n = 1074, d. = .25 and
ps = .75.

Since the initial condition for simulations with and without the electron compress-

ibility effects described above are identical, it is worth comparing the corresponding
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Figure 2.7: Sample contour plots of (a) modified poloidal magnetic flux F' and (b)
plasma current J from a doubly periodic simulation of non-linear semi-collisional
reconnection (u=mn=10"* d. = .25, p, = .75), qualitatively reproducing simulation
results by Cafaro, et. al. [29]. The quantities are shown at ¢ = 31.2 and only the
central part of the full domain in the z-direction is included.
panels of Figure 2.6 and Figure 2.7. It is apparent that, as expected, in the simulation
with ps # 0 the current sheet is significantly shortened and the reconnection region is
transformed from an elongated Y-shape layer to an open X-point like configuration.
Further verification of the SEL code has been conducted with the reduced four-
field model[40, 52, 53|. Under the assumption of incompressibility and constant and

uniform density, the following set of equations in the flux-source form has been im-

plemented in SEL:

38_1? + V- [z x Vo, —nV —dip. VW] =d;2- Vi x VZ
0z R .
5 +V - - [Z22x V¢ — W2 x Vp —nVZ + dijseVwe] =0
8wi ~ 1 ~
g TV w2 X Vo — (Wi = We)2 % Vi = V(puiw; + prewe) | =0
oW, R .
BN + V- Wiz x V¢, = V(uW; + uWe)| = 2-Vp x VZ

VA(dVY) =W, =We, w; =V-(V¢y), we=V-(d;VZ+V),
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where B = 2x Vo +22Z, v, = 2x Vo, +:2W;, v. = v;—d;J, d; = (¢/wpi)/ Lo is the ion
skin depth normalized to the unit length Lg, and n, u;, p. are resistivity, ion viscos-
ity and electron viscosity, respectively. We note that the four-field equations above
include separate ion and electron flow velocities, thus providing a two-fluid plasma
description. As a result, another dispersive (Whistler) wave enters the dispersion
relation of the four-field model in a uniform magnetized medium.

Two different published results were reproduced with the SEL code using this
model. Doubly periodic domain with fixed and uniform computational grid and fixed
time-step was used to verify SEL against numerical simulation results of magnetic
merging by Craig, et. al.[40] (not shown). A more challenging numerical prob-
lem of forced magnetic reconnection driven by boundary perturbations, the so-called
Taylor problem, was considered by Fitzpatrick[52]. Some of the results obtained
by Fitzpatrick[52] were quantitatively and in detail reproduced using SEL (see Fig-
ure 2.8) on a fixed non-uniform grid and making effective use of the adaptive time-

advance algorithm.
Dedicated cross-code verification studies.

A series of numerical simulations has been performed with the SEL code as a part of
the joint cross-code verification effort by several initial-value macroscopic modeling
codes (including M3D-C1[76], NIMROD|139], JENK-FD|[125]). The so-called GEM
reconnection challenge[13], initially defined to study non-linear evolution of the tear-
ing mode in different collisionality regimes, has been taken as a standard 2D problem
set-up for extended MHD code verification.

This problem has been addressed within both compressible resistive and Hall

MHD models. Within a single-fluid approximation, the following system of energy
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Figure 2.8: Time trace of the reconnection rate from two SEL simulations overlaid
on top of the results obtained by Fitzpatrick (adapted from Fig. 1 of Ref.[52]) in
simulations of forced magnetic reconnection driven by boundary perturbations. The
model, initial, and boundary conditions of SEL simulations exactly reproduce those of
Fitzpatrick|52|. Dissipation parameters for both SEL runs are: n = 1074, p; = 1078,
and p, = 10710,

conserving compressible visco-resistive MHD equations has been evolved:

dp

E—FV‘(/)V):O
Opvg B2\ . ov\]
5 ‘|‘V-{,OVUOH‘(P‘F?)CY—BBa—M(VUa‘Fa—a)}—07 a € {x,y}
1

—@+V~<va—mVT):v~Vp+nJ2+u(Vv+VvT):Vv
vy—10t v—1

0 .

%V Ve =2V xB,

where resistivity 7, plasma viscosity u, and isotropic heat conductivity x are nor-
malized diffusion coefficients, p = pT, B = 2 x V¢, J = V¥, v = 0,2 + v,9, and
out-of-plane Z-components of magnetic field and plasma flow are assumed to be zero
at t = 0 and therefore decouple from the above system of equations. Adiabatic equa-

tion of state with v = 5/3 has been assumed. Harris current sheet equilibrium|66]
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Figure 2.9: Time traces of the kinetic energy from four different codes JENK-FD|125],
M3D-C1[76|, SEL|61], NIMROD|139] solving identical GEM reconnection problems
[13] within visco-resistive MHD for two values of normalized viscosity (a) u = 5% 1072
and (b) 1= 5% 10"% All other normalized equilibrium and plasma parameters have
been taken as: L, =25.6, L, =128, A=.5,p, = .2, n=5%10"% and k = 2% 1072
defined by 19 = —X1n[cosh(y/\)], po = 1/2cosh?(y/A\) + py of width A, background
pressure p,, uniform temperature 7y = 1/2, and additional large magnetic field per-
turbation 0v = 0.1cos(2mx/L,) cos(my/Ly) have been taken as the initial condition
on a rectangular domain (z,y) € [—L,/2, L,/2] x [-L,/2, L, /2] with perfectly con-
ducting, perfect slip, zero temperature gradient walls on g-boundaries and periodic
b.c. in the Z-direction.

Using the symmetry of the problem, SEL simulations have been conducted on a
quarter domain (z,y) € [0, L, /2] x [0, L, /2] using the full temporal and spatial adap-
tive capability of the code. Figure 2.9 shows the time-traces of total kinetic energy
integrated over the full domain for four different MHD codes solving the identical
problem outlined above for two different values of normalized viscosity pu = 5 * 1072
(panel a) and g = 5% 107" (panel b), with all other normalized equilibrium and
plasma parameters taken to be: L, = 25.6, L, = 12.8, A= .5, p, = .2, 7 =5 1073

and k = 2% 1072, Remarkable agreement among all four codes, with only the JENK-
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FD code showing small deviation of < 5% from the other three results, is apparent
in comparing a global quantity, such as the total kinetic energy in the system. No
detailed comparison of any local measurables, such as a local reconnection rate, has
been performed. It is worth noting that the boundary conditions and visco-resistive
MHD equations employed in solving this problem imply conservation of total energy
in the system. The total energy maintained by the SEL code through ¢ = 50 for the
case of = 5% 1072 is E,pq = 219.4407 & 0.0006 and for the case of =5 107* is
Eiotqr = 219.4402 + 0.0012.

The Hall MHD model used in the cross-code verification study extends the resistive
Ohm’s Law to include some of the two-fluid terms, thus coupling the evolution of out-
of-plane components of magnetic field and plasma flow to the visco-resistive MHD
model given above and introducing dispersive waves into the system. The following

system of PDEs has been implemented in the SEL code:

dp B
E‘*'V'(Pvi)—o

0pv;,, B2 ov;
Plia 1+ V| pvivia + (p+ = ) 6 — BBa — 115 | Vi + =
ot 2 Je)
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where resistivity 7, ion viscosity u;, electron viscosity p. and isotropic heat conduc-
tivity s are normalized diffusion coefficients, p = p; + p. = pT, B = 2 x VY + 2B,
J=VxB=p(v,—v.)/d;, d; = (¢/wy) /Lo is the normalized ion skin depth, and [,
is fixed and uniform electron-to-ion plasma pressure ratio 5. = (p./p;). Once again,
adiabatic equation of state with v = 5/3 has been assumed.

The computational domain, initial and boundary conditions for the Hall MHD
cross-code verification study have been chosen the same as those of the visco-resistive
MHD simulations described above. We note, however, that the explicit presence of
the out-of-plane components of magnetic field, ion and electron flow velocities requires
additional specifications in both initial and boundary conditions. In particular, we
have set B,y = 0, all of the plasma current at ¢ = 0 has been assumed to be carried
by electrons Jg = —pveo/d;, and zero flow boundary condition on the electron out-of-
plane flow has been assumed at the walls. We further note that the latter assumption,
together with the form of the electron viscosity given in the equations above, leads to
the possibility of energy transport in and out of the domain by the electron viscous
forces.

Figure 2.10 presents some of the results from the simulations of the GEM recon-
nection challenge with the Hall MHD model described above and produced within the
scope of the cross-code verification study. Panel (a) shows time traces of the kinetic
energy (K.E.) from the SEL, NIMROD and M3D-C1 codes run with the following nor-
malized equilibrium and plasma parameters: L, = 25.6, L, = 12.8, A = .5, p, = .2,
Be=1/6,d;=1.,n=5x10"3, u; = 5% 1072 and k = 2% 1072, The Hall MHD model
equations advanced by the three codes are identical except for implementations of the

electron viscosity terms (formulated as hyper-resistivity in M3D-C1 and altogether
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absent in NIMROD) and introduction of small artificial density diffusion in NIMROD
and M3D-C1 codes. These differences in the models are presumed to be responsi-
ble for the small but significant variations in the time-traces shown in panel (a) of
Figure 2.10. Panel (b) shows the sensitivity of the SEL-produced K.E. trace to the
exact magnitude of normalized electron viscosity j, = [2. % 107° 1. % 1075 5. % 1079
and the trace of total energy in the system for p, = 1075. Observed variation in
the K.E. traces appears to be consistent with the variation between the three codes
demonstarted in panel (a).'

Panels (¢) and (d) of Figure 2.10 show the contour plot of out-of-plane electron
momentum, which carries most of the plasma current, and a representation of the
grid density, respectively, from a simulation run with g, = 107 at ¢t = 29.125, which
corresponds to the peak of K.E. in the system. Very localized spike of the electron
current at the X-point and sharp separatrices propagating outward are characteristic
of Hall reconnection and are apparent in panel (c¢). In the SEL code simulations, these
are smoothly resolved by making extensive use of the adaptive grid re-mappings, with
panel (d) of Fig. 2.10 showing a representation of the grid on which the electron cur-
rent of panel (c) has been computed. This particular SEL simulation was conducted
on a logical grid of size [ng, n,, n,| = [40, 40, 8] representing the full simulation domain
shown in Figure 2.10 and made a total of 18 re-mappings in the course of the whole
simulation run, which consisted of 419 time-steps with time-step size varying between

ot = 0.0625 — 0.25.

10As shown elsewhere in this Dissertation, electron viscosity (or hyper-resistivity) has to be in-
cluded in any Hall MHD model that is used to simulate a physical system where magnetic reconnec-
tion takes place and attempts to spatially resolve the reconnection region. In the absence of such
terms, as in the results obtained with the NIMROD code, numerical diffusion facilitated by lack of
spatial resolution effectively replaces the local electron viscosity effects.
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Comparison of K.E. vs time for 3 codes SEL scan in electron viscosity
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Figure 2.10: Panel (a) shows time traces of the kinetic energy (K.E.) from three
different codes SEL|61], NIMROD|139|, M3D-C1|76|, solving GEM reconnection
problems|13] within the Hall MHD model. The problem set-up and Hall MHD models
are identical across the three codes, except for implementations of the electron viscos-
ity terms and presence of artificial density diffusion in some of the codes. Panel (b)
presents K.E. traces from three SEL runs with varied values of electron viscosity and
the trace of total energy in the system from one of the runs. Panels (c¢) and (d)
show the contour plot of out-of-plane electron momentum and a representation of the
grid density, respectively, at the time corresponding to peaking of K.E. in the system
for a simulation run with g, = 107°. In all simulations presented, all normalized
equilibrium and plasma parameters, aside from p., have been taken as: L, = 25.6,
L, =128 A= 5,p, = .2, 3. =1/6,d; =1, n=5%10"3 pu; = 5% 107? and
Kk =2%1072.
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We now conclude the description the SEL code’s verification studies having demon-
strated its accuracy, efficiency and robustness on multiple challenging linear and non-
linear problems using a range of plasma fluid models from the simplest reduced to
extended two-fluid MHD. This allows us to rely on the SEL code in the studies of
various physical phenomena we indulge in in the following Sections of this Disserta-

tion.
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Chapter 3

Magnetic Reconnection

In this chapter, dedicated simulations of two-dimensional magnetic reconnection (MR)
using several MHD models of varying collisionality and complexity are described.
Some of the outstanding and unsettled questions of relevance to evolution of an in-
ternal kink mode, as well as many other fusion, space and solar physics phenomena

are addressed below.

3.1 Fundamentals of magnetic reconnection by way
of current layers.

The Sweet-Parker|[115, 141] theory of two-dimensional incompressible resistive MR
provides the fundamental framework for describing MR by way of current layers. We
now outline the basic elements of the theory, as well as how it can be extended to
describe MR in a greater and more complex set of plasma models.

Figure 3.1 provides a schematic of a symmetric two-dimensional reconnection re-
gion (RR) with a current layer of length L and width §. By definition, L > 4.
Correspondingly, plasma flows into RR from top and bottom with velocity v;, carry-

ing magnetic field of magnitude B;, and flows out to the left and right with velocity
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Figure 3.1: Schematic of an up-down and left-right symmetric two-dimensional re-
connection region.
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Vout carrying away reconnected magnetic field of magnitude B,,;. Horizontal axis is
the x-axis, vertical axis is the y-axis, and z-axis points out of the page. Such ori-
entation of a reconnection region is used throughout this Chapter. We also define
ion and electron Alfvén velocities v%, = (By/v/4mm;ng) and v4 = (Boy/v/4rmeng),
respectively, based on the magnitude of global magnetic fields By ~ B;, and some
average plasma number density ng. Here and below in this Chapter, all quantities

are normalized using By, ny and some unit of length /.

3.1.1 Resistive MHD

In a single-fluid model, such as resistive MHD, the plasma velocity corresponds to the
only velocity of a conducting fluid. Then, in the upstream region outside of the current
layer, out-of-plane electric field is given by F, = 2 - (=v X B) = v;;, B;,. In steady-
state, (0B/0t) = —V x E = 0, and therefore £, must be uniform over the RR. Thus,
the so-called reconnection electric field is given by Egr = v;, Bin = Vout Bout. At the
center of RR, the X-point, all in-plane plasma flows go to zero due to symmetry and
therefore Er must be supported by “non-ideal” (i.e. non-v x B) effects. In resistive
MHD, the only non-ideal term in the Ohm’s Law is nJ, where n is appropriately
normalized plasma resistivity, so that at the X-point Er = nJ..

No plasma accumulation within the current layer is possible in the steady-state.
(In fact, in many of the simulations described below, plasma has been assumed to
be incompressible.) Therefore, from mass conservation, vy, L = v,,0. It follows that
B0 = By, L. Similarly, energy conservation, or, equivalently, integrating the in-
plane components of the momentum equation along the inflow and outflow directions,
provides another relation between the inflow and outflow quantities in the RR.

The Sweet-Parker theory effectively assumes that L is of the order of the system
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size by presuming ¢ to be microscopic and in-plane plasma velocities outside of the
current layer to be small relative to v%[90]. Then, L > §, J, = 2B;,/d, and vy, =
B, follows from energy conservation under the assumption that plasma density and
pressure are approximately constant outside of the current layer and viscous effects
can be neglected.! W. Park, et.al.[113] have extended the Sweet-Parker model by
including the viscous effects in the momentum equation whenever kinematic viscosity
i is comparable to 7. In that case, energy conservation relation gives v,y = Bin(1 +
,u/n)’l/ 2. Using this visco-resistive relationship between By, and vy, the following

identities are also implied:

oL
§ ="+ p/m"* o (3.1.1)
_ —1/2 _ 1/2 _1/4_[2Bin
Vin = Bow (1 + /1) = =0 2(1 + u/n) 5 (3.1.2)
on\ 1/2
En= (14 )" (f”) B2, (3.1.3)

where we have expressed all other quantities in terms of plasma resistivity, kinematic
viscosity, inflow magnetic field and current layer length. The reconnection electric
field F'y is often also referred to as the reconnection rate, which we denote by R,.., and
the Sweet-Parker reconnection rate is denoted by R5E ~ 7'/ whenever (u/n) < 1
and B;, and L are both of order unity.

We emphasize that in the Sweet-Parker model L and B;,, have been assumed to be

determined by the global magnetic field configuration, while the steady-state condi-

tion was only necessary to enforce approximate uniformity of the out-of-plane electric

!The Sweet-Parker theory assumes that peaked plasma pressure inside the current layer is re-
sponsible for deceleration of plasma inflow and following acceleration of plasma outflow. However,
it is evident from considering an incompressible plasma model that plasma pressure cannot play an
important role in determining the current layer structure and it is magnetic field line tension that
accelerates plasma out of the current layer.
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field and non-accumulation of plasma and energy in the current layer. Therefore,
whenever global magnetic field structure around a RR evolves slowly enough to be
able to approximate the evolution as a sequence of Sweet-Parker steady-states, re-
sistive reconnection may continue to be described by the Sweet-Parker model even
while R,.. may significantly change due to changes in L, B;,, or both.

Below, we consider how the length of a resistive reconnection layer becomes of
the order of the system size. However, we now note that an incompressible resistive
MHD system has no other characteristic length scales except for width of a resistive
diffusion layer and global scales given by the magnetic configuration. Thus, it is
reasonable to assume that the length of a current layer has to be either on the scale
of reconnecting magnetic structures or proportional to some power of the resistive
diffusion width L oc IF, where 0 < p <1 and § ~ [;. And since in ideal MHD a local
X-configuration of magnetic field not supported by a global structure is intrinsically
unstable to collapse[35], L can only be of order § when the reconnection process itself
can support local X-configuration against the collapse. (For example, sufficiently
high resistivity allows for faster reconnection and stronger inflows, which may allow
the magnetic field convected into RR to reconnect fast enough to avoid current layer

elongation.)

3.1.2 Electron MHD

Another single-fluid MHD model that can be analyzed using the Sweet-Parker method-
ology is the electron MHD (EMHD) model, where ions are considered to be immobile

neutralizing background and only electrons have non-zero velocity field v.. The model
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is described by a single normalized vector equation:

0J
E-d; (E + Ve VJ) = diJ x B — d;Vp. +nJ — d;vV?*J, (3.1.4)
where d; = (c/wpi)/lp = ¢ %lo\}%’ & = d&(m./m;), n = nc? %;{{E), v o=
[T, % ” Bol N and {7, fi.} are physical values for resistivity and kinematic electron

viscosity. Note that J =V x B = —v./d;, (0B/0t) = —V x E and an evolution
equation for p. is not necessary, as p. evolution decouples from that for the magnetic
field, as is shown in Section 3.3 below.

Unlike resistive MHD, the EMHD system described by Eq. (3.1.4) contains multi-
ple spatial scales. Those are resistive diffusion scale [,, electron viscous diffusion scale
l,, and electron inertial scale d.. (Eq. (3.1.4) can be re-normalized to eliminate the
ion inertial scale d;, as ions have been assumed to be immobile.) Any one or a combi-
nation of those scales can play a role in determining both the width 6 and the length
L of a reconnection layer. In the following analysis, we assume that the effects of both
resistivity and electron inertia are negligible in comparison to the electron viscosity,
thus setting n = d, = 0.2 Also note that since ions are assumed to be stationary, elec-
tron flows into and out of the current layer constitute plasma currents carried by the
same electrons that carry the reconnection current in the out-of-plane direction. Such
current pattern is correlated with a quadrupolar out-of-plane magnetic field structure
that is inherent in EMHD magnetic reconnection|96]. We denote the magnitude of
this quadrupolar B-field generated around the corners of the reconnection current
layer by B,. (See Figure 3.2.)

Doing the Sweet-Parker-like analysis of an EMHD RR, the assumption of steady-

state once again gives: Er = v, Bin = Vout Bowt and vy, L = v4,;0. And it again follows

2Note that by setting d. = 0 all electron inertial effects are neglected, electrons are assumed to
carry no kinetic energy, and arbitrarily high electron velocities are allowed.
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Figure 3.2: Schematic of a single scale reconnection region in electron MHD. Inflow
and outflow velocities are those of an electron fluid carrying B-field through the
current layer.

that B,y = Bin(6/L). We now assume that /L is sufficiently smaller than unity to
ignore terms of order (§/L)? and higher. Then, at the X-point, Er = d?vB;,/5.
The only relation still missing is that obtained from the momentum equation in
resistive MHD. In the case of EMHD, it is replaced by a similar relation derived
from [,V XE =0= [,,E-dl, where Q is a quarter of the current layer bounded

by an outside boundary and midplanes of the current layer, as shown in Figure 3.2.

Integrating along such closed path, we have:

B L
9 :Vﬁvouta

where the magnetic field line tension force accelerating plasma out of the current
layer is now balanced by the in-plane electron viscous force. (In computing the line

integral, total contribution from d;Vp. is exactly zero. Ignoring terms of order (§/L)?
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and higher, d;J xB term gives two equal contributions from the path segments interior
to the RR, and d?vV2J term gives two equal contributions from the two horizontal

segments of the path.) From the relations above, the following scalings are derived:

5 = (ﬁdiu L )1/3 (3.1.5)

Bin
U= 5 (3.1.6)
& By \'?
Vout = Bm (ﬁ I > (317)
B 97 1/3
Bout = [\/idzl/< £n> (318)
d;, B?
RY., = Ep in (3.1.9)

rec :\/§L

We observe that in this case the resulting reconnection rate has no explicit depen-
dence on electron viscosity v, which breaks the magnetic field frozen-in condition
within the current layer, while v,,; is inversely proportional to LY/3, Assuming an
infinite reservoir of magnetic energy available to be released through reconnection, it
is reasonable to expect that for given v, magnetic field line tension accelerates the
plasma outflow to the maximum allowable velocity by shortening the current layer.
Thus, a localized RR with strongly enhanced reconnection rate results.

Various factors might come into play in restricting either the maximum allowable
velocity or the minimum allowable current layer length. An obvious one is the initial
assumption of (6/L) < 1. Applying that to Eq. (3.1.5) gives a restriction on L of
the form L? > (v/2d,v/B;,). We also note that to the same order in (§/L) as above,
Vout = d;(2B,/0), which implies that B, = (Bin/2v/2). Another consideration is that

in the case of such localized current layer, B, itself is no longer uniquely determined
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by the magnitude of the global magnetic field convected towards RR, but is only some
fraction of that. Instead, both the reconnection rate and the structure of RR are in
large part determined by the physics of the current layer.

In the above derivation, both plasma resistivity and electron inertia were ne-
glected. However, the same analysis can be done by setting v = 0 and allowing for

non-zero plasma resistivity. In that case, it is easy to show that:

_.n L
_ 4d? B,
Vout = 77 L )
and
B2
R, =2v/2di =,

Note that reconnection rate is again independent on the mechanism that breaks the
frozen-in condition and outflow velocity can be increased by making the current layer
shorter. However (§/L) is now independent of L, which suggests that the current layer
can contract proportionally and without bound, making the current layer singular.
That is, in fact, what is observed in numerical simulations of MR where electron
dynamics plays an important role and no electron viscosity-like term is included[109,
127].

Finally, when d. > 0 but both resistivity and kinematic electron viscosity are
neglected, no steady-state reconnection is possible[29]. That trivially follows from
the fact that in such collisionless model only the time-dependent d?(9J/0t) term in
Eq. (3.1.4) remains non-zero and can balance the out-of-plane electric field at the
X-point. Thus, this system also tends towards a singular current layer.

Based on the above reasoning, one could argue that inclusion of both resistivity
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and electron inertia might be sufficient to allow for EMHD steady-state reconnection
through a current layer of finite size: resistivity would act to balance the recon-
nection E-field at the X-point, while electron inertia would limit the outflow velocity.
However, as has been shown by numerical simulations where no electron viscosity-like
term is included|[109, 127|, such RR acquires a two-scale structure where electron fluid
decouples from magnetic field on the electron inertial scale, while the current layer
itself contracts to sub-d, scales and towards a singularity. Thus, while no straightfor-
ward Sweet-Parker-like arguments can be made for the full multi-scale systems, it is
apparent that kinematic electron viscosity is necessary to enable steady-state MR in

the EMHD regime.?

3.1.3 Two-fluid MHD

We now consider MR in a two-fluid plasma model, where both electron and ion fluids
have non-zero velocity fields, yet they decouple on some scale which is greater than the
current layer width 6. In 2D systems with no or weak overall out-of-plane magnetic
“guide™field Bgyiqde, such scale is the ion inertial scale d;, where ions decouple from
the magnetic field due to inertia while electrons continue to E x B-drift together with
the B-field|96, 128]. And in systems where the global magnetic field is fully three-
dimensional or in the presence of significant guide-field Bgyige/Bin 2 1, the relevant
decoupling scale is generally assumed to be the so-called ion sound radius ps = ¢s/we;,
where ¢, is the speed of sound, w,; is the ion cyclotron frequency and decoupling is due

to a combination of compressibility and finite ion Larmor radius effects|6, 29, 128].

31t has been shown in recent kinetic simulations of MR by Karimabadi et al.[81] that divergence of
the effective electron pressure tensor plays the key role in determining the structure of and balancing
the reconnection electric field in the current diffusion layer. However crude, the kinematic viscosity
term d;¥V?v, in Eq. (3.1.4) is what models the full electron pressure tensor term V - II¢ in the
EMHD approximation.
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Figure 3.3: Schematic of a two-fluid multi-scale reconnection region with no magnetic
guide field. Current diffusion region has been assumed to be sub-d,. scale.



Figure 3.3 shows a schematic of a two-fluid multi-scale RR with Byyiqe = 0. Ob-
serve that within the ion inertial region, ion flow follows a global convection pattern
independently of how and where current diffusion takes place. Accordingly, B-field
evolution within the ion inertial region is independent of v; and therefore can be
described by the EMHD model.

Note that, as discussed above, in EMHD the width of the current diffusion region
is determined by the electron viscous scale [,. Thus, whenever [, > d., no sepa-
rate electron inertial region exists. Similarly, whenever the resistive scale [, is greater
than the ion inertial scale d; (or ion sound radius p;), the current diffusion region con-
sumes the ion inertial region and reconnection proceeds in the resistive MHD manner.
The transition between the two-fluid and resistive MR has recently been numerically

investigated by Cassak ef. al.[32, 33] and is described further in Section 3.4 below.

3.2 Visco-resistive magnetic reconnection in large sys-
tems.

Magnetic reconnection in visco-resistive MHD systems has been extensively studied
and is generally well understood[113, 15, 147, 90, 94]. In the simulations described
below, we are interested in following the development of a reconnection layer from
a small localized perturbation in a large semi-periodic system. We then compare
and contrast these results with similar simulations using EMHD and two-fluid MHD

models.

3.2.1 Definition of the problem.

SEL simulations of a resistive tearing mode within a Harris current sheet|66] were

described in Section 2.2.1 above and showed remarkable agreement of the computed
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linear growth rates with the analytical calculations. Here, we focus on the strongly
non-linear regime of resistive current layer (also referred to as the current diffusion
layer) reconnection.

In order to simplify the model, an assumption of incompressibility has been made.
It can be justified by either presence of large magnetic guide field B4 > By or large
plasma (3 = (p/B?), where p is the plasma pressure.* It has also been shown|[25] that
compressibility effects do not play an important role in the evolution of a resistive
current layer.

As in Section 2.2.1, poloidal B-field is represented by a flux function ¢, B =
z x V¢ + 2B,, and poloidal flow by a stream function ¢, v =2 x V¢ + Zv,. Plasma
density is taken to be initially uniform and remains so due to the assumption of
incompressibility. Then, the momentum equation and the Ohm’s Law are sufficient

to specify evolution of the plasma:

g—::—v~Vv+JxB—Vp+uV2v (3.2.1)

E=-vxB+nJ, (3.2.2)

where 1 and p are plasma resistivity and kinematic viscosity. Using Z - VX operator
on Eq. (3.2.1) and 2 operator on Eq. (3.2.2), plasma pressure and Z-components of

magnetic and flow fields are eliminated from the problem and the system is reduced

to:
8 2
OO v [(V%0)2 x Vo~ (V2)2 x Vi — p¥ (V?0))] = 0

4Strictly speaking, the second condition for incompressibility requires plasma flows to be much
slower than the sound velocity, c;. However, since it was shown in Section 3.1.1 that in a visco-
resistive RR outflow velocity is of the order of the ion Alfvén velocity, voys ~ vi\, it has to be true
that 3 = (cs/v%))? > 1.
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The reduced visco-resistive MHD equations, Eqs. (3.2.3), are solved in a rect-
angular box (z,y) € Ly, Ly| x [=Ly, L,]. Periodic boundary conditions (BC) are
used in the outflow Z-direction, while “open” boundary is assumed in the inflow -
direction in order to reduce the effects of the domain boundary on the reconnection
layer. Here, we define “open” boundary to have zero tangential flow, zero vorticity
and constant and uniform tangential component of magnetic field. Thus, on the y-
boundary, §- V¢ = 0, V2¢ = 0, and ¢ - V1) = const are the enforced BC. Simulations
are initialized with a Harris equilibrium|66] with an additional small and localized
perturbation: ¥y = An [cosh(y/\)] + 6, dv = eexp [—2?/(2))?] exp [—y*/(N/2)?]),
where A is the half-width of the Harris equilibrium and e is the magnitude of the
perturbation. Note that the perturbation is localized within the equilibrium current
sheet.

In order to model the expected development of a macroscopic resistive current
layer from a local perturbation in a large system, the following simulation parameters
are chosen: A =.5, L, =48, L, =6, ¢ = 10~* and n = = 10*, where width of the
initial Harris equilibrium are taken as the effective unit length. Making use of the
symmetries of the initial conditions and those inherent in Egs. (3.2.3), simulations
are conducted only in the top-right quarter domain and appropriate symmetry BC
are applied.

Though here we are not interested in either linear or early non-linear development
of the tearing instability, it is important to comment on the reason for choosing a
localized perturbation rather than one that spans the whole domain, as is commonly
done. (In numerical modeling of spontaneous MR, it is common to initialize simula-

tions with a macroscopic tearing-unstable current layer in a periodic domain of length
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L, and a perturbation 09 o cos(2rz/L,), which spans the whole domain along the
initial current layer[13, 94].) As discussed in Section 2.2.1, linear growth rate v of a
tearing mode with a wave number £, in a Harris current sheet of width A depends on
the quantity Ak,. For given A and 7, the function v(k,), solution to Eq. (2.2.1), is pos-
itive for Ak, < 1 and has a maximum at some wave number 0 < k., < 1/X [37, 94].
Therefore, whenever a simulation is initialized with an unstable monochromatic per-
turbation, only the tearing mode of that wavelength grows to become non-linear and
form a reconnection current layer whose initial length is correlated with the wave-
length of the perturbation. However, if the initial perturbation is sufficiently small
and contains all wave numbers allowed in the simulation box, it is the tearing mode
with k, closest to k.. which determines the initial length of the reconnection current
layer independently of the shape of the perturbation. We have chosen the perturba-
tion to be a localized Gaussian and L, sufficiently large such that 27 /k;0e < 2L,
in order to allow the system to “forget” about the shape of the perturbation when it

forms the reconnection current layer.

3.2.2 Simulation results.

We now study the results of such large scale resistive MR simulation. Following the
linear development phase, a thin and relatively short (L ~ 7/ky,q,) current layer is
established at ¢ ~ 400 (not shown). Panels (a) and (b) of Figure 3.4 show time-traces
of R,.. and reconnection layer dimensions as that initial current layer rapidly extends
in the outflow direction with its length L becoming a large fraction of the domain
size. Two measures of the reconnection layer length are presented: half-length of
the current diffusion layer L;/2, calculated as half-length at half-max of .J, = V24,

and half-length of the plasma outflow layer L,/2, calculated as the distance from
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the X-point to the point of maximum v,,;; yet no characteristic scale could be easily
identified in the plasma inflow velocity profile and the only reconnection layer width
diagnostic is the half-width of the current diffusion layer 0;/2, calculated as half-
width at half-max of J,. Note that until ¢ &~ 600 — 650, remnants of the initial Harris
current sheet dominate the diagnostic of the current diffusion layer dimensions and
neither L; nor 0; are meaningful. However, once the reconnection current becomes
sufficiently strong, it is apparent that the current diffusion layer and plasma flow
scales coincide, as expected in visco-resistive MHD reconnection.

The rate of current layer elongation after ¢ = 650 can be inferred from panel (b)
of Fig. 3.4 and is =~ 0.15, or about 40% of the ion Alfvén velocity based on the inflow
magnetic field By, and nearly 50% of the plasma outflow velocity v,y:, shown in panel
(c) of Fig. 3.4.% Tt is clear that such dynamic reconnection layer cannot be treated as
if it was in steady-state. Nevertheless, we attempt to compare the simulation results
with the modified visco-resistive Sweet-Parker model described in Section 3.1.1. We
first observe that despite the current layer elongation, the reconnection rate increases
until ¢ = 763 due to the simultaneous increase of B;, from ~ 20% to ~ 40% of
the B-field supplied at the inflow boundary of the domain. However, since B, is
ultimately bounded by B(y = L,) = 1, as the current layer continues to extend, the
reconnection rate begins to drop in accordance with Eq. (3.1.3). Similarly, the width
of the current layer begins to increase and the inflow velocity and outflow magnetic
fields, shown in panel (d) of Figure 3.4, begin to drop in accordance with Eqs. (3.1.1-

3.1.2). Taking a ratio (Bj,/v.u:) during the layer expansion, we also note that it is

®Both B;, in panel (c) and v;, in panel (d) of Figure 3.4 are evaluated at y = §;/2. As discussed
above, 07 is only meaningful after ¢ < 600 — 650, and therefore little value should be put into the
magnitudes of B;, and v, shown for ¢t < 600.
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generally consistent with the visco-resistive relation derived by W. Park, et.al.[113],
which for (11/n) = 1 gives (Biy/Vour) = V2. Yet, we observe (B,y /vin) ~ 3, while the
modified Sweet-Parker model, Eq. (3.1.2), predicts (Bout/vVin) ~ v/2. That is the only
significant discrepancy with the modified Sweet-Parker model and can be attributed
to the time-dependent nature of the elongating current layer.

Panels (a-c) of Figure 3.5 show profiles of the reconnected magnetic field B,,
reconnection current J,, and plasma outflow velocity v, along the y = 0 axis at four
different times. As the current layer extends, accumulation of the reconnected field
just outside of the current layer is apparent. Such accumulation easily accounts for
the discrepancy with the Sweet-Parker model described above. The profiles of J,
show how the current layer itself grows and elongates in time. Note that the small
dips in current density observed at the ends of the current layer are the remnants of
the Syrovatsky singularities[144| largely removed by the effect of kinematic viscosity.
Similarly, the rounded-off shape of the current profiles is due to the viscous force
counter-acting the magnetic tension forces pulling the plasma out of the reconnection
layer. The outflow velocity itself is observed to increase linearly from the X-point
to the point of maximum outflow, followed by a sudden drop-off whenever magnetic
back-pressure becomes significant. It is remarkable that even in the regime of non-
negligible kinematic viscosity, the forces within the current layer self-balance in a way
to provide constant plasma acceleration along the layer.

Contour plots of the magnetic flux 1, plasma current J,, and plasma stream
function ¢ over the full computational domain at ¢ = 781 are presented in panels
(d-f) of Figure 3.5. At this time the back pressure of the reconnected B-field, which

is not being convected away from the RR sufficiently fast, is beginning to influence
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Figure 3.5: Panels (a-c) show profiles of B, J., and v,, respectively, along the y =0
axis through the reconnection layer at four different times before and after the peak
reconnection rate has been achieved. Panels (d-f) show contour plots of ¢, J., and
¢, respectively, late in the simulation at ¢t = 781.
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the dynamics of the current layer. Panels (d) and (e) demonstrate exactly why that
happens: a pair of merging magnetic islands are formed in the outflows of the current
layer and begin to obstruct further outward motion of magnetic field lines. (One of
the islands can be seen in the figure, while the other is located symmetrically on the
left hand side of the current layer. Due to the domain periodicity, the two islands
interact and eventually merge.)

Particular attention should be paid to the self-established flow pattern into and
out of the domain through the current layer, shown in panel (f) of Figure 3.5. Since
no flow velocity is explicitly specified on the top “open” boundary of the domain, the
flow pattern that does form is due solely to the properties of visco-resistive MHD and
the drive supplied by the tension of reconnecting magnetic field lines. We observe that
none of the flow that goes through the current layer recirculated within the domain,
but instead chooses to leave the system completely. Thus, the flow accelerated by the
reconnection has little influence on further evolution of the RR.

The large system simulation results described above have also been verified by
varying the size of the simulation domain [L,, L,] with no other changes to either
initial conditions or plasma parameters of the simulation. Little quantitative and no
qualitative difference in the simulation results was observed in increasing L, from 6
to 8, or decreasing L, from 48 to 36. In fact, the former had almost no effect on the
simulation at all. And the latter naturally resulted in earlier onset of the boundary
effects with no other discernable differences in the results. We again point out that
here the periodic boundary only begins to affect the reconnection rate and current

layer dynamics when the current layer becomes ~ 1/2 of the system’s period.
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3.3 Magnetic reconnection in electron MHD.

We now turn from visco-resistive MHD to the electron MHD model and conduct a set

of numerical simulations which are equivalent to that described in Section 3.2 above.

3.3.1 Description of the model.

The electron MHD plasma fluid model is completely described by the Equation (3.1.4).
As has already been emphasized in Section 3.1.2, electron MHD is a single-fluid model
where ions are assumed to be stationary and magnetic field is coupled only to the

electron fluid. It is also intrinsically an incompressible model, as
Ve=—-dJ =V .-v.=-d;V-J=0.

The key difference between the reduced visco-resistive MHD and electron MHD is
that in electron MHD plasma flows also carry charge and therefore current, thus
self-generating magnetic fields around any plasma flow channel.

As in reduced MHD, we employ the condition of incompressibility to eliminate
pressure from Eq. (3.1.4) by reproducing the transformations applied to Egs. (3.2.1-

3.2.2). Resulting system of two coupled PDEs has the following form:

%(Bz —d2V?B.) + 4,V [(V*¥)2 x VY —d2(V?B.)2 x VB, + d;vV(V°B,)]
= nV’B. (3.3.1)

%w —d2V*) + &V [(¥ — d2V*)2 x VB, + diV (V)] = nV3y,

where the out-of-plane magnetic field B, now acts as the poloidal electron flow stream
function.
Studying Eqgs. (3.3.1), we observe that the ion inertial length d; can be eliminated

from the system by renormalizing time ¢t — t/d; and absorbing factors of d; into the
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dissipation coefficients. Therefore, while the reconnection rate should vary linearly
with d; in accordance with the Sweet-Parker-like estimate in Eq. (3.1.9), evolution of
the system described by Eqs. (3.3.1) is otherwise independent of d;, which is only to

be expected in a system where ions have been assumed to be stationary.
Dispersion relation in uniform B-field.

It is useful to derive the dispersion relation for the system described by Egs. (3.3.1) in a
uniform magnetic field background. Let the background B-field be given by By = By,
so that the only non-zero equilibrium quantity in Eqs. (3.3.1) is Vi)y = BZ. Assuming
a perturbation of the form & = Eexp [i(kyz + kyy — wt)], the following dispersion
relation is easily derived:

 +d;Bkk, — i(nk? + d2vk?)

“ 1+ &2k ’

(3.3.2)

where k* = k2 + & and the only wave present in the system is the dispersive Whistler
wave with phase velocity w/k ~ k,. Also observe that whenever d;(k-Bg) > nk, resis-
tivity does not significantly damp the wave, and even in the limit of d.k > 1 electron
inertia only limits the real frequency to (d;/d.)(k - Bo/d.k) without introducing any
explicit damping. Thus, in the limit of high k| = (k-B/|B|), plasma resistivity plays
little role and the only damping is provided by the electron viscosity term, which is
consistent with the qualitative analysis of the reconnection layer in Section 3.1.2 and
previous numerical studies referenced therein. In the following numerical simulations,

plasma resistivity has been neglected by setting n = 0.
Linear properties of EMHD in non-uniform B-field.

Some of the behavior of an EMHD system in non-uniform magnetic field can also be

studied analytically. Here, we are interested in finding potentially unstable modes of
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such a system and therefore discard all of the dissipative effects, n = v = 0, in order
to simplify the analysis. Let the background magnetic field have no curvature and
be non-uniform in the direction perpendicular to itself, By = B,(z)§ + B.(z)2 and
consider a perturbation of the form & = £(x) exp [i(k,y — wt)].

First, let the gradient scales of interest be much larger than the electron inertial

length — V,, k, < 1/d.. Then, Egs. (3.3.1) are reduced to:
whe + diky | Byt = By (82— k2) §] =0
Wi+ dik, (Byi)z - B;zz) —0,
where F' = 0,F. Assuming B,(z) > 0 and substituting for b, in terms of 1, these

can be further simplified to yield:

Fe () @i (r ) e e

B, \2B, d;k,B, 2B,

From the form of Eq. (3.3.3), it is apparent that for given B.(z), whenever (B /B,) is
sufficiently large and negative in some interval in x, a localized instability will result.
It is also clear that presence of a non-uniform guide-field B, acts to stabilize the
instability, while uniform B, of arbitrary magnitude does not have any effect on the
system. We further observe that B;’ is a gradient of an out-of-plane current density
and (B)/B,) is always negative on the inflow sides of a reconnection current layer,
where By are the reconnecting B-field components. Figure 3.6 shows a schematic of
how such an instability develops in a system with no magnetic guide-field.

In the absence of guide-field gradients, B, = 0, and assuming that ¢ (z) # 0, a
substitution of the form f = (;Z’/zﬁ)gf — B,/B, reduces Eq. (3.3.3) to a first order
non-linear ordinary differential equation:

2

J'+ 55 = kB, -2 (3.3.4)
Y
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Figure 3.6: Schematic of how a large scale instability with V., k, < 1/d. can develop
in an electron MHD system with background out-of-plane current density gradient.
A perturbed in-plane magnetic field line is swept by the sheared out-of-plane elec-
tron flow, which generates oscillating out-of-plane magnetic fields. Resulting in-plane
plasma currents reinforce the perturbation whenever (J./B,) < 0.
where Q = w/(d;k,). For a given profile of B,(z) > 0, Eq. (3.3.4) can be solved
numerically and possibly analytically in some special cases. However, in the present
work, we do not pursue this line of inquiry any further.

When gradient scales of the background, perturbation, or both are sufficiently
small for the electron inertia to begin playing a role, intuitive treatment of the full
linearized form of Egs. (3.3.1) in non-uniform background B-field becomes prohibitive.

In the limit of zero background guide-field gradients and no dissipation, linearized

Egs. (3.3.1) are:
dik, [B) — B, (02— k)] ¥ =0
dik, (B, — d’B})) b, = 0.

We now assume that the perturbation is localized in z such that £(z) > d2 (02 — k2) {(x).

(Note that this does not necessarily imply the length scale of the perturbation to be

88



A A dv,, A dv,,
—oy —
A A
A A
|

S R

8J |

o4

B

P

J, J, d) ] Pﬁ
i é;

|

|
A q

|

|

|

|

Figure 3.7: Schematic of how a localized instability can develop in an electron MHD
system with strong current gradients in weak magnetic field. A localized electron flow
perturbation in the direction of the current gradient displaces some of the background
current due to the effect of electron inertia, resulting in a perturbation in the poloidal
B-field. The same sheared background electron current then differentially rotates
the perturbation and generates poloidal plasma currents which reinforce the initial
perturbation.

much larger than the electron inertial scale.) Then, for B,(z) # 0, we have the

following dispersion relation:

) ]
S R R
dk, B, B,

If 1 > d2(B;/B,), Eq. (3.3.5) is reduced to Eq. (3.3.3). Therefore, we consider a

R/

%_@p@ﬂ¢ (3.35)

background profile of B, such that 1 < d?(Bj/B,). From the assumption above, it

follows that (B!/B,)i > (92 — k2) ¢ and Eq. (3.3.5) can be further reduced to yield:

2
w D! ( D 2 DI
@&):BA@—Q@) (3.3.6)

From Eq. (3.3.6) we observe that whenever d2Bj(x) > B,(x) for some region in
z, a localized non-propagating instability with &(x) > d? (02 —k2) £(z) may grow.

Figure 3.7 shows a schematic of how such localized instability can be generated.
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Qualitative nonlinear analysis of an inertia-less EMHD RR.

An analytic description for the collapse mechanism of an EMHD current layer with
electron inertia effects neglected has recently been offered by Shaikhislamov|133].
Though, as we explain below, the derivation given by Shaikhislamov does not include
some of the important effects present in a reconnecting EMHD system, here we follow
the general spirit of the derivation.

We again begin by neglecting the effects of electron inertia and resistivity and
taking the zero magnetic guide-field limit. Then, Eq. (3.1.4) that describes the full

EMHD system is reduced to:
E =d;J x B —d;Vp, — d?vV3].

The key observation made by Shaikhislamov[133] is that application of the V x Vx
operator to the above vector equation produces an equation for the time-dependence

of the plasma current density J:

(% + dfuv4) J=d,V x[J-V)B—(B-V)J]. (3.3.7)

Following Shaikhislamov|133], we also consider two projections of Eq. (3.3.7) —in the
out-of-plane z-direction and plasma outflow Z-direction — along the outflow symmetry

axis (z-axis) of the reconnection layer:

0 ov oJ. 0%
— 4+ Vi) I, =20, -2 —v,—2 — B - .3,
((% +d;vV ) J. J. e Ve oy oy (3.3.8)
0 0% J 0B, 0J
—+ vV v, = (B = T 3.3.9
<at+1” )” i\ Pvor T oy oz ) (3:3.9)
where we recall that v, = —d;J and several terms have been dropped due to symmetry

considerations. It is now easy to show from Sweet-Parker-like considerations presented

90



in Section 3.1.2, that in a sufficiently elongated current layer every term on the right
hand side (RHS) of Eq. (3.3.8), as well as Eq. (3.3.9), is of the same order in §/L. It is
this fact that in our view renders further simplification of the system of Eqgs. (3.3.8)-
(3.3.9) impossible.

However, here we pursue the method further and apply two more projections of
Eq. (3.3.7) — in the out-of-plane 2-direction and plasma inflow y-direction — along the

inflow symmetry axis (y-axis) of the reconnection layer:

2
(% + d?uV‘*) J.=—2J, ag;y — veyaajj + B, 88;’? (3.3.10)
0 5 4 ) 0*J., 0B, 0J,
(5 +d;vV ) Vey = —d; (Bx 5z T 8yy 9 ) (3.3.11)

where all terms on the RHS of each equation are again of the same order in 6/L.
Though it might be possible to solve the system of Eqgs. (3.3.8)-(3.3.11) in time
by applying appropriate approximations in the limit of 6/L < 1, we do not attempt
to do it here. Instead, we simply analyze each of the RHS terms for each of the
equations to determine whether it acts to locally increase or decrease reconnection
current and electron inflow /outflow velocity in time within the reconnection current
layer. While no definitive conclusion can be made about the overall sign of the RHS
for Eq. (3.3.8) and Eq. (3.3.10), it is easy to show that both RHS terms of Eq. (3.3.9)
act to locally increase the electron outflow and both RHS terms of Eq. (3.3.11) act to
locally increase the electron inflow velocity within the electron current layer. Thus,
even in the fully non-linear regime, any EMHD current layer should be expected to

collapse by locally self-generating both inflow and outflow through the RR.
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Numerical problem set-up.

In all of the simulations described below, d; = 2.0 has been chosen. Under the
assumption of hydrogen plasma, it follows that d. = 4.667 * 1072,

To be able to compare reduced MHD and EMHD results, the EMHD simulations
are conducted in the same semi-open, semi-periodic rectangular domain as those
described in Section 3.2.1. On the open boundary, equivalent BC are applied to
the electron stream function B, as those applied to the plasma stream function ¢.
Simulations are also initialized with the identical Harris current sheet of half-width
A = .5 and a localized perturbation of magnitude ¢ = 10~* as in Section 3.2.1. Note
that A = d;/4 ~ 10d,, i.e. gradient scale of the initial condition is a fraction of the
scale on which ions can be legitimately assumed to be stationary in a two-fluid model,
yet much greater than the electron inertial scale.

We now describe a number of EMHD simulations where sensitivity of the solution
to the size of the computational domain [L,, L,| and kinematic electron viscosity v

is investigated.

3.3.2 Viscosity dominated simulation results.

Whenever kinematic electron viscosity is sufficiently large, the viscous diffusion scale
[, becomes greater than the electron inertial scale d. and dominates the structure of
the RR.

Figure 3.8 shows snap-shots of magnetic flux, reconnection current and electron
flow stream function over a full computational domain, panels (a-b), and directly
around the current later, panels (c-d) from simulations with v = 4 x 107 after an

electron MHD reconnection region has fully developed. It is immediately clear that
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Figure 3.8: Snap-shots of (a) magnetic flux ¢ and (b) out-of-plane B-field B, over
a full computational domain; and (c¢) out-of-plane current .J, and (d) B, around the
current layer from simulations with v = 4 x 1075 after an electron MHD reconnection
region has fully developed.
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unlike resistive MHD, the EMHD RR remains localized near the X-point. Also unlike
the resistive MHD plasma flow, the in-plane electron flow chooses to stay entirely
within the computational domain recirculating the outflow from the RR back into the
RR. Despite the localization, panel (¢) of Fig. 3.8 shows that the EMHD reconnection
current layer remains elongated with /L =~ 5. For the chosen value of electron
viscosity, the half-width of the current layer §/2 is observed to approximately equal
the electron inertial scale d, = 4.667 x 1072, which suggests that for v > 4 % 1075,
l, > d. and vice versa. Finally, rotation of the electron flow through the RR is shown
to be localized within the current layer.

Time evolution of the viscous EMHD reconnection region for various domain sizes
and values of kinematic electron viscosity is described in Figure 3.9. Panel (a) shows
the time evolution of the reconnection rate dip/dt at the X-point for four different
simulation domain sizes with v = 4 % 1075, Unlike analogous resistive MHD results
shown in Fig. 3.4 above, in EMHD we observe a short initial quasi-linear development
of the tearing instability followed by an explosive onset of fast reconnection with peak
reconnection rates orders of magnitude higher than those achieved in resistive MHD.
It is apparent from the data that the dynamics of that transition to fast reconnection
is independent of the system size when the domain sizes considered are sufficiently
large. However, the long-term behavior of the system does appear to be sensitive to
the system length. (The width variation between L, = 6 and L, = 8 has virtually no
effect on the system. That is to be expected since, as shown in Figure 3.8, in-plane
electron flow chooses to circulate close to the initial Harris current layer.) Panel (b)
of Figure 3.9 shows time evolution of di/dt for a domain size of [L,, L,] = [48, 8] and

a range of kinematic electron viscosity values v € [4%107°,4%10%]. Here, we observe
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Figure 3.9: Time-traces of the EMHD reconnection rate and RR dimensions for
different domain sizes and magnitudes of kinematic electron viscosity. Panel (a)
shows the variation in reconnection rate time evolution di)/dt at the X-point with
domain size for v = 4 % 107%; and panels (b,c,d) the variation in time-evolution of
diy/dt, RR half-width and RR half-length with v for a given domain size, respectively.
Half-width and half-length of the RR are determined by tracking the location of the
peak in in-plane electron flow inflow and outflow velocities, respectively.
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that the rate of the onset and peak magnitude of fast reconnection can be sensitive to
electron viscosity, while the long term evolution appears to settle to a v-independent
reconnection rate.

Panels (¢) and (d) of Figure 3.9 show the time-evolution of half-width and half-
length of the RR based on the poloidal electron inflow and outflow profiles, respec-
tively. (Note that in the electron viscosity dominated regime, these correspond well
with the reconnection current layer dimensions.) The collapse of the RR from that
developed during the initial linear and early non-linear tearing mode evolution to
a much shorter one following the onset of fast reconnection is apparent. After the
collapse, little temporal variation in RR dimensions is observed. Unlike the ever ex-
panding RR in resistive MHD, viscous EMHD RR width 0 and length L appear to
stabilize at d. < 0/2 < L/2 < d; and are smaller for lower values of v.

Leaving aside the time-asymptotic behavior of the system, Figure 3.10 shows how
the reconnection rate at the X-point (panel (a)), half-width of the RR (panel (b)),
outflow electron velocity (panel (¢)), and inflow magnetic field (panel (d)) scale with v
at the time when peak reconnection rate is achieved. In order to separate any possible
effects of electron inertia, which are discussed below, several simulation runs with
d. = 0 have also been conducted and the data from those runs is shown, as well. Tt is
apparent that for sufficiently small values of v, maximum reconnection rate becomes
independent of v. Yet, other characteristic RR quantities display prominent power

law dependencies on the magnitude of viscous electron dissipation. In particular,

2/5 1/5

whenever electron inertia has no effect on the system, § o< v*/°, v, x v~/°, and

1/5

Bi, o< v'/°. Observe that these are consistent with the Sweet-Parker-like analysis of

an EMHD RR in Section 3.1.2 above and give a scaling of §/L oc 1/° for the RR aspect
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ratio.

3.3.3 Two scale EMHD reconnection.

We now focus on the simulation results where electron viscosity is sufficiently small to
allow the RR half-width /2 to become smaller than d.. Panel (b) of Fig. 3.10 clearly
demonstrates that the viscous scaling applicable to the width of the reconnection in-
flow region becomes invalid for § /2 < d., suggesting that a new RR structure develops
when [, < d.. However, we note that the v,,; scaling shown in panel (c¢) of Fig. 3.10
does not appear to depend on the presence of the electron inertia for the range of
kinematic electron viscosities considered here. Similarly, the peak reconnection rate
shows little influence of electron inertia on the rate of magnetic flux passing through
the RR with and without the electron inertia effects present in the system.

Figure 3.11 shows the time evolution and the two-scale structure of the RR from
a simulation with » = 107%. During the onset of fast reconnection, the peak plasma
inflow velocity is observed to greatly increase and the inflow layer is forced to widen
due to the effects of electron inertia. At the same time, the reconnection current
channel is observed to peak and become narrower, thus separating the boundary of
the electron inflow layer from the current diffusion region. Profiles of the electron
inflow velocity and reconnection current across the RR downstream of the X-point,
at z = 0.15, show particularly dramatic scale separation: ~ d. wide inflow layer and a
much narrower sub-d, current channel embedded in another wider and weaker current
layer associated with the electron inflow layer. Thus, it is clear that in EMHD, for
sufficiently small magnitude of v, the d. scale determines the width of the inflow layer,
while kinematic electron viscosity determines the width of the reconnection current

layer.

98



E
“o | a)
-
SR A
— N e L
o0 B \.\'\.
5 [
~
> e
o <@ X
reconnection rate
e ——— half-width at half-max of J,
- half-width of inflow layer
g |
=}
S 1 1 1 1 ] 1 [«
0 5 10 15 t 20 25 30 35
—‘O 'T
_ b) —— t=28.49 C) —— t=28.49
r \\ ———-1t=30.59 o \\ ——-t=30.59
O N (s t=34.09 bl X |- t=134.09
\ \\\
RN oF AR
> \\ > AN
Al \ bl AN
3\ - AN
Al W\ _ - - - N\
N\ - e AN
W\ P T It -~
\?— \\,\\_’/ ,./'/_’ q?— \\\‘_”//
x=0.0 Y—w_ _.—-— x=0.15 N e -
Dl ! 1 1 1 1 5L | ! ' ! 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
y x10" y x107
Nl
< |
w -
< | e
— L —_"
[\
o

Figure 3.11: Results of a simulation with v = 1075, Time evolution of the reconnec-
tion rate and two measures of the RR width are shown in panel (a). Panels (b,c) show
profiles of inflow electron velocity and (d,e) of reconnection current across the RR at
two locations along the layer, z = 0.0 and x = 0.15, at three different times during the
evolution. The simulation has been conducted in a domain of size [L,, L,| = [48, §].
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Figure 3.12: Contour plots of .J,, panels (a,c), and B,, panels (b,d), around the RR
after onset of fast reconnection from two simulation runs with v = 107°, panels (a,b),
and v = 2% 107%, panels (c,d). Both simulations have been conducted in a domain of

size [L, L,| = [40, 6].
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Contours of J, and B, around the RR following the onset of fast reconnection
are shown in Figure 3.12 from two simulation runs with v = 107, panels (a,b) and
v = 2x107%, panels (c,d), both of which have [, < d.. These can be compared to panels
(c,d) of Fig. 3.8 above, where at v = 4 % 107° electron viscous and inertial scales are
about equal. Here, again, continued narrowing of the current layer with decreasing v
is apparent. But even more importantly, an instability in the outflow region of the RR
can now be observed. Absent when [, > d., more and more of the instability vortices
appear as the diffusion due to kinematic electron viscosity is decreased. The observed
vortices grow on the outflow side of the current layer gradient, are non-propagating,
and decay as the reconnection current gradient decreases. These are not signatures of
any kind of turbulence or numerical spatial resolution problems. Instead, we believe
this instability to be the one identified in Section 3.3.1 as a localized instability which
can grow on a current gradient in weak magnetic fields due to interaction of electron
inertial and ideal electron MHD effects.

Very similar signature of a d.-scale instability has been previously observed in
two-dimensional EMHD simulations of merging magnetic flux bundles by Biskamp
et. al.[19]. (See Fig. 4 of [19].) However, there, the instability mechanism was
described as a Kelvin-Helmholtz instability attributable purely to the shear in the

fluid flow and responsible for generating turbulence.

3.3.4 Discussion and conclusions from the EMHD study.

While the simulation data presented in Figures 3.8-3.12 is not sufficient to determine
the true long-term behavior of a reconnecting electron MHD system, these results
provide several important clues to understanding the dynamic evolution of the system.

We believe that the super-d, scale instability described in Section 3.3.1 above serves
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as the trigger for the onset of the RR collapse. In the absence of any magnetic
guide-field, current layer formed by the weakly non-linear tearing mode provides
sufficient current density gradient to destabilize the mode. As shown in Figure 3.6,
development of the instability leads to faster electron inflow and greater compression
of the reconnecting magnetic field lines. This, in turn, generates even stronger current
gradients, which is what accounts for the explosive character of the fast reconnection
onset. The qualitative non-linear analysis presented in Section 3.3.1 also supports
that conclusion.

Saturation of the current layer collapse and maximum achievable reconnection rate
appears to be ultimately due to the geometric effect of having to bend the inflowing
magnetic field lines in order to accomplish reconnection through a microscopic current
diffusion layer; while tension of the reconnected field lines forces the plasma outflow
to accelerate to the maximum velocity allowable by the electron viscous forces and
therefore maximally reduce the current layer length. The main evidence for such a
conclusion comes from the Sweet-Parker-like arguments presented in Section 3.1.2
and observed independence of both the maximum reconnection rate and the current
layer aspect ratio from the magnitude of electron viscosity.

Following saturation of the collapse, observed reduction in the reconnection rate is
attributable to the relaxation of the reconnecting X-point configuration and resulting
decrease in the magnitude of the inflowing B-field. Such relaxation continues until
the effect of the periodic boundary in the outflow direction comes into play. Then,
the formation of large electron flow vortices on the system-length scale leads to the
feedback of electron outflows accelerated by the reconnection back into the RR inflow,

thus forcing the reconnection rate to stay higher than it would in a completely open

102



EMHD system.

Most of these conclusions remain valid when the scale of the current diffusion
region becomes smaller than the electron inertial scale and the RR exhibits a two-
scale structure. While plasma inflow is slowed down by the inertial effects, tension in
the reconnected field lines continues to accelerate plasma out of the current diffusion
layer up to the maximum velocity allowed by the viscous effects. It has to be noted
that for sufficiently small electron viscosity, the maximum outflow velocity has to
be limited by the electron Alfvén speed and not the viscous effects. This follows
both from simple energy conservation considerations as well as the scalings presented
in Fig. 3.10. Though for such small kinematic electron viscosities the structure of
the EMHD reconnection current layer begins to resemble that of resistive MHD —
with diffusion controlling the width of the current layer and inertia controlling the
maximum outflow velocity — several important differences remain. In particular,
upstream of the current layer the magnetic field is not frozen into the plasma fluid and
poloidal flow through the current layer itself carries poloidal plasma current. While
this parameter regime is outside the scope of the present work, detailed numerical
studies of the electron diffusion region in such absolutely collisionless regime have
recently been conducted by Daughton et. al.[42, 81| with a fully kinetic code.

Finally, clear signature of a localized non-propagating d.-scale instability on the
outflow slope of the reconnection current layer, where magnetic field is weak, and
its distinct absence on the inflow side of the current layer or outside of the region
of strong current gradients — justify the analytic arguments made in Section 3.3.1.
This also provides additional support for our argument that it is the current gradient

driven instability that triggers onset of fast reconnection, as described above.
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3.4 Magnetic reconnection in a two-fluid system.

Having considered both visco-resistive and electron single fluid MHD models, we
now study MR in a two-fluid system represented by the Hall MHD model. The
main goal of this study is to understand how a tearing-unstable two-fluid ion-electron
plasma system, where the ion-electron scale separation is much smaller than either
the dimensions of the domain or the gradient scale of the initial condition, evolves in

time.

3.4.1 Hall MHD model.

Several code verification calculations with two different Hall MHD models have al-
ready been described in the Section 2.2.4. In general, a normalized two-fluid system

of equations with axial symmetry is given by:

dp

a%—V-(pvi):O
8(gzi)+v' [pvivi+(p+%2>l[—BB+Hi+He —0
%1—1%]16 v (vjilpeque) Ve Ve IRV G
%+%[2.(V.H6—R)]:—2-VEXB
a£Z+v- {viBz—Bvez—k%éx (Vpe+V-H€—R)] :diBzé-w,

where electron inertia terms have been neglected, 7;/e, Qi/e, Qi/e. 1%/ are ion /electron
adiabatic constant, heat flux, heating, and stress tensor terms, R is the electron to

ion momentum transfer term, p = p; + p., B=2x Vi + 2B,, d;V x B = p(v; — v,),
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and d; = (¢/wy;)/Ly is the normalized ion skin depth. In Hall MHD, in order to
simplify the system, it is common to evolve only a single pressure[53, 73| by assuming
either a very fast heat exchange and equilibration mechanism or one of the species to
be much colder than the other. In doing so, we let p. = ap, where 0 < o < 1.

A dispersion relation for the Hall MHD system of equations can be derived in
uniform magnetic field with normalized uniform background density py = 1 and
total pressure pg, by neglecting all of the non-ideal terms in the equations above:
' =1I° =Q; = Q. = q; = q. = R = 0. Let the perturbation wave vector k
define the z-direction, & = ée“’“—wt), and the background magnetic field By lie in the
[z, 2)-plane and be normalized in such a way that k- B/k = 1, i.e. By = 12 +b,2.
Then, assuming the pressure to be convected by the ion fluid, the following dispersion

relation results:
O — QO (B2 + B+ 24+ k) + QP [L+ 02 + B2+ d2k)] — B =0, (3.4.1)

where QQ = w/k and 3 = ~;po. Note that here 3 is normalized to the poloidal magnetic
field and b, is a measure of the strength of the magnetic guide-field relative to the
poloidal magnetic field.

It is apparent that the Eq. (3.4.1) has three pairs of roots. One of them, in the
limit of d; — 0, is the slow magnetosonic wave, which for d; ~ 1 is found to have
phase velocity €25 go to zero for & — oo. We now consider how the other two pairs of
waves — the shear Alfven (