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Abstract

Numerical study of plasma relaxation and self-organization in two-dimensional incom-
pressible magnetohydrodynamic (MHD) systems is presented. A large semi-periodic
tearing unstable reversed magnetic �eld con�guration in �at Cartesian geometry and
a driven tokamak-like kink-unstable screw pinch in helical geometry are considered.
Special emphasis is made on the coupling between global and local scales by way of
magnetic reconnection. The in�uence of the global system's size and geometry on
the magnetic reconnection phenomenon and associated current sheet dynamics are
evaluated in di�erent collisionality regimes. Questions of plasmoid formation by way
of current sheet break-up and onset of fast reconnection in a semi-collisional regime
are investigated. Visco-resistive, electron and Hall MHD plasma �uid models are
employed in the study. In helical geometry, application of Ohmic current drive to
the periodic screw-pinch with large axial magnetic �eld and hollow resistivity pro�le
are shown to result in �sawtooth-like� limit cycle behavior which is independent of
the exact initial conditions. Incomplete reconnection sawteeth, maintaining the value
of safety factor q in the central plasma region below unity throughout the cycle, are
demonstrated for the �rst time in numerical simulations. Sensitivity of sawtooth char-
acteristics to a number of plasma parameters is evaluated. The initial value problems
described above are solved with an adaptive fully implicit parallel macroscopic model-
ing code SEL, which is capable of evolving a large range of extended MHD equations.
The structure, key features, and thorough testing of the code are described in detail.
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�A conclusion is the place where you got tired of thinking.�
Matz's Maxim
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Chapter 1

Introduction

In the last few decades, it has been increasingly recognized that �complexity� and the

laws that govern the behavior of complex systems are no less fundamental than those

which describe its elementary constituents and the ways in which the constituents

interact. In fact, the idea of self-organization, the central concepts in the study of

complexity, was �rst proposed by a cyberneticist, W. Ross Ashby[3], and the �eld has

since consisted of an inter-disciplinary collection of contributions from a wide range

of scienti�c �elds � from mathematics, to biology and sociology[71, 103].

Starting with the work by Maxwell, Boltzmann and others in the mid-19th century,

physicists began to study the complexity of the collective behavior of a large set

of known particles interacting individually via a set of known forces. Statistical

mechanics, kinetic theory of gases, solid state physics are all areas of the current

physics research rooted in these early works. Likewise, the �eld of plasma physics

concerns itself with describing the behavior of a large set of charged unbound particles

(a plasma) interacting microscopically via electro-magnetic forces among themselves

and, often, macroscopically with self-generated and externally imposed electric and

magnetic �elds.
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Magnetized plasma is a prototypical complex system in the realm of physics, and

self-organization is known to be a very important and often necessary component in

the system's evolution (see Sato[130] and references therein). In this Dissertation,

we numerically study a two-dimensional helical magnetohydrodynamic (MHD) sys-

tem that manifestly exhibits self-organization dynamics; and, in detail, the physical

process that allows it to take place � magnetic reconnection.

1.1 Magnetic reconnection

The phenomenon of magnetic reconnection, observed under many di�erent conditions,

is one of the key physical processes that allow coherent self-organization and relaxation

on time-scales faster than the global dissipation time in magnetized plasmas.

What is magnetic reconnection? One could describe it as local recon�guration

and annihilation of magnetic �eld resulting in relaxation of the global topology of the

magnetic con�guration and transfer of the energy stored in the magnetic �eld into

the kinetic and thermal energy of the plasma.

In the ideal MHD approximation of a magnetized plasma, Lorentz force perfectly

binds both ions and electrons to magnetic �eld-lines by assuming the Larmor radii of

particles' gyration around the �eld-lines to be in�nitely small. Then, Faraday's law

insures that the magnetic �eld-lines move together with the quasi-neutral plasma �

i.e., magnetic �eld is �frozen� into the plasma �uid when collisional and inertial e�ects

are ignored. As a result, ideal MHD allows no change in the topology of magnetic

�eld immersed in plasma �uid and is therefore incapable of describing the process of

magnetic reconnection.

In order to allow the magnetic �eld to reconnect, dissipative and other physical
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processes that become important locally on spatial scales smaller than the system

size have to be included in the plasma description. Depending on the magnitude

of the ambient magnetic �eld, surrounding plasma temperature and density, various

�non-ideal� e�ects can become the main mechanism for breaking the magnetic �eld

lines. These include, but are not limited to � collisional resistivity, inertial separation

of ion and electron �uids due to their mass density di�erence, anisotropy due to �nite

ion and electron Larmor radius e�ects, and combinations thereof.

Below, we brie�y describe what is known to date about the magnetic reconnection

phenomenon.

1.1.1 Observations of magnetic reconnection.

In nature, the phenomenon has been directly measured in the solar wind[118], the

Earth's magnetotail[105] and magnetopause[54, 148]. There is much evidence that

magnetic reconnection is responsible for the generation and evolution of solar �ares[92,

101] and coronal mass ejections (CMEs)[91], while it has also been proposed as the

mechanism for solar coronal heating[50]. And although presently there is much less

astrophysical data available, magnetic reconnection processes have been conjectured

to play an important role in heating of the interstellar, intergalactic and intracluster

media, acceleration and relaxation of jets, and dynamics of accreting systems[58, 36].

In the laboratory environment, and particularly in toroidal magnetic fusion de-

vices, magnetic reconnection has been identi�ed as one of the most important mech-

anisms of energy redistribution and magnetic �eld relaxation[26, 131]. While it often

has the destructive e�ect of ruining the magnetic con�nement[59], it has also been

proposed as a mechanism that is active in non-inductive coaxial helicity injection

current drive[123]. Signatures of magnetic reconnection, such as the formation of a
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�nite amplitude current sheet which is spatially and temporally correlated with mag-

netic �eld recon�guration and/or plasma heating has also been directly observed in a

reversed-�eld pinch[41], �eld-reversed con�gurations(FRC)[38, 106, 140], spheromak

interactions[27, 107], and reconnection-focused experiments[39, 48, 56, 158].

The plasma conditions under which reconnection is observed could not be more

diverse. In the Earth's magnetotail and plasma sheet, plasma number density n is

of order .1cm−3, electron (Te) and ion (Ti) temperatures are of order 100eV and

103 − 104eV , respectively, magnetic �eld B outside of the reconnection region is

about 10−4G, and the scale size of the system is about 104 − 105km[49]. With these

parameters, Debye length is λD ≈ .1 − 1km, electron gyroradius is ρe ≈ 1 − 10km,

ion gyroradius and ion skin depth are ρi ≈ (c/ωpi) ≈ 103km, electron mean free

path (mfp) is λe ≈ 1011km, and ion mfp is λi ≈ 1015km. Under such conditions,

essentially no assumptions about the degree of plasma isotropization can be made.

Furthermore, because the mfp for both electrons and ions is so much longer than

the system size, no obvious mechanism for magnetic energy dissipation is available �

magnetic reconnection under these conditions is called collisionless reconnection.

On the other hand, the environment of the solar corona, where the solar �ares are

observed, is distinctly di�erent: n ≈ 109− 1011cm−3, Te ≈ Ti ≈ 100 eV , reconnecting

magnetic �eld B ≈ 103G and the scale size L ≈ 105 − 106km[104]. These give the

ion and electron mfp of λe ≈ λi ≈ 1 − 10km, which is much less than the system

size; and ρe ¿ ρi ¿ (c/ωpi) ≈ 1m, which implies that while one still has to treat the

ion and electron �uids separately (i.e. include the two-�uid e�ects), certain degree of

plasma isotropization can be assumed. Yet another parameter regime is observed in

the solar photosphere, where the solar �are and CME generation is presumed to take
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place. There, plasma number density is about 1014cm−3 and Ti ≈ Te ≈ 1eV [104],

which implies that λe ≈ λi ≈ 10−2 − 10−1cm. Assuming the magnetic �eld strength

of the emerging �ux ropes to be about the same as in the corona, we observe that

in the solar photosphere λi ∼ ρi < (c/ωpi) ¿ L, which implies that the plasma is

collisional and a single-�uid resistive MHD description may su�ce.

In a typical large tokamak plasma, such as the Joint European Torus (JET)

tokamak, the system scale is approximately 1 − 5m, plasma number density n ≈
1 − 5 ∗ 1014cm−3, toroidal magnetic �eld B ≈ 104 − 105G and plasma temperature

varies from Te ≈ Ti ≈ 1 − 5 keV in the tokamak core to near room temperature at

the walls[89]. In the tokamak core region, these plasma parameters translate into

ρe ≈ 2.5∗10−3cm, ρi ≈ 0.1cm, (c/ωpi) ≈ 1.5cm, and λe ≈ λi ≈ 500m, with rising col-

lisionality and falling ion and electron mfp and Larmor radii towards the plasma edge.

While strongly anisotropic and collisionless in the direction parallel to the dominant

toroidal magnetic �eld, these parameters show that in the poloidal plane tokamak

plasmas are very well bound to the magnetic �eld. Yet, since (c/ωpi) À ρi À ρe,

local two-�uid e�ects should not be ignored and can play an important role in internal

reconnection events of the tokamak core.

In addition, we note that unlike the plasmas of Earth's magnetosphere and solar

corona and photosphere, magnetic �eld con�guration of a tokamak, particularly an

idealized tokamak, is a closed and periodic system. This, in itself, may have important

consequences for the dynamics of magnetic reconnection, as we show in Chapter 4

below.
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1.1.2 Phenomenology of magnetic reconnection.

Though magnetic reconnection is undoubtedly a three-dimensional (3D) phenomenon,

to date, no agreed upon true 3D phenomenological description of magnetic reconnec-

tion exists in the community. Since in this work we investigate only two-dimensional

(2D) systems, here we limit the discussion to that of 2D magnetic reconnection, as

well.

Two phenomenological descriptions of 2D steady-state magnetic reconnection in

the resistive MHD limit were proposed early on. One, by Sweet[141] and Parker[115],

known as Sweet-Parker reconnection, describes evolution of a long and thin current

layer, whose length is of the order of the system size and width is proportional to

square root of resistivity. The other, by Petschek[116], proposed a localized recon-

nection region (Petschek proposed that such localization would be accomplished by

slow shocks along the magnetic �eld separatrices) which would allow for faster plasma

in�ow and faster reconnection of magnetic �eld lines. The Sweet-Parker description

of resistive reconnection has been con�rmed by numerous numerical simulations (for

example, see Uzdensky and Kulsrud[147]), however its predicted reconnection rate is

too slow for that observed both in space[13] and in laboratory experiments[39, 158].

On the other hand, while there is no experimental or computational evidence of

slow shocks emanating from the reconnection region, as proposed by Petschek[116],

localization of the reconnection layer appears to be the key to the so-called �fast recon-

nection�, which allows for release of magnetic energy in a period of time consistent with

observations[90, 134]. Numerical simulations have con�rmed that both of the mech-

anisms proposed to produce such localization � instability-induced locally enhanced

resistivity[95] and two-�uid and/or kinetic e�ects[13] � lead to fast reconnection[25].
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(Presence of ambient �guide� magnetic �eld appears to somewhat slow down but does

not qualitatively change the character of two-�uid reconnection [73, 142].) There is

also experimental evidence to support both models[148, 78, 124, 97].

However, despite numerous and primarily numerical publications on the subject,

understanding of the fast reconnection phenomenon is still incomplete. In particular,

a self-consistent description and understanding of the evolution of the laminar recon-

nection layer in the two-�uid regime is distinctly lacking. In this work, we attempt

to advance the understanding of the fast reconnection phenomenon and its relevance

to the self-organization dynamics observed in toroidal magnetic fusion devices.

1.2 Internal kink mode and sawtooth oscillations.

The m=1 internal kink mode has long been considered to be either the direct cause

or at least a major component in the dynamics of the so-called sawtooth oscillations

in tokamaks (see [67, 98, 149] and references therein). Beginning with linear growth

rate calculations for the ideal[28, 129], resistive[37] and visco-resistive [5, 119] internal

kink modes (from here on, unless stated otherwise, it will be assumed that m=n=1

mode is being considered), a large body of work exists on the subject.

There is consistent experimental evidence that the internal kink mode and/or some

other m = n = 1 plasma activity play an important role in the onset of sawtooth

oscillations[46, 47, 64, 111, 152]. Its primary manifestations in rotating tokamak plas-

mas are the appearance of the so-called pre-cursor oscillation in stationary diagnostics

with a period corresponding to a single plasma rotation and measurements of per-

turbations localized to the q = 1 rational surface prior to the sawtooth temperature

crash itself.
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Multiple phenomenological theories with some support from analytical and nu-

merical calculations have been proposed as to how the small m=n=1 island develops

and/or couples to the rest of the plasma in such a way that the tokamak core con�ne-

ment is rapidly lost and temperature crash can occur [7, 16, 17, 45, 46, 69, 79, 80, 85,

88, 120, 150, 159]. These are primarily based on the original complete resistive recon-

nection model by Kadomtsev[79], where the plasma core is assumed to reconnect out

completely, thus leading to the loss of temperature con�nement. The two main points

of disagreement of the Kadomtsev theory with the experimental observations � loss of

con�nement on time-scales much faster than resistive Sweet-Parker reconnection and

little change in the toroidal current pro�le relative to that expected from complete

reconnection � are what all of the following theories have attempted to remedy. It

has been shown that the former could possibly be recovered when the geometric and

relevant collisionless e�ects are included in the analysis. However, with the notable

exception of the work by Dubois et. al.[45, 46] where onset of kinematic plasma tur-

bulence around an m = n = 1 island was proposed to be responsible for both loss

of con�nement and stabilization of the internal kink at small amplitude, none of the

other theories have suggested a mechanism for preventing complete core reconnec-

tion in any appreciable fraction of the plasma parameter space in which sawtooth

oscillations are observed.

A number of numerical simulations of the internal kink mode and sawtooth oscilla-

tions with various degrees of sophistication, physical models and simplifying assump-

tions have also been conducted in the attempts to understand the experimentally

observed sawtooth dynamics [4, 5, 6, 18, 44, 112, 114, 127, 143, 145, 146, 160, 161].
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These fall into two categories: (1) resistive and two-�uid simulations of a single in-

ternal kink reconnection event from a somewhat arbitrary ideally unstable initial

condition; and (2) resistive long-term sawtooth simulations in 2D and 3D, includ-

ing toroidal e�ects, anisotropic heat conduction, resistive plasma heating and tem-

perature dependent Spitzer resistivity. Simulations in the �rst category have been

able to demonstrate that fast reconnection might account for the observed sawtooth

crash rates by including various two-�uid e�ects � Biskamp et.al.[14, 17], Aydemir[6],

Rogers and Zakharov [127], Zhukov[160, 161] by including electron inertia and the

Hall term [(di/ne) ∗ (J ×B −∇pe)], and Aydemir[5], Rogers and Zakharov[127], and

Zhukov[161] by including electron viscosity in place of the resistive dissipation. Fur-

thermore, Biskamp and Sato[18] have shown that strong diamagnetic rotation can also

stabilize the internal kink mode in the two-�uid regime resulting in partial reconnec-

tion of the plasma core. (The conditions for that to happen require large equilibrium

density gradients within the q = 1 surface, which are not generally expected to be

there.) However, simulations in the second category have consistently predicted com-

plete Kadomtsev reconnection sawteeth with crash times too long relative to the

experimental measurements [4, 44, 114, 143, 146]. There is also no computational

con�rmation of the Dubois kinematic theory[45, 46] described above.

Thus, no coherent conclusion on the role of the internal kink mode in the sawtooth

cycle has been achieved to date. Two review papers by Migliuolo[98] and Hastie[67]

and several of the latest publications[7, 18, 111, 161] summarize the extent of the

present understanding of the internal kink mode dynamics and its role in the tokamak

sawtooth oscillations.

In this work, we do not attempt to fully resolve the relationship between the
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observed development of the internal kink mode and sawtooth oscillations. If the

present state of understanding is to be a guide, such an attempt would require a full 3D

toroidal simulation that allows for non-linear coupling between multiple helical modes

and a possibility of kinetic extensions appropriate to highly collision-less plasmas

that exist in the hot tokamak core, both of which are beyond the scope of this work.

Instead, we attempt to characterize the evolution of the internal kink mode and

investigate the possibility of sawtooth generation in 2D helical geometry (i.e. without

3D mode coupling) within a minimal model that allows for self-organization of a

magnetized screw-pinch[51]. These studies are done both within the single-�uid visco-

resistive and the two-�uid incompressible models, thus, for the �rst time, evaluating

some of the e�ects of fast two-�uid reconnection on sawtooth dynamics.

1.3 Numerical methods.

The main numerical tool with which we achieve the above described goals is the new

adaptive parallel spectral element macroscopic modeling code SEL[61]. SEL employs

an adaptive implicit time-stepping and adaptive grid techniques with high order C0

spectral element representation[70, 82] of the quantities being evolved in time. These

allow for e�cient and precise modeling of systems with disparate spatial and temporal

scales, including those with dispersive waves which are characteristic of the two-�uid

MHD systems.

The code is capable of following very sharp features of the solution in time by con-

centrating the grid where necessary using the harmonic grid generation techniques[93].

And the adaptive time-step used by the code is limited only by the non-linear dy-

namics of observable changes to the solution. The general �ux-source formulation of
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partial di�erential equations (PDEs) that can be solved by and the modular struc-

ture of the code also allow for a large variety of physical systems to be studied with

SEL without any modi�cations to the core numerical scheme itself. We take exten-

sive advantage of this feature for solving a number of di�erent PDE systems in the

simulations described below.

As shown in Chapter 2 below, SEL is non-dissipative and has been thoroughly

tested both in linear and non-linear regimes.

1.4 Outline of the Dissertation.

We now brie�y outline the content of this Dissertation.

In Chapter 2, we in detail describe the numerical techniques of and both linear

and non-linear veri�cation studies conducted with the SEL code. We conclude that

its accuracy is more than adequate for the long time-integration of strongly non-linear

single and two-�uid MHD simulations it is used for in the later chapters.

In Chapter 3, we qualitatively describe the structure of a reconnection region and

then proceed to model a large scale semi-open tearing unstable magnetic �eld con-

�guration in the visco-resistive, electron and two-�uid (Hall) MHD systems. Well

known visco-resistive result � slow Sweet-Parker reconnection through a macroscopic

system-size current layer � is reproduced. In electron MHD (EMHD), observed struc-

ture and scalings of characteristic quantities of a microscopic EMHD reconnection

region are shown to agree with the derived qualitative estimates. Width of the elec-

tron current layer is shown to be determined by electron viscosity, not electron inertia,

and observed electron current layer instability is derived and numerically con�rmed

to be due to the interaction of electron inertia and frozen-in magnetic �eld e�ects,
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not Kelvin-Helmholtz instability of the sheared electron �ow, as has been suggested

previously[18].

In Hall MHD, in the semi-collisional regime, the reconnection region is shown to

allow three di�erent solutions: large aspect ratio system-size quasi-resistive reconnec-

tion region, localized X-point microscopic reconnection region, and an intermittent

solution of a plasmoid formation unstable electron current layer embedded within

a system-size reconnection region. The intermittent solution that we �nd to lie in

between the quasi-resistive and X-point magnetic reconnection con�gurations is dis-

tinctly di�erent than that recently reported in the literature[33]. Based on these and

other reported two-�uid and collisionless particle simulation results, we propose an

explanation for the numerically observed structure of a two-�uid reconnection region

� 2-scale in the out�ow direction and 4-scale in the in�ow direction, and a general

principle that determines the dynamics, the structure and the rate of magnetic re-

connection in both collisional and collisionless systems.

In Chapter 4, we study an internal kink unstable helical screw-pinch system in

an incompressible cylindrical tokamak approximation. Ideal and resistive linear and

visco-resistive and Hall MHD non-linear simulations of the ideally unstable internal

kink mode are shown to reproduce the known asymptotic analytical and previous

numerical results. Over a longer time-integration period in driven systems with as-

sumed hollow resistivity pro�le, sawtooth oscillations and relaxation of the magnetic

�eld con�guration is observed. Relying on similar results in simulations of reversed

�eld pinches, clear evidence of self-organization of a tokamak-like magnetic �eld con-

�guration is identi�ed for the �rst time. Furthermore, for the �rst time, simulations

of m = 1 sawteeth which exhibit incomplete reconnection of the plasma core and
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maintain q < 1 throughout the cycle are demonstrated.

During both the ideally unstable internal kink and the following sawtooth oscil-

lations, the coupling between the structure of the reconnection region and the global

magnetic �eld con�guration is emphasized and shown to play an important role in

determining the observed reconnection rates. The results are well understood in the

context of the visco-resistive and two-�uid magnetic reconnection simulations de-

scribed in Chapter 3. In particular, during the sawtooth oscillations, presence of the

Hall physics in shown to accelerate the non-linear development of the internal kink

mode, while having little e�ect on the dynamics and time-scales observed during the

remainder of a sawtooth cycle.

Finally, in Chapter 5, we conclude with a discussion of the results and future

directions of the work described in this Dissertation.
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Chapter 2

Numerical Tool

In this chapter we describe the framework of and some of the milestones achieved

by the macroscopic modeling code SEL employed for all of the numerical simulations

described in this Dissertation. The code has been co-developed by A.H. Glasser of

Los Alamos National Laboratory and V.S. Lukin.

2.1 The SEL Framework
2.1.1 Generalized �ux-source formulation.

Here, a generalization of the �ux-source formulation[61] of a set of partial di�erential

equations (PDEs) is presented. The �ux-source form allows for solving a large family

of initial and/or boundary value problems describable by appropriate systems of PDEs

within the same SEL framework, while only a minimal e�ort is necessary to add any

new system of PDEs to be solved by the code. The generalized formulation described

below adds to this capability by allowing for the computation to proceed on a 2D

logically rectangular computational domain of arbitrary shape and curvature, thus

allowing for adaptive grid re-mapping and a wider variety of physical domain shapes.

Any system of coupled PDEs to be evolved in time by SEL has to be expressible
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in the following general �ux-source form as some M number of PDEs of M physical

variables {U i(~x)}i=1,M (e.g. density, magnetic �ux, etc.):
{ ∑

i=1,M

Aki ∂U i

∂t
+∇ · ~F k = Sk

}

k=1,M

(2.1.1)

~F k = ~F k(t, ~x, {U i}i=1,M , {∇~xU
i}i=1,M)

Sk = Sk(t, ~x, {U i}i=1,M , {∇~xU
i}i=1,M),

where Aki = Aki(~x) , ~F k, and Sk are arbitrary functions of the given variables and

~x = (x, y) denotes a two-dimensional point vector in the physical metric space X in

which PDEs are expressed. (Such as Cartesian, polar, or helical coordinate systems.)

In order to show how this general form is discretized over any logically rectangular

domain, we consider a single PDE of the form of Eq. (2.1.1) and therefore drop the

superscript k. The extension to any M number of PDEs is straightforward.

In any curvilinear metric space Ξ, an equation of the form of Eq. (2.1.1) can be

expressed as:

A
∂U

∂t
+∇ · ~F = S => JA

∂U

∂t
+

∂

∂ξi
(J ~F · ∇ξi) = J S, (2.1.2)

where {ξi} = (ξ, η) are the coordinates of Ξ in which calculations are performed and

J (ξ, η) ≡ (ẑ · ∇x ×∇y)(ẑ · ∇ξ ×∇η)−1 is the Jacobian of the transformation from

X to Ξ. (Note, in the equation above and everywhere below we assume the usual

Einstein summation convention.) For the time being, we assume that x = x(ξ, η) and

y = y(ξ, η) are known � we come back to this point in Section 2.1.5.

In order to be able to evaluate Eq. (2.1.2), it is necessary to know the coordinate

transformation ∇ξi = (∂ξi/∂xj)∇xj:

∇ξ =
∂ξ

∂x
∇x +

∂ξ

∂y
∇y, ∇η =

∂η

∂x
∇x +

∂η

∂y
∇y,
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where expressions (∂ξi/∂xj) have to be evaluated in Ξ. In order to do so, we note

that

J =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
=

[
∂ξ

∂x

∂η

∂y
− ∂ξ

∂y

∂η

∂x

]−1

.

As a demonstration, we �nd an expression for (∂ξ/∂x) as a function of (ξ, η) and J .

From
∂η

∂η
= 1 =

∂η

∂x

∂x

∂η
+

∂η

∂y

∂y

∂η
,

we have:
∂ξ

∂x
=

∂ξ

∂x

(
∂η

∂x

∂x

∂η
+

∂η

∂y

∂y

∂η

)
= J −1 ∂y

∂η
+

∂η

∂x

(
∂ξ

∂x

∂x

∂η
+

∂ξ

∂y

∂y

∂η

)

= J −1 ∂y

∂η
+

∂η

∂x

∂ξ

∂η
= J −1∂y(ξ, η)

∂η
. (2.1.3)

Having the coordinate transformations at hand, the rest of the computations are

done in the Ξ metric space. We call Ξ the logical space, as the computational domain

in Ξ is a square (ξ, η) ∈ ([0, 1]× [0, 1]) with grid distributed uniformly in ξ and η. A

mappings (M : Ξ → X ) then allows the computational domain in the physical space

to have an arbitrary shape and curvature of the grid, as long as its topology can be

reproduced by identifying corresponding edges of a structured square grid.

2.1.2 Spatial discretization.

SEL's computational domains are spatially discretized using the method of spec-

tral/(hp) elements[70, 82]. High order spectral element (or similarly �nite element)

representation combines the �exibility of an adaptable grid that can be shaped to

�t any given physical domain and parallelization by domain decomposition with the

exponential spatial convergence and low arti�cial wave dispersion of purely spectral

codes. Its basic premise is to have a relatively coarse grid of cells (elements) with sep-

arate high order polynomial expansions within each cell. Thus, each basis function of
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the overall expansion is identically zero in all but one or at most several neighboring

cells. The exact set of basis functions and their coupling across the cell boundaries

can vary. Among the codes presently employed or being developed in the extended

MHD community, M3D-C1 code[76] uses a set of C1-continuous �nite elements which

are constrained to be di�erentiable as well continuous across the cell boundaries, while

NIMROD code[139] uses a set of C0-continuous �nite elements which only guarantee

the continuity of the solution, but not of its gradients across the cell boundaries.

The set of basis functions presently implemented in SEL is the C0-continuous set

of spectral elements {Λi} given by Jacobi polynomials[1] (See Figure 2.1), where all

but the linear basis functions identically vanish at the cell boundaries. The linear

basis functions are the only ones that provide the continuity of the solution and the

coupling between the cells in each direction. Representation in ξ and η directions

of the logical grid described above is done separately with the complete basis of

2D functions formed by the set of non-zero Cartesian products of two unidirectional

basis functions αk(ξ, η) = Λi(ξ)Λj(η). Any physical variable U(t, x(ξ, η), y(ξ, η)) is

expanded in αi(ξ, η) and time-dependent amplitudes ui(t):

U(t, ~x) = ui(t)α
i(ξ, η)

Ux(t, ~x) = ui(t)

[
∂αi

∂ξ

∂ξ

∂x
+

∂αi

∂η

∂η

∂x

]

Uy(t, ~x) = ui(t)

[
∂αi

∂ξ

∂ξ

∂y
+

∂αi

∂η

∂η

∂y

]
.

We note that x(ξ, η) and y(ξ, η) can be represented similarly as:

x(ξ, η) = xiα
i(ξ, η),

∂x

∂ξ
= xi

∂αi

∂ξ

∂x

∂η
= xi

∂αi

∂η
, etc.

Thus, if at some time t0 during a simulation it becomes desirable to move the calcu-

lation from a grid in the physical space represented by a mapping (M : Ξ → X ) to
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Figure 2.1: A one-dimensional illustration of spectral element basis functions Λi used
in SEL. Shown are two neighboring cells with Jacobi polynomial {Λi}i:0,np=8 basis
functions in each cell: Λ0 = (1 − x̄)/2, Λnp = (1 + x̄)/2, and Λi = (1 − x̄2)P

(1,1)
i (x̄),

for i = 1, np − 1. In these de�nitions, x̄ ∈ [−1, 1] is renormalized from x ∈ [x0 +
nδx, x0 +(n+1)δx]. Note that Λnp from a cell on the left is joined with Λ0 of the cell
on the right to form a single basis function to insure continuity, while all other basis
functions vanish at x = x0 + δx.

a new grid represented by a new mapping (M′ = LM : Ξ → X ), where L is some

mapping (L : Ξ → Ξ); U(t0, x, y), x(ξ, η), and y(ξ, η) would all be remapped in the

same manner.

Finally, Eq. (2.1.2) can be rewritten as:

JA
∂U

∂t
+

∂

∂ξ

[
(~F · ∇x)J ∂ξ

∂x
+ (~F · ∇y)J ∂ξ

∂y

]

+
∂

∂η

[
(~F · ∇x)J ∂η

∂x
+ (~F · ∇y)J ∂η

∂y

]
= J S. (2.1.4)

Reformulating the equation in the weak form and de�ning Fxi ≡ ~F · ∇xi, we have:
{
Mjiu̇i ≡ (αj,JAαi)u̇i =

∫
J dξdη

[
Sαj + Fx

(
∂ξ

∂x

∂αj

∂ξ
+

∂η

∂x

∂αj

∂η

)

+Fy

(
∂ξ

∂y

∂αj

∂ξ
+

∂η

∂y

∂αj

∂η

)]
+ boundary ≡ rj (t, {uk}k=1,N)

}

j=1,N

, (2.1.5)
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where N is the size of the spectral element basis and therefore is the number of degrees

of freedom in this time-dependent vector equation.1

With the derivation above, we have shown how the generalized �ux-source formu-

lation allows for advancing spatially discretized set of PDEs in an arbitrary logically

rectangular domain, while the physical equations can be speci�ed in an unrelated co-

ordinate system most convenient for one's particular application. We note that �uxes

Fx, Fy and sources S completely specify the physics of any given problem, coordinate

transformation maps x(ξ, η) and y(ξ, η) specify its geometry, and with those as input,

Eq. (2.1.5) contains all necessary information about SEL's spatial discretization to

have the solution advanced in time. Such separation of physics, geometry and solution

algorithm is the key to the structural organization of the SEL code.

2.1.3 Adaptive temporal advance algorithm.

The implicit temporal advance in SEL is generally accomplished by the Newton-

Krylov iterative method[61]. However, like the rest of the code, the time-advance

module of SEL is designed to be easily modi�able for any number of particular

time-discretization schemes. The principle time-dependent equation to be solved is

Eq. (2.1.5), which can be written as a vector equation:

Mu̇ = r(t,u). (2.1.6)

Presently, two well known algorithms are implemented to solve Eq. (2.1.6): the Θ-

scheme, with an adjustable time-centering parameter θ; and a 2nd order backward dif-

ferencing formula (BDF2)[8]. Below, we brie�y outline each of the time-discretization
1For a system of M PDEs on a logical grid with nx and ny cells in x- and y-directions, respectively,

and polynomial basis expansion up to the np-th order, the total number of degrees of freedom is
N = M ∗ nx ∗ ny ∗ n2

p.

19



schemes. We then describe the implementation of the Newton-Krylov iterative ad-

vance itself and the adaptive time-stepping algorithm.

Θ-scheme:

Equation (2.1.6) is discretized as:

M
(

un+1 − un

h

)
= θr

(
tn+1,un+1

)
+ (1− θ)r (tn,un) , (2.1.7)

where h ≡ δtn+1 = tn+1 − tn is the size of the (n + 1)-st time-step. With θ = .5,

the Θ-scheme is known as the Crank-Nicholson method and is an implicit second

order non-dissipative time-discretizetion method. Unless stated otherwise, all of the

simulation results presented in this Dissertation were computed by advancing PDEs

describing appropriate physical systems with the Crank-Nicholson method. However,

with θ as a run-time input parameter, both θ = 0 explicit and θ = 1 �rst order

dissipative implicit methods have been used for purposes of testing the code.

In order to solve Eq. (2.1.7) for un+1 by Newton's iterations, an initial guess is set

to un+1
0 ≡ un, the change in the solution being sought is denoted by δui ≡ un+1

i+1 −un+1
i ,

the residual R is de�ned as

R
(
un+1

i

) ≡Mδui − h
[
θr

(
tn+1,un+1

i

)
+ (1− θ)r (tn,un)

] → 0, (2.1.8)

and the Jacobian of the iteration is de�ned as

Jij ≡Mij − hθ

{
∂ri

∂uj

}

t=tn+1,u=un

. (2.1.9)

BDF2 scheme:

Equation (2.1.6) is discretized as:

M
(

un+1 − aun + bun−1

h

)
= rn+1, (2.1.10)

20



where

a ≡ (δtn + δtn+1)
2

δtn (δtn + 2δtn+1)
,

b ≡ (δtn+1)
2

δtn (δtn + 2δtn+1)
,

h ≡ δtn+1 (δtn + δtn+1)

(δtn + 2δtn+1)
,

δtn = tn − tn−1, and δtn+1 = tn+1 − tn. Here, an initial guess is set to un+1
0 ≡

aun−bun−1, change in the solution is again δui ≡ un+1
i+1 −un+1

i , the residual is de�ned

as

R
(
un+1

i

) ≡Mδui − hr
(
tn+1,un+1

i

) → 0, (2.1.11)

and the Jacobian of the iteration is

Jij ≡Mij − h

{
∂ri

∂uj

}

t=tn+1,u=un

. (2.1.12)

Like Crank-Nicholson, BDF2 is also a second order time-discretization method. How-

ever, straightforward analysis of Equation (2.1.10) demonstrates that BDF2 damps

high time-frequency modes of the solution, thus providing numerical dissipation in the

algorithm. When using the BDF2 scheme, we resolve the issue of the �rst time-step

by making the �rst time-step with the Θ-scheme, and then taking the initial condition

and the �rst time-step as the (n−1)-st and the n-th values of u, respectively. We also

note that Eqs. (2.1.10)-(2.1.12) explicitly allow for δtn+1 6= δtn, which is necessary to

have an adaptive time-stepping algorithm.

Using either of the time-discretization schemes described above, time advance is

accomplished by iterating on:

Ri + Jδui = 0 → δui = −J−1Ri → un+1
i+1 = un+1

i + δui, (i ⇒ i + 1) (2.1.13)
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until the condition N(Ri) ≤ ntol is satis�ed, where N is the L2 norm of Ri normalized

to R0 and ntol is a run-time input parameter determining the tolerance of the Newton

iteration convergence. Once the Newton iteration has converged, the solution vector

is advanced by setting un+1 = un+1
i+1 .

The above Newton iteration procedure includes a non-trivial step of solving the

matrix J, which is an N×N sparse matrix, where N is the total number of degrees of

freedom. In fact, J describes the exact coupling between each of the degrees of freedom

at time t = tn. However, due to the C0 nature of the basis functions employed in SEL

(see discussion in Sec. 2.1.2), only �skeletons� representing the linear basis functions

(linear in at least one direction) within each cell are coupled to each other across the

cell boundaries. The so-called static condensation procedure[70, 82] allows to separate

the skeletons from the interiors of the cells and use separate local solves for each of the

cell's interiors[61]. By doing so, static condensation both greatly reduces the size of

the global matrix to be solved and signi�cantly improves the parallel e�ciency of the

code. We note that in order to enable the static condensation algorithm, the matrix

{∂ri/∂uj} involved in calculating J in both Eq. (2.1.9) and Eq. (2.1.12) has to be

calculated explicitly by taking derivatives of Eq. (2.1.5) with respect to all degrees of

freedom in the system. This is accomplished by specifying the analytical derivatives

of the �uxes Fx, Fy and sources S with respect to the evolved physical variables U

and their gradient components Ux and Uy. Though somewhat time-consuming both

in coding and operation of SEL, this method allows for much greater accuracy of the

time-advance algorithm.

The remaining global matrix is solved in parallel using the PETSc libraries[117]

with the linear solvers available and appropriate for any given problem. Choice of
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any particular solver, such as direct LU factorization or the Generalized Minimal

Residual (GMRES) method is made at run-time and requires no modi�cations to the

code. Local solves are accomplished with LAPACK routines.

We now return to Equation (2.1.13) and consider what happens if a time step

δtn+1 taken in Eq. (2.1.7) for Θ-scheme or in Eq. (2.1.10) for BDF2 is either unneces-

sarily small, so that Newton iterations converge too quickly, or so large that too many

iterations are necessary for convergence. Run time input parameters newtmax and

newtmin de�ne those limits for each particular simulation run. The automatic adap-

tivity of the time-step is accomplished by decreasing δtn+1 by some fraction fdecr < 1

and recalculating the Jacobian whenever Eq. (2.1.13) has not converged after newtmax

Newton iterations. Conversely, δtn+1 is set to δtn+1 = fincrδt
n, fincr > 1, whenever the

Newton iterations of the previous time-step converged in less than newtmin number of

iterations. For iterative linear solvers such as GMRES, the number of GMRES itera-

tions can be an additional factor in determining whether or not to increase/decrease

the time step. As shown elsewhere in this Dissertation, this simple algorithm has

proven to be very robust and useful in modeling systems that have both long peri-

ods of slow and/or linear evolution and bursts of activity with very short non-linear

dynamical time-scales.

Additional performance gain has been achieved by re-evaluating the Jacobian J

only during those time-steps when the number of Newton iterations itN taken during

the previous time-step was equal or greater than newtmax. However, if newtmax >

itN ≥ newtmin, the Jacobian matrix used during the previous time-step is re-used
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without being re-evaluated. While allowing for signi�cant gain in performance, par-

ticularly during quasi-linear periods of evolution in any number of non-linear sim-

ulations, this technique does not lead to any deterioration in the accuracy of the

computation.

2.1.4 Formulation of boundary conditions.

As indicated in Eq. (2.1.5), formulation of boundary conditions in SEL is integrated

into the overall �ux-source form. All quantities are advanced in time on the boundary

and in the interior of the domain in a single time-step by solving the main system of

PDEs in the interior together with a separate system of PDEs describing the boundary

conditions on the boundary nodes.

Similarly to the �ux-source form of interior PDEs (Eq. (2.1.1)), the most general

form of the boundary PDEs is:
{

Aik ∂U i

∂t
+ Bik ∂

∂t

(
n̂ · ∇U i

)
= Sk

}

k=1,M

(2.1.14)

Sk = Sk
(
t, ~x, {U i}i=1,M , {∇~xU

i}i=1,M , {∇~x~xU
i}i=1,M

)
,

where Aik = Aik(~x), Bik = Bik(~x), and Sk are arbitrary functions of the given

variables and n̂ denotes an outward unit vector normal to the boundary of the domain.

However, several special boundary condition options are also available. These are:

• Periodic boundary condition: whenever one or more of the physical vari-

ables evolved by the code are periodic in any one direction, their values on

the right/top boundary are identi�ed with the corresponding values on the

left/bottom boundary, while the contribution of the interior PDEs (correspond-

ing to those physical variables) to both boundaries is added together and eval-

uated in place of the boundary PDEs;
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• Polar �r = 0� boundary condition: whenever the logically rectangular grid

is wrapped into a circle in a manner identical to polar coordinates (ξ logical di-

rection is quasi-radial and η-direction is quasi-angular periodic) with no interior

boundary in the physical domain, one of the boundaries of the logical domain is

shrunk into a point and no explicit boundary conditions can be speci�ed there.

For such logical boundary, similarly to the periodic boundary, all boundary

nodes are identi�ed with each other and the contribution of the interior PDEs

on those nodes is added together and evaluated in place of the boundary PDEs;

• �Natural� boundary condition: whenever no explicit physical boundary

condition exists for some physical variable, the interior PDE corresponding to

that variable is taken to evaluate it at the boundary, as well. In such case,

special care has to be taken to partially integrate the �ux terms of Eq. (2.1.4)

to account for the �ux through the boundary of the domain being integrated

over.

2.1.5 Adaptive grid generation and static rezoning algorithm.

There is a number of strategies and approaches that have been attempted to enable

accurate and e�cient grid adaptation for solving initial-value problems with multi-

scale spatial behavior. These can be divided into two primary groups:

1. Adaptive mesh re�nement (AMR), where parts of the grid with insu�cient

resolution are re�ned by e�ectively subdividing the existing grid cells[9, 10];

2. Dynamic Arbitrary-Lagrangian-Eulerian (ALE) techniques[72, 75, 83] and/or

variational principle based harmonic grid generation[22, 23, 87], where an evolv-

ing mapping between some logical grid of a �xed size and the physical domain
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provides the necessary adaptation by concentrating and rarefying the grid ac-

cording to some prescribed rules or functionals.

Algorithms that combine the two approaches above are also beginning to be developed[2].

While each of the methods has its advantages and drawbacks in �exibility, accuracy

and parallel e�ciency, we have chosen to pursue a harmonic grid generation method

which appears to be highly accurate, relatively �exible and does not in any way inhibit

the parallel e�ciency of the SEL code.

We have collaborated with Liseikin[93] in the development of such grid generation

algorithm capable of �nding an optimal mapping M between a logical domain Ξ

and given physical domain X with an available directional spatial convergence error

estimator G(x, y). Higher density of the grid in the physical domain results wherever

maximum norm ||G|| ≡ MAX(Gξ, Gη) is higher that its average magnitude and

lower density wherever ||G|| is lower that its average magnitude over the full domain,

with additional �exibility introduced by the directional properties of G, as described

below. Our approach has been developed in parallel and in consultation with Chac�on

and Lapenta[34].

Static rezoning

The mesh adaptation algorithm we employ is based upon having an initial mapping

[M : Ξ → X , xi(ξj)] from the logical domain to the physical domain of identical topol-

ogy but arbitrary shape. Successive computational mesh transformations amount to

an evolution of mappings, where the generation of each new mapping is triggered

and determined by the spatial discretization error estimator G(x, y) of the spectral

element representation on the logical domain with the existing mapping. (See Fig-

ure 2.2 for sample grids having been generated mid-way through highly non-linear
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Figure 2.2: Examples of automatically generated 2D mappings from a structured
rectangular logical domain (ξ, η) to physical domains of interest (x, y), where high
density of the grid indicates regions of the physical domain where the solution required
improved resolution.

simulations.) Unlike the ALE approach, where the computational grid is continuously

evolved in time together with the physical variables[72], so far we have chosen the

so-called static rezoning method, where the main computation is stopped whenever

the measure of the overall spatial discretization error ∆max, de�ned below, exceeds

some pre-set limit Dmax. Then, a new mapping is found, and the solutions are inter-

polated using the new mapping before the main computation proceeds. This choice

has been motivated by the relative simplicity of the implementation and e�ciency

considerations, alike.2

The initial mapping [M : Ξ → X , xi(ξj)], as well as all of the modi�ed mappings
2For a system of M coupled PDEs in two spatial dimensions, introducing ALE grid adaptation

means e�ectively increasing the size of the coupled system of PDEs to be solved for every time
step to M + 2. For implicit time advance algorithms, that includes solving large sparse matrices as
described in Section 2.1.3, where CPU time and memory required to �nd a solution scale with both
the size and the degree of row-to-row coupling of the matrix. Therefore, for systems where necessary
local spatial resolution requirements are expected to change slowly relative to the size of an implicit
time-step, static regrid is preferable to ALE methods whenever computational and accuracy costs
associated with interpolation are small relative to those of the time-advance itself.
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[M̃ : Ξ̃ → X , xi(ξ̃l)] and intermediate interpolation mappings [L : Ξ̃ → Ξ, ξj(ξ̃l)] are

represented on the logical domain by the same basis set of high order spectral elements

as the physical variables U . Furthermore, a new mapping is requested whenever

spatial convergence error becomes signi�cant, but before it begins to compromise the

smoothness of the representation with the existing mapping. Thus, the mapping and

interpolation procedures do not compromise the accuracy of the overall computation.

Mesh generation

Each new mapping is generated by solving a set of Beltrami Equations[93] on the

whole computational domain:

∇ ·
(

1

ω

g√
g
· ∇ξ̃l

)
= 0, l = 1, 2 (2.1.15)

where ω(ξ, η) is a weight function specifying the desired local density of the grid and
(
g(ξ, η)/

√
g
)
is a [2× 2] symmetric tensor

g =

(
g11 g12

g21 g22

)

normalized by its determinant g and designed to determine the shape and curvature

of the desired grid in the physical space. (Solving Equation (2.1.15) is also equivalent

to minimizing a variational

L̃ =
1

2

∫

Ω

1

ω
√

g
g : ∇ξ̃l∇ξ̃ldξ1dξ2,

with respect to ξ̃l(ξj), where integral is taken over the whole logical domain Ω.) We

note that in a two-dimensional space any deformation of an in�nitesimally small patch

of space can be decomposed into three distinct operations: expansion/contraction,

area preserving change in aspect ratio, and rotation. In Eqs. (2.1.15) above, ω(ξ, η) is
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responsible for expansion/contraction of the grid at [x(ξ, η), y(ξ, η)], ratio of eigenval-

ues of g(ξ, η) is responsible for the elongation at [x(ξ, η), y(ξ, η)], and the o�-diagonal

term g12(ξ, η) = g21(ξ, η) is responsible for rotation of the grid at [x(ξ, η), y(ξ, η)],

relative to the corresponding grid deformations everywhere else in the domain. Since

xi(ξj) is known, Eqs. (2.1.15) are formulated to be solved for ξ̃l(ξj) with the goal

of �nding an improved mapping [M̃ : Ξ̃ → X , xj(ξ̃l)]. However, in order to �nd

[M̃ : Ξ̃ → Ξ → X ], an inverse mapping ξj(ξ̃l) has to be known instead. It is found by

expressing the divergence in Eqs. (2.1.15) in the new ξ̃l logical coordinates to derive

the following system of two coupled PDEs to be solved for ξj(ξ̃l):

∂

∂ξ̃m

(
J 1

ω

gij

√
g

∂ξ̃l

∂ξi

∂ξ̃m

∂ξj

)
= 0, l = 1, 2 (2.1.16)

where J ≡ Det[∂ξj/∂ξ̃l] and the derivatives with respect to ξj are then inverted as

shown in Eq. (2.1.3)[62].

We note that Equations (2.1.16) are already in the �ux-source form described in

Section 2.1.1 and can be solved by the core SEL algorithm for given functions ω(ξ, η)

and g(ξ, η), where ξ and η are treated as dependent variables.

Spatial convergence error estimator.

Functions ω(ξ, η) and g(ξ, η) are computed from the directional spatial convergence

error estimator G(x, y) by making direct use of the spectral element representation

described above. Since well resolved spectral element representation of a quantity U

over the grid has the property that the amplitudes um corresponding to high order

basis function Λm should fall o� exponentially with increasing degree of the basis

function polynomial[82], monitoring the amplitudes corresponding to the highest or-

der polynomials of a given basis set in each direction relative to the L2 norm of U ,
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provides a good measure of spatial convergence. (For U with spectral element repre-

sentation U(ξ, η) = um,nΛm(ξ)Λn(η), the L2 norm of U over a cell Ωij is de�ned as

|U |ij ≡
√∫

Ωij
U2(ξ, η)dξdη.) De�ning the contribution of the highest order polyno-

mial basis function ΛP in each logical direction as δUξ(ξ, η) ≡ uP,nΛP (ξ)Λn(η) and

δUη(ξ, η) ≡ um,P Λm(ξ)ΛP (η), the spatial discretization error of U over Ωij is de�ned

in each separate direction as

δU ij
ξ ≡

√∫
Ωij

δU2
ξ (ξ, η)dξdη

|U |ij

δU ij
η ≡

√∫
Ωij

δU2
η (ξ, η)dξdη

|U |ij .

Maximum of the discretization error over all physical variables is taken in order to

de�ne two directional and a global spatial discretization error in each (i, j) cell: Gξ
ij,

Gη
ij, and δij ≡ MAX(Gξ

ij, G
η
ij). Finally, cell-by-cell step-function approximation G̃ of

the desired directional spatial convergence error estimator G is given by

˜||G||ij ≡ 1 + α

(
δij

∆max

)p

,

G̃ξ
ij ≡ 1 + α

(
Gξ

ij

∆max

)p

, (2.1.17)

G̃η
ij ≡ 1 + α

(
Gη

ij

∆max

)p

,

where ∆max ≡ MAX(δij) with maximum taken over all cells of the domain, and α

and p are run-time input parameters to be adjusted to optimize adaptivity for each

particular application3. A continuous and di�erentiable least squares bicubic spline

�t F of quantities calculated in Eqs. (2.1.17) is then used to generate C1 smooth
3Common ranges for the grid adaptation input parameters are α ≈ 0.5− 1.0, p ≈ 0.25− 0.5.
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G ≡ F(G̃). Functions ω(ξ, η) and g(ξ, η) necessary to solve the Beltrami harmonic

grid generation system of Equations (2.1.16) are found as:

ω = ||G||ij

g11 = Gη
ij

g22 = Gξ
ij

g12 = g21 = 0.

Note that in the present formulation only two of the three local degrees of freedom

a�orded by Eq. (2.1.15) were put to use. Other formulations allowing for alignment

of the grid lines with or perpendicular to magnetic �eld lines (see Brackbill[23] and

Glasser et.al.[62]) or for any other desired properties of the computational grid relative

to the solution U at the time of re-mapping make use of the full g tensor.

2.2 Code Veri�cation.

Following the development of a new code to be applied to some of the more challenging

problems in computational plasma physics, such is SEL, we have considered it a

priority to thoroughly verify and validate the accuracy, e�ciency and robustness of

its numerical techniques and the code as a whole. Below, we describe some of the

linear and non-linear veri�cation studies SEL has been subjected to.

2.2.1 Complex linear problems with known analytical solu-
tions in reduced MHD.

There is a number of linear problems SEL has been applied to in order to test its

accuracy and e�ciency. Linear study of the ideal and resistive internal kink modes
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is described in Section 4.2 of this Dissertation and is not reproduced here. There, it

is shown that superior accuracy in reproducing both the ideal and resistive growth

rates is achieved with the Crank-Nicholson time advance on a strongly non-uniform

grid, thus proving the non-dissipative nature of the SEL formulation.

Resistive tearing mode in reduced MHD.

Another problem that has been considered is that of an incompressible resistive tear-

ing mode in an in�nite slab with perfectly conducting outer walls. The usual reduced

resistive MHD equations
∂ψ

∂t
+ v · ∇ψ = η∇2ψ

∂ (∇2φ)

∂t
+ v · ∇ (∇2φ

)
= B · ∇ (∇2ψ

)
+ µ∇4φ

with poloidal magnetic �eld B = ẑ × ∇ψ represented by �ux function ψ, poloidal

plasma �ow v = ẑ×∇φ represented by stream function φ, resistivity η and viscosity

µ have been solved in the [x, y] plane.

Reversed magnetic �eld layer in the form of the Harris current sheet[66] ψ0 =

α ln [cosh(y/α)] of width α and without plasma �ow has been taken as the initial

equilibrium on a computational domain with periodic boundary conditions in the x̂-

direction at x = ±L and perfectly conducting wall boundary conditions � (∂ψ/∂t) =

0, φ = 0, and ∇2φ = 0 � in the ŷ-direction at y = ±a. A perturbation of the form

δψ = ε cos [kxx)] exp [−(2y/α)2], with ε = 2 ∗ 10−7 and kx ≡ π/L has been added to

the equilibrium at t = 0 to initialize the tearing mode. Additionally, a current source

term designed to support the Harris current sheet against resistive decay has been

added to the equations above to exactly preserve the initial equilibrium and viscosity

µ has been set to zero while studying the linear tearing mode problem.
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In the limit of very small resistivity (i.e. width of the resistive layer much smaller

than the width of the current layer), analytical growth rate γ of an incompressible

resistive tearing mode ψ1(kx, y) with wave number kx in an in�nitely long current

layer described by some magnetic �ux function ψ0(y) is given by a well known general

dispersion relation[94]:

∆′ = −π

8
γ5/4τ

1/2
A τ

3/4
R

Γ
(

λ̂3/2−1
4

)

Γ
(

λ̂3/2+5
4

) , (2.2.1)

where λ̂ ≡ γτ
2/3
A τ

1/3
R , τA ≡ 1/(kxψ

′′
0 |y=0) is the poloidal Alfv�en time, τR ≡ (1/η) is

the resistive time and ∆′ is a characteristic parameter of the tearing mode theory[57]

de�ned as

∆′ ≡
∣∣∣∣
∂(ln ψ1)

∂y

∣∣∣∣
y=0+

y=0−

and found as the solution to the following equation:

ψ0

(
∂2ψ1

∂y2
− k2

x ∗ ψ1

)
=

∂2ψ0

∂y2
∗ ψ1, (2.2.2)

subject to appropriate boundary conditions on ψ1 as y → ±∞.

It can be shown[94], that for the Harris equilibrium ψ0(y) speci�ed above and

limy→±∞ ψ1 = 0, the ∆′ parameter is given by

∆′
∞ =

2

α

(
1

αkx

− αkx

)

However, in order to directly compare the results of the numerical simulations to

the analytical growth rates given by Eq. (2.2.1), Eq. (2.2.2) has to be solved and

appropriate expression for ∆′ has to be found when ψ1(kx, y) vanishes at y = ±a, as

prescribed by the speci�ed above boundary conditions of the simulations. Fortunately,
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an analytic expression for such ∆′ also exists and is given by4:

∆′
a =

2

α

(
1

αkx

− αkx

)
αkx − tanh(a/α) tanh(akx)

αkx tanh(akx)− tanh(a/α)
.

The growth rates γc of the tearing modes for varying values of η, L = π/kx,

α and a obtained from the SEL simulations are summarized and compared to the

analytically predicted values γa given by Eq. (2.2.1) in Table 2.1. Also given, are

the corresponding growth rates γ∞ obtained from Eq. (2.2.1) for the case of a →∞.

Though SEL simulations were fully non-linear by design and it was only possible to

extract the linear growth rate γc due to the smallness of the initial perturbation,

remarkable agreement of better than 1% with the analytically predicted growth rate

γa is evident for all simulation runs with η = 1. ∗ 10−6. However, for η ≥ 1. ∗ 10−4,

the computed growth rates are observed to be 5-10% lower than the analytically

predicted ones. In light of the superior agreement for smaller η, the observed lower

growth rates are attributed to the breakdown of the asymptotic approximation of the

resistive width being much much smaller than α. We also note that for L/a & 2, the

stabilizing e�ect of the ideal wall at y = ±a is at least as strong as that of the �nite

width of the resistive layer and is well captured by the SEL results. We therefore

conclude that SEL captures the growth rate of the resistive tearing mode as well (or

better) as one could hope.

2.2.2 Formulation and linear wave tests in Extended MHD.

The following set of Extended MHD equations represents one of the most complex

sets of coupled non-linear PDEs that has been coded into SEL to date.

∂n

∂t
+∇ · (nve) = 0 (2.2.3)

4The analytic expression was found using the Mathematica 5.2 software package.
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α η L a γc γa γ∞
1. 1. ∗ 10−6 12 6 3.38 ∗ 10−4 3.38 ∗ 10−4 3.80 ∗ 10−4

1. 1. ∗ 10−6 16 6 3.45 ∗ 10−4 3.47 ∗ 10−4 4.32 ∗ 10−4

1. 1. ∗ 10−6 24 6 3.29 ∗ 10−4 3.32 ∗ 10−4 5.03 ∗ 10−4

1. 1. ∗ 10−6 32 6 3.08 ∗ 10−4 3.09 ∗ 10−4 5.49 ∗ 10−4

1. 1. ∗ 10−6 32 12 4.67 ∗ 10−4 4.66 ∗ 10−4 5.49 ∗ 10−4

1. 1. ∗ 10−6 32 18 5.20 ∗ 10−4 5.23 ∗ 10−4 5.49 ∗ 10−4

1. 1. ∗ 10−6 32 24 5.41 ∗ 10−4 5.41 ∗ 10−4 5.49 ∗ 10−4

1. 1. ∗ 10−6 128 24 4.43 ∗ 10−4 4.45 ∗ 10−4 5.83 ∗ 10−4

1. 1. ∗ 10−4 4 5 1.73 ∗ 10−3 1.92 ∗ 10−3 1.93 ∗ 10−3

1. 1. ∗ 10−4 12 5 4.46 ∗ 10−3 4.62 ∗ 10−3 5.49 ∗ 10−3

0.5 1. ∗ 10−4 8/3 5 9.19 ∗ 10−3 9.84 ∗ 10−3 9.84 ∗ 10−3

0.5 1. ∗ 10−4 4 5 1.30 ∗ 10−2 1.36 ∗ 10−2 1.37 ∗ 10−2

0.5 1. ∗ 10−4 8 5 1.61 ∗ 10−2 1.66 ∗ 10−2 1.71 ∗ 10−2

0.25 1. ∗ 10−4 8/3 5 4.36 ∗ 10−2 4.55 ∗ 10−2 4.55 ∗ 10−2

0.5 2.5 ∗ 10−4 8/3 5 1.54 ∗ 10−2 1.69 ∗ 10−2 1.69 ∗ 10−2

0.5 2.5 ∗ 10−4 4 5 2.16 ∗ 10−2 2.30 ∗ 10−2 2.30 ∗ 10−2

0.5 2.5 ∗ 10−4 8 5 2.57 ∗ 10−2 2.65 ∗ 10−2 2.73 ∗ 10−2

0.5 2.5 ∗ 10−4 12 5 2.38 ∗ 10−2 2.47 ∗ 10−2 2.66 ∗ 10−2

0.5 2.5 ∗ 10−4 18 5 2.02 ∗ 10−2 2.12 ∗ 10−2 2.39 ∗ 10−2

0.5 2.5 ∗ 10−4 24 5 1.74 ∗ 10−2 1.85 ∗ 10−2 2.14 ∗ 10−2

Table 2.1: Computed growth rates γc of the resistive tearing mode for varying values
of the equilibrium current layer width α, resistivity η, half-wavelength of the mode L
and half-width of the mode a obtained from the SEL simulations and compared to
the analytically predicted values γa and γ∞ for a mode of half-width a and in�nite
width, respectively.
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∂(nvi)

∂t
+ ∇ · (nvivi + Πi

)
= − 1

mi

∇pi +
e

mi

(
nE +

nvi ×B

c

)

− en
J

miσ
+

.71n

mi

[
∇

(pe

n

)
· b̂

]
b̂ (2.2.4)

∂(nve)

∂t
+ ∇ · (nveve + Πe) = − 1

me

∇pe − e

me

(
nE +

nve ×B

c

)

+ en
J

meσ
− .71n

me

[
∇

(pe

n

)
· b̂

]
b̂ (2.2.5)

3

2

∂pi

∂t
+ ∇ ·

{
3

2
pivi − 3.9

piτi

mi

[
∇

(pi

n

)
· b̂

]
b̂

}

= −pi∇ · vi −miΠ
i : ∇vi +

3me

miτe

(pe − pi) (2.2.6)

3

2

∂pe

∂t
+ ∇ ·

{
3

2
peve + pe

[(
.71(ve − vi)− 3.2

τe

me

∇
(pe

n

))
· b̂

]
b̂

}

= −pe∇ · ve −meΠ
e : ∇ve +

3me

miτe

(pi − pe)

− en

σ
J · (ve − vi) + .71n

[
(ve − vi) · b̂

] [
∇

(pe

n

)
· b̂

]
(2.2.7)

∇2φ = 0 (2.2.8)

∇2A−∇(∇ ·A) =
4πne

c
(ve − vi) = −4π

c
J (2.2.9)

E = −1

c

∂A

∂t
−∇φ (2.2.10)

B = ∇×A, b̂ ≡ B/B (2.2.11)

Πi
α = −.96

piτi

mi

(
∇viα +

1

3

∂vi

∂xα

)
Πe

α = −.73
peτe

me

(
∇veα +

1

3

∂ve

∂xα

)

where plasma conductivity σ ≡ 1.96ne2τe/me, electron collision time τe ≡ 1.1311 ∗
1022(p

3/2
e /n5/2)sec and ion collision time τi ≡ 6.8544 ∗ 1023(p

3/2
i /n5/2)sec. The above

two-�uid set of equations includes, among other e�ect, electron inertia, parallel ther-

mal force, anisotropic ion and electron heat conduction, parallel frictional heat �ux,
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and isotropic ion and electron pressure tensors with corresponding temperature and

density dependent coe�cients taken to be those derived by Braginskii(1965)[24]. (The

Coulomb logarithm Λ is taken to be Λ = 15 in deriving the numerical values given

above.)

Choice of gauge

The particular choice of a gauge made in deriving Eqs. (2.2.8-2.2.9) above, was as-

sumed in order to be able to exclude from the system one of the dependent vari-

ables, namely φ, in solving problems where no external electric �eld is applied at the

boundaries of the computational domain. Below, we show how Eqs. (2.2.8-2.2.9) are

derived from the Maxwell equations and the de�nitions of E,B in terms of A, φ in

Eqs. (2.2.10-2.2.11), given an appropriate choice of a gauge.

Assume the following form of Maxwell equations:

∇ · E = 4πρ (2.2.12)

∇ ·B = 0 (2.2.13)

∇× E = −1

c

∂B

∂t
(2.2.14)

∇×B =
1

c

∂E

∂t
+

4π

c
J (2.2.15)

In considering phenomena much slower than the speed of light, (1/c)(∂E/∂t) term

in Eq. (2.2.15) can be ignored and Eq. (2.2.13) justi�es the choice of B = ∇ ×A.5

Using Eqs. (2.2.10-2.2.11), we can rewrite Eq. (2.2.12) and Eq. (2.2.15) as:

∇2φ +
1

c

∂(∇ ·A)

∂t
= −4πρ

5Note that the approximation (∂E/∂t) ¿ J in Eq. (2.2.15) leads to the statement of plasma
quasi-neutrality ∇ · J ≈ 0, which implies that (∂ρ/∂t) ≈ 0. Thus, in MHD, neither charge density
nor electric �eld are explicitly advanced in time, but E-�eld is calculated from the generalized Ohm's
Law and �e�ective charge density� can then be computed from Eq. (2.2.12).
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∇2A−∇(∇ ·A) = −4π

c
J, (2.2.16)

where we still have the freedom of transforming A and φ according to:

A → A′ = A +∇Λ

φ → φ′ = φ− 1

c

∂Λ

∂t

for arbitrary Λ(t,x) without modifying B and E.

We now note that by choosing Λ in such a way as to make ∇2φ′ = 0, Eqs. (2.2.16)

can be rewritten as follows:

∇2

(
φ− 1

c

∂Λ

∂t

)
= ∇2φ′ = 0 =

= −1

c

∂[∇ · (A +∇Λ)]

∂t
− 4πρ = −1

c

∂(∇ ·A′)
∂t

− 4πρ

∇2A′ −∇(∇ ·A′) = −4π

c
J.

It is these A′ and φ′ that are the independent variables in Eqs. (2.2.3-2.2.11). Fur-

thermore, we observe that the combination of Eqs. (2.2.4-2.2.5) provide the means to

evaluate the �e�ective charge density� ρ in the plasma.

Energy Conservation

Below, we show that Eqs. (2.2.3-2.2.11) conserve total energy. We de�ne total energy

as:

E ≡ minv2
i

2
+

menv2
e

2
+

3

2
pi +

3

2
pe +

B2

8π

(Note that since Ê and B̂ are both presumed to be order one and (E0/B0) =

(vA/c) => (E2/B2) ≈ (vA/c)2 ¿ 1, we ignore the (E2/8π) term in the de�nition

of E , which is also consistent with ignoring the displacement current in Eq. (2.2.15).)
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From Eqs. (2.2.3-2.2.5), the change in kinetic energy EK ≡ (minv2
i + menv2

e)/2 is:
∂EK

∂t
= −∇ ·

(
minv2

i

2
vi +

menv2
e

2
ve

)
−mivi · (∇ · Πi)−meve · (∇ · Πe)

− vi · ∇pi − ve · ∇pe − J2

σ
+ E · J + .71n[∇Te · b̂][(vi − ve) · b̂].

From Eqs. (2.2.6-2.2.7), the change in thermal energy ET ≡ 3(pi + pe)/2 is:
∂ET

∂t
= −∇ ·

[
3

2
(pivi + peve)− 3.9

piτi

mi

(
∇Ti · b̂

)
b̂− 3.2

peτe

me

(
∇Te · b̂

)
b̂

]

− pi∇ · vi − pe∇ · ve −miΠ
i : ∇vi −meΠ

e : ∇ve

+
J2

σ
+ .71Teb̂ · ∇[n(vi − ve) · b̂].

And from Eqs. (2.2.10-2.2.11), the change in magnetic energy EM ≡ B2/8π is:
∂EM

∂t
= − c

4π
B · ∇ × E.

Finally, putting them all together, we have:
∂E
∂t

+ ∇ ·
{

minv2
i

2
vi +

menv2
e

2
ve +

5

2
(pivi + peve)

+ mivi · Πi + meve · Πe +
c

4π
E×B + .71peb̂

[
(ve − vi) · b̂

]

− 3.9
piτi

mi

(
∇Ti · b̂

)
b̂− 3.2

peτe

me

(
∇Te · b̂

)
b̂

}
= 0,

where

FK ≡ minv2
i

2
vi +

menv2
e

2
ve,

FT ≡ 5

2
(pivi + peve),

FM ≡ c

4π
E×B,

FFH ≡ mivi · Πi + meve · Πe,

FHC ≡ .71peb̂
[
(ve − vi) · b̂

]
− 3.9

piτi

mi

(
∇Ti · b̂

)
b̂− 3.2

peτe

me

(
∇Te · b̂

)
b̂

are kinetic, thermal, electro-magnetic, frictional heat and parallel heat conduction

�uxes, respectively.
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Normalization and �ux-source form

The system of Eqs. (2.2.3-2.2.11) can be normalized by setting ∇ = (1/L0)∇̂, ∂/∂t =

(1/τA)∂/∂t̂, vα = vAv̂α, where vA = L0/τA, n = n̄n̂, B = B̄B̂, where B̄ = vA

√
4πmin̄,

A = B̄L0Â, E = (B̄vA/c)Ê, φ = (B̄vAL0/c)φ̂, and pα = min̄v2
Ap̂α.

Dropping hats for normalized quantities, substituting for E and B from Eqs. (2.2.10-

2.2.11), combining Eq. (2.2.4) and Eq. (2.2.5), and de�ning ε ≡ me/mi, di ≡ (c/ωpi)/L0 =

(cmi/eL0

√
4πmin̄), κe ≡ ετA/τe = (2.226 ∗ 1010n̄τ 4

A/L3
0)(n

5/2/p
3/2
e ), and κi ≡ τA/τi =

(6.7444∗1011n̄τ 4
A/L3

0)(n
5/2/p

3/2
i ), the normalized Eqs. (2.2.3-2.2.11) are equivalent to:

∂n

∂t
+∇ · (nve) = 0 (2.2.17)

∂(εnveα + nviα)

∂t
+ ∇ ·

[
(pi + pe) α̂ + nvi

nviα

n
+ εnve

nveα

n
+ Πi + Πe

]

=
nvi − nve

di

·
(

∂A

∂xα

−∇Aα

)
(2.2.18)

∂(εnveα − nAα/di)

∂t
+ ∇ ·

[
peα̂ + εnve

nveα

n
− 1

di

nveAα + Πe

]

=
n

di

∂φ

∂xα

− nve

di

· ∂A

∂xα

+
κe

1.96
(nviα − nveα)

− .71
[(
∇pe − pe

n
∇n

)
· b̂

]
bα (2.2.19)

3

2

∂pi

∂t
+ ∇ ·

{
5

2

pi

n
nvi − 3.9

κi

pi

n

[(
∇pi − pi

n
∇n

)
· b̂

]
b̂

}

=
nvi

n
· ∇pi − 1

n
Πi

α ·
[
∇(nviα)− nviα

n
∇n

]
+ 3κe(pe − pi) (2.2.20)

3

2

∂pe

∂t
+ ∇ ·

{
5

2

pe

n
nve − 3.2

κe

pe

n

[(
∇pe − pe

n
∇n

)
· b̂

]
b̂ + .71

pe

n

[
(nve − nvi) · b̂

]
b̂

}

=
nve

n
· ∇pe + 3κe(pi − pe)− 1

n
Πe

α ·
[
∇(nveα)− nveα

n
∇n

]

+
κe

1.96

|nve − nvi|2
n

+
.71

n

[
(nve − nvi) · b̂

] [(
∇pe − pe

n
∇n

)
· b̂

]
(2.2.21)
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∇2φ = 0 (2.2.22)

∇ · [∇Aα − (∇ ·A)α̂] =
nveα − nviα

di

, (2.2.23)

where

bα = εαβγ
∂Aγ

∂xβ

/

√
∂Al

∂xm

∂Al

∂xm

− ∂Al

∂xm

∂Am

∂xl

Πi
α = −.96

pi

nκi

[
∇(nviα)− nviα

n
∇n +

1

3

∂(nvi)

∂xα

− 1

3

nvi

n

∂n

∂xα

]

Πe
α = −.73

εpe

nκe

[
∇(nveα)− nveα

n
∇n +

1

3

∂(nve)

∂xα

− 1

3

nve

n

∂n

∂xα

]
.

In the particular two-�uid extended MHD formulation described in this Section, Equa-

tions (2.2.17-2.2.23) represent thirteen equations advanced by SEL in time in order to

evolve the following thirteen primary variables: plasma density n, three components

of ion momentum nviα, three components of electron momentum nveα, ion pressure

pi, electron pressure pe, electrostatic potential φ, and three components of the vector

potential Aα. As presented, the equations are already in the �ux-source form required

by the code and are therefore coded-in exactly as shown above.

Linearization

In order to conduct linear wave tests of the SEL implementation of Eqs. (2.2.17-

2.2.23), the dispersion relation and eigenmodes of the system in a uniform magnetized

medium have been found. Eqs. (2.2.17-2.2.23) have been linearized assuming equi-

librium of the form: B0 = B0x̂ (i.e. A0 = A0yẑ), n0 > 0, pi0 = pe0 = p0 > 0, vi0 =

ve0 = 0, φ = 0; and the perturbation is of the form: u1 = ũ ∗ exp[i(k‖x + k⊥y −Ωt)].

Figure 2.3 shows real and imaginary parts of three branches of the dispersion

relation derived from linearized Eqs. (2.2.17-2.2.23) for n̄ = 5 ∗ 1013 cm−3, L0 =

10 cm, τA = 4 ∗ 10−8 sec, n0 = 1, and p0 = 10−4, for which the real part ω of
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Figure 2.3: Real and imaginary parts of three branches of the dispersion relation
derived from linearized Eqs. (2.2.17-2.2.23) for the following parameters: n̄ = 5 ∗
1013 cm−3, L0 = 10 cm, τA = 4 ∗ 10−8 sec, n0 = 1, p0 = 10−4, B0 = 1, k⊥ = 1. Note,
the three branches shown are the ones for which the real part ω of Ω = ω + iγ is
positive.
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Ω = ω + iγ is positive. Several things should be noted in Figure 2.3. It is easily

observed that for all three waves damping (γ) relatively quickly becomes as large (or

larger) as the real part of Ω. However, upon inspecting the dispersion relation with

all of the dissipation coe�cients �turned o��, one can quickly identify the three panels

shown in all four �gures as the slow magnetosonic (sound) wave, the modi�ed shear

Alfven wave and the modi�ed fast magnetosonic (compressional Alfven) waves, from

top to bottom, respectively. (Since plasma beta β ≡ 2 ∗ p0/B
2
0 is taken to be much

smaller than unity, the names given for the waves in parenthesis are in the limit of

β → 0.)

The �modi�ed� in the names above refers to the dispersion relation modi�cations

due to the two-�uid e�ects. In particular, the modi�ed shear Alfven wave is observed

to asymptote to some ωM1 as k‖ → ∞, which is explained by the fact that in the

two-�uid regime the shear Alfven wave is supported mostly by the motion of ions

(not electrons), whose inertia does not allow them to develop ω higher than some

ωM1. Similarly, in the two-�uid regime, the compressional Alfven wave is observed

to transform into the Whistler wave where ω ∼ k2
‖ for k‖ ≤ 50 and also asymptotes

to some ωM2 À ωM1 as k‖ > ∞. It is interesting to note that ωM2/ωM1 ≈ mi/me,

which con�rms that the upper limit on the frequency of Whistler waves is set by the

e�ects of electron inertia.6

Implementation and Quasi-Linear Test Results

When the system of linearized Eqs. (2.2.17-2.2.23) is solved for Ω in terms of k‖,

k⊥, B0, n0, p0 and given normalization quantities L0, vA, n̄, eight non-zero roots are
6See the dispersion relation, Eq. 3.3.2, and follow up comments in the investigation of the electron

MHD system in Section 3.3 below.
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found.7 Of these, for moderate parameter values, six roots form three pairs of waves

with both real and imaginary non-zero parts Ω1,...,6 = ±ω1,2,3 − iγ1,2,3 The other

two roots have purely negative imaginary roots Ω7,8 = −iγ4,5 and represent purely

decaying perturbations.

In order to test SEL, for each Ωi, corresponding set of complex eigenmodes is found

and coded up as an initial condition with the perturbation amplitude of 10−3. It is

important to note that since the full non-linear system of equations is used to compute

these linear waves in the code, in order to test the total energy conservation, both

the equilibrium and the perturbation must be evolved together as a single quantity

for plasma density and pressures, while the uniform equilibrium magnetic �eld can

be added to the Eqs. (2.2.17-2.2.23) and is therefore not a part of the evolved set

of variables. The waves are set up in a doubly periodic box [0, Lx] × [0, Ly], where

Lx = 2π/k‖ and Ly = 2π/k⊥ on a 6 × 6 spectral element grid with the 5th order

polynomial expansion in each grid cell. Each computation is performed for 20 full

wave periods with a �xed time-step δt = (2π/ω)/50, that is with 50 time-steps per

period for a total of 1000 time steps.

The following set of plasma parameters has been chosen for these linear wave

tests: n̄ = 5 ∗ 1013 cm−3, L0 = 10 cm, τA = 4 ∗ 10−8 sec. The resulting dimensionless

parameters are: di = .322, κi = 8.633 ∗ 10−8(n
5/2
0 /p

3/2
0 ), κe = 2.849 ∗ 10−9(n

5/2
0 /p

3/2
0 ).

The results of the SEL runs are summarized in Table 2.2, where all of the presented

data was produced with B0 = 1, n0 = 1 and p0 = 10−4. Here, only the results for

linear modes with non-zero real and imaginary parts of Ω are given. In examining

the data shown in Table 2.2, it should be noted that for both sets of parameters, the
7The system of equations has no analytical solution and is solved numerically using Mathematica

5 software package.
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k‖ k⊥ Ω = ω − iγ δx/Lx γc δE/E itN itK
1.75 ∗ 10−3 − i6.51 ∗ 10−4 2.21 ∗ 10−4 6.17 ∗ 10−4 2.5 ∗ 10−9 1-2 1

.1 1 9.99 ∗ 10−2 − i6.46 ∗ 10−4 1.31 ∗ 10−3 6.37 ∗ 10−4 7.0 ∗ 10−8 2 1
1.01− i8.32 ∗ 10−4 1.60 ∗ 10−3 8.28 ∗ 10−4 3.9 ∗ 10−7 2-3 1

1.81 ∗ 10−3 − i8.77 ∗ 10−5 1.24 ∗ 10−3 8.59 ∗ 10−5 1.6 ∗ 10−9 1-2 1
.1 .1 9.99 ∗ 10−2 − i1.28 ∗ 10−5 1.31 ∗ 10−3 1.26 ∗ 10−5 2.8 ∗ 10−9 2 1

1.42 ∗ 10−1 − i1.46 ∗ 10−5 1.28 ∗ 10−3 1.44 ∗ 10−5 4.2 ∗ 10−9 2 1

Table 2.2: Results from non-linear propagation of eigenmodes of the system of PDEs
given by Eqs. (2.2.17-2.2.23) and linearized in uniform magnetized medium. Here,
δx/Lx is a measure of the phase-shift of a wave over 50 time steps (one analytically
calculated wave period); γc is the wave damping rate calculated from the magnetic
energy decay rate; δE/E is a ratio of the variation of the total energy to the total
energy (minus B2

0/2, where B0 is not a part of the evolved set of variables); itN is the
number of Newton iterations per time step; and itK is the number of Krylov iterations
per Newton iteration.

�rst mode has both the slowest real frequency and the greatest γ/ω ratio. In fact,

in both cases the ratio is big enough, so that the mode begins to decay non-linearly

within the �rst couple wave periods. Therefore, for those runs, the damping rate was

measured at the very beginning of a run.

In all cases, the conservation of total energy is shown to be remarkably good,

with energy variation δE being less than 1/106 of total energy and less than 1% of

the maximum individual energy variation. With a single calculation of the system's

Jacobian required to take all 1000 time-steps and a very low number of both Newton

and Krylov iterations per time-step, it is clear that the semi-analytically calculated

eigenmodes of the linearized system of Eqs. (2.2.17-2.2.23) are, in fact, also those of

the numerical system coded up in SEL. The phase shift δx/Lx of the numerically

advanced wave is shown to be ≈ 0.1% of the period and numerical damping rate to

be within better than 2.5% in all cases except when γ/ω ∼ 1.
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nx ny np δt itN itK NJ Run time (sec)
12 12 5 4.09176e-2 2-3 4-5 1 6.102 ∗ 102

12 12 5 8.18352e-2 3-4 4-5 1 6.556 ∗ 102

12 12 5 1.6367e-1 3-4 5 1 7.286 ∗ 102

12 12 5 3.2734e-1 3-6 5-6 6 1.144 ∗ 103

12 12 5 6.5468e-1 4-8 5-7 13 1.665 ∗ 103

Table 2.3: Results from a test of the SEL's implicit Newton-Krylov time-advance
algorithm. Linear combination of the system's eigenmodes is propagated for 100
time-steps. [nx,ny,np] is the size of the logical grid; δt is the time step used; itN
and itK are the number of Newton iterations per time step and Krylov iterations per
Newton iteration, respectively; NJ is the number of Jacobian calculations during the
run; Run time � total clock-time used by the run, including the start-up and IO.

Thus, we again conclude that the accuracy of the SEL code is more than satisfac-

tory even while advancing a set of equations as complex as Eqs. (2.2.17-2.2.23).

Nonlinear Newton-Krylov Solver Testing

Tests of the e�ciency of the implicit Newton-Krylov solver used in SEL have been

conducted by means of running the following initial con�guration with the Θ-scheme

with θ = .6 (see Eq. (2.1.7)), while scanning through several di�erent �xed computa-

tional time steps.

The initial con�guration consists of the equilibrium quantities: n̄ = 5∗1013 cm−3,

L0 = 10 cm, τA = 4 ∗ 10−8 sec, n0 = 1, p0 = 10−4, B0 = 1, and a perturbation, which

is the sum of all three ω > 0 modes computed for that equilibrium with k⊥ = k‖ = 1

and the perturbation amplitude of 4∗10−2 for each of the modes. (That is, the initial

condition is uinit = uequil + ε ∗ u1 + ε ∗ u2 + ε ∗ u3, where ε = 4 ∗ 10−2.) All simulations

were conducted on 36 processors in a doubly periodic box [0, 2Lx] × [0, 2Ly], where

Lx = 2π/k‖ and Ly = 2π/k⊥, and were run for 100 �xed time steps, independent of

the size of the time step.
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Table 2.3 presents the results of these scans. There, δt = 4.09176 ∗ 10−2 used in

the top row, is 1/100th of the period of the fastest linear wave calculated to exist in

the given equilibrium. The Newton iterative solver is considered to have converged

when every component of the normalized residual is more than 104th times smaller

than its value before the �rst iteration (or is less than 10−10). Similarly, the Krylov

solver is considered to have converged when every component of the matrix-vector

equation agrees to within 10−10 of its initial value. Note that for this initial condition,

which includes equal magnitudes of all three waves present in the system, once the

time-step becomes appreciable in comparison to the period of the fastest of the waves,

that wave is numerically damped within �rst few time-steps. That is exactly what

should be expected of an implicit Θ-scheme with θ > 1/2. The code then proceeds

to propagate the remaining wave(s) in a semi-linear fashion.

The bene�ts of the implicit time-stepping are apparent when comparing the total

run times to the sizes of the time-step δt taken. While each next line of Table 2.3

shows a run with its time-step doubled, the total run-time is shown to increase by

only ≈ 10− 45%, with the greatest increase coming from the necessity to frequently

recalculate the Jacobian matrix due to the increased size of the time-steps.

2.2.3 Study of accuracy and e�ciency of the static rezoning
algorithm.

We have systematically evaluated the bene�ts and potential drawbacks of the static

rezoning algorithm described in Section 2.1.5 using the reduced MHD systems of equa-

tions and somewhat modi�ed tearing mode problem set-up described in Section 2.2.1.

In particular, the initial equilibrium has been modi�ed to include reversed �ow pro�le
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given by φ0 = Mψ0 = Mα ln [cosh(y/α)], where M is the Mach number of the equi-

librium �ow. The following initial condition and plasma parameters were considered:

resistivity η = 10−4, viscosity µ = 10−4, half-period of the perturbed tearing mode

L = 2, width of the equilibrium current and �ow shearing layers α = .2, half-distance

between the two perfectly conducting walls bounding the current layer a = .5, mag-

nitude of the initial perturbation ε = 10−4, and Mach number of the equilibrium �ow

M = .5. This problem set-up was also considered by Glasser et. al.[61] for initial

linear and non-linear testing of the SEL code on a �xed uniform grid.

Several runs of the code with and without adaptive grid capability and with dif-

ferent sizes of the logical grid have been completed. Each time, the code was run with

the same pre-�xed time-step size and the same number of time-steps. The �nal state

of the simulations is one of non-linear saturation of the tearing mode with a single

large magnetic island occupying most of the domain. Figure 2.4 shows zoomed-in

contour plots of the �nal state of vorticity ω = ∇2φ and plasma current j = ∇2ψ

from three di�erent simulation runs. Panels (a,b) show the �nal state of a simu-

lation conducted on a �xed, uniformly distributed (in physical space) grid of size

[nξ, nη, np] = [6, 16, 12], where nξ, nη, and np are number of cells in ξ-direction, num-

ber of cells in η-direction, and polynomial order of each cell in each direction of the

logical grid, respectively. It is apparent that the uniform grid of the given size does

not adequately resolve either the X-point or separatrices around it, as numerical noise

is easily observed in the panels (a,b) of Figure 2.4. Panels (c,d) show the �nal state

of a run completed on a smaller logical grid with [nξ, nη, np] = [6, 16, 10], but with

the adaptive grid feature turned on. The initial logical-to-physical grid mapping used

in this second run was also uniform. It is easily observed that none of the numerical
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noise present in panels (a,b) is there when grid adaptivity is turned on. Panels (e,f)

demonstrate the �nal state of a run completed on a yet smaller logical grid with

[nξ, nη, np] = [6, 16, 8] and the grid adaptivity turned on. Though marginally noisier

than panels (c,d), the �nal state achieved on this smallest adaptive grid is still much

cleaner than the one calculated on a �xed uniform grid of more than twice its size.8

Time evolution of the measure of the spatial discretization error ∆max de�ned in

Section 2.1.5 is shown in Figure 2.5 for several simulation runs with varied polynomial

order np but the same number of cells [nξ, nη] = [6, 16] of the logical grid. It is shown

that the simulation run with �xed uniform grid and np = 12 has steadily increasing

∆max with the �nal value signi�cantly exceeding that of the simulations with grid

adaptivity enabled. On the other hand, the simulations with adaptive grid and lower

np value are shown to have signi�cant decreases in ∆max each time the maximum

allowed spatial discretization error Dmax ≈ 1.∗10−3− 1.5∗ 10−3 is reached and a new

mapping between the logical and physical spaces is generated.

The code's overall performance improvement due to grid adaptivity has been quan-

titatively evaluated by de�ning e�cacy ε of the algorithm as ε ≡ 1/(cpu time∗∆max),

with ∆max taken to be that of the �nal state. Table 2.4 presents the results for all

�ve simulation runs shown in Figure 2.5. Due to the varied size of the logical grid

used in these simulations, a di�erent number of processors was used for di�erent runs.

(More processors were used for larger problem sizes.) However, the number of pro-

cessors for each simulation run was chosen such that the amount of memory used per

processor was kept approximately constant at ≈ 40 − 50% of the memory available
8Since each cell is expanded in np polynomials in each direction, increase from np = 8 to np = 12

constitutes an increase of the total number of degrees of freedom in 2.25 times. Furthermore, due
to the exponential spatial convergence of the spectral element representation, an actual increase in
resolution that comes from increasing np is presumed to be signi�cantly greater than that.
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Figure 2.4: Zoomed-in contour plots of the �nal state of vorticity ω = ∇2φ (panels
a,c,f) and plasma current j = ∇2ψ (panels b,d,e) from three simulation runs con-
ducted on logical grids of di�erent size and with/without grid adaptivity are shown.
Final state on a �xed, uniform grid with [nξ, nη, np] = [6, 16, 12] is shown in panels
(a,b); �nal state on adaptive grid with [nξ, nη, np] = [6, 16, 10] is shown in panels
(c,d); and �nal state on adaptive grid with [nξ, nη, np] = [6, 16, 8] is shown in panels
(e,f).
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from several simulation runs of non-linear tearing mode is shown. All simulations
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varied polynomial order np. For the simulations with adaptive grid, the maximum
allowed spatial discretization error was Dmax ≈ 1. ∗ 10−3 − 1.5 ∗ 10−3.
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np cpu time ∆max e�cacy # of regrids % of cpu time
ε for adaptivity

12 8.784 ∗ 104 sec 4.11 ∗ 10−3 2.77 ∗ 10−3 �xed grid 0
11 8.774 ∗ 104 sec 4.69 ∗ 10−4 2.43 ∗ 10−2 3 7.4%
10 3.544 ∗ 104 sec 9.26 ∗ 10−4 3.04 ∗ 10−2 3 7.8%
9 2.490 ∗ 104 sec 1.01 ∗ 10−3 3.97 ∗ 10−2 4 11.3%
8 1.696 ∗ 104 sec 1.53 ∗ 10−3 3.85 ∗ 10−2 5 14.7%

Table 2.4: Quantitative evaluation of the performance of the adaptive re-gridding
algorithm on the non-linear tearing mode problem run from linear phase through
non-linear evolution to saturation.

per processor. Examining Table 2.4, it is apparent that the grid adaptivity not only

improves the spatial resolution and therefore the precision of the computation, but

can also decrease the amount of memory and time taken up by any given simulation.

It should be noted that for any given problem, there exists a minimum size of the

required logical grid. Furthermore, when such minimum size is approached, the over-

head due to increasing frequency of grid re-mappings can overtake the bene�ts of the

present adaptive grid algorithm.9

2.2.4 Veri�cation of SEL against other non-linear numerical
simulations.

We have completed a number of non-linear studies in order to verify the accuracy

of SEL over long periods of time-integration both with and without making use of

adaptive temporal and spatial algorithms available in the code. These include both

detailed reproductions of numerical results that have been published prior to the

application of SEL to these problems and simultaneous collaborative numerical studies
9We also point out that the overhead due to grid adaptivity becomes smaller and smaller as a

fraction of total run-time, as the complexity of the physical equations and number of dependent
variables M increases.
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conducted for the sole purpose of cross-code veri�cation. The physical phenomenon

of choice for the SEL veri�cation studies has been magnetic reconnection. Besides

the obvious motivation of interest in the physical phenomenon itself (particularly so

by V.S. Lukin), magnetic reconnection was chosen as a test problem because it can

provide arbitrarily challenging conditions for numerical codes both in terms of spatial

and temporal scales involved in a single non-linear computation.

Veri�cation against existing published results.

Making use of the �exible �ux-source form of PDEs that can be evolved by SEL, the

code has been tested with several di�erent physical models. In collaboration with L.

Chac�on of LANL, reduced visco-resistive set of MHD equations (see Section 2.2.1)

was used to simulate the problem of magnetic island coalescence in order to reproduce

and cross-verify results subsequently published by Knoll and Chac�on[86]. The SEL

simulations were conducted using the full adaptive re-gridding and time-stepping

capabilities and the results matched in detail those shown in Ref. [86].

By adding electron inertia e�ects to the reduced visco-resistive MHD (see Ref. [110]

for analysis and justi�cation of such physical model), the numerical results on colli-

sionless reconnection in a regime dominated by electron inertia e�ects by Ottaviani

and Porcelli [109, 110] have also been reproduced. These doubly periodic simulations

of non-linear evolution of a tearing mode were conducted on a �xed but strongly

non-uniform grid and with a �xed time-step size. Plasma parameters and magnetic

equilibrium identical to those used by Ottaviani and Porcelli [109] were also used in

the SEL simulations, however the precise form and magnitude of the perturbation

was not known and therefore the time of the onset of non-linear regime could not be

veri�ed. Sample contour plots of modi�ed poloidal magnetic �ux F ≡ (1 − d2
e∇2)ψ,
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Figure 2.6: Sample contour plots of (a) modi�ed poloidal magnetic �ux F ≡ (1 −
d2

e∇2)ψ and (b) plasma current J = ∇2ψ from a doubly periodic simulation of non-
linear collisionless reconnection (µ = η = 0, de = .25) reproducing simulation results
by Ottaviani and Porcelli [109, 110]. The quantities are shown at t = 170.

where de is the electron skin depth d2
e ≡ (me/n0e

2) and B = ẑ × ∇ψ, and plasma

current J = ∇2ψ for a simulation with µ = η = 0 and de = .25 are shown in Fig-

ure 2.6 and can be qualitatively compared with those of Figure 3 of Ottaviani and

Porcelli [109].

The model has been further extended by adding the e�ects of parallel electron

compressibility (and, correspondingly, perpendicular ion compressibility) in order to

verify SEL against the simulation results by Cafaro et.al.[29]. In this model, the

evolution equations are

E +
1

c
v ×B = ηJ− 1

n0e
∇pe +

me

n0e2

dJ

dt

min0

[
∂v

∂t
+ (v · ∇)v

]
=

1

c
J×B−∇pi + µ∇2v,

where plasma is assumed to be incompressible with density n0 constant and uniform

and plasma �ow velocity represented as v ≡ ẑ × ∇φ with some stream function φ.

Using the total momentum equation and the quasi-neutrality condition (∇ · J = 0),
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it can be shown that in an appropriate limit of large out-of-plane magnetic �eld

and non-negligible plasma pressure, the term (1/n0e)∇pe in the Ohm's Law can be

approximated to �rst order by ρ2
s ẑ · ∇ω ×∇ψ, where the so-called ion sound radius

ρs is de�ned as ρ2
s ≡ (Te/miω

2
ci), vorticity ω ≡ ẑ · ∇×v = ∇2φ, and ψ is the poloidal

magnetic �ux. Then, by taking the ẑ-projection of curl of the �rst (total momentum)

equation and normalizing the equations appropriately, the following set of equations

results:

∂F

∂t
+ [φ, F ] = ρ2

s[ω, ψ] + η∇2ψ

∂ω

∂t
+ [φ, ω] =

1

d2
e

[ψ, F ] + µ∇2ω,

where [A,B] ≡ ẑ · ∇A×∇B and F ≡ (1− d2
e∇2)ψ.

It is well known[53, 94] that the inclusion of �nite electron compressibility e�ects

into a reduced MHD system, as in the equations above, introduces a new scale (ρs)

and modi�es the dispersion relation in such a way as to bring in dispersive kinetic

Alfv�en waves into the system. As discussed elsewhere in this Dissertation, these e�ects

serve to dramatically increase reconnection rate by shortening the current sheet and

opening up the out�ow part of a reconnection region.

Figure 2.7 shows sample contour plots of modi�ed poloidal magnetic �ux F and

plasma current J from a doubly periodic simulation of non-linear evolution of a tearing

mode qualitatively reproducing the result of Cafaro, et.al.[29]. (Compare to Figure 1

of Ref. [29]). These results were obtained on a �xed but strongly non-uniform grid,

with a constant time-step size, and plasma parameters of µ = η = 10−4, de = .25 and

ρs = .75.

Since the initial condition for simulations with and without the electron compress-

ibility e�ects described above are identical, it is worth comparing the corresponding
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Figure 2.7: Sample contour plots of (a) modi�ed poloidal magnetic �ux F and (b)
plasma current J from a doubly periodic simulation of non-linear semi-collisional
reconnection (µ = η = 10−4, de = .25, ρs = .75), qualitatively reproducing simulation
results by Cafaro, et. al. [29]. The quantities are shown at t = 31.2 and only the
central part of the full domain in the x-direction is included.

panels of Figure 2.6 and Figure 2.7. It is apparent that, as expected, in the simulation

with ρs 6= 0 the current sheet is signi�cantly shortened and the reconnection region is

transformed from an elongated Y-shape layer to an open X-point like con�guration.

Further veri�cation of the SEL code has been conducted with the reduced four-

�eld model[40, 52, 53]. Under the assumption of incompressibility and constant and

uniform density, the following set of equations in the �ux-source form has been im-

plemented in SEL:

∂ψ

∂t
+∇ · [ψẑ ×∇φi − η∇ψ − diµe∇We] = diẑ · ∇ψ ×∇Z

∂Z

∂t
+∇ · [Zẑ ×∇φi −Weẑ ×∇ψ − η∇Z + diµe∇ωe] = 0

∂ωi

∂t
+∇ ·

[
ωiẑ ×∇φi − 1

di

(Wi −We)ẑ ×∇ψ −∇(µiωi + µeωe)

]
= 0

∂Wi

∂t
+∇ · [Wiẑ ×∇φi −∇(µiWi + µeWe)] = ẑ · ∇ψ ×∇Z

∇ · (di∇ψ) = Wi −We, ωi = ∇ · (∇φi), ωe = ∇ · (di∇Z +∇φi) ,
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where B = ẑ×∇ψ+ ẑZ, vi = ẑ×∇φi + ẑWi, ve = vi−diJ, di ≡ (c/ωpi)/L0 is the ion

skin depth normalized to the unit length L0, and η, µi, µe are resistivity, ion viscos-

ity and electron viscosity, respectively. We note that the four-�eld equations above

include separate ion and electron �ow velocities, thus providing a two-�uid plasma

description. As a result, another dispersive (Whistler) wave enters the dispersion

relation of the four-�eld model in a uniform magnetized medium.

Two di�erent published results were reproduced with the SEL code using this

model. Doubly periodic domain with �xed and uniform computational grid and �xed

time-step was used to verify SEL against numerical simulation results of magnetic

merging by Craig, et. al.[40] (not shown). A more challenging numerical prob-

lem of forced magnetic reconnection driven by boundary perturbations, the so-called

Taylor problem, was considered by Fitzpatrick[52]. Some of the results obtained

by Fitzpatrick[52] were quantitatively and in detail reproduced using SEL (see Fig-

ure 2.8) on a �xed non-uniform grid and making e�ective use of the adaptive time-

advance algorithm.

Dedicated cross-code veri�cation studies.

A series of numerical simulations has been performed with the SEL code as a part of

the joint cross-code veri�cation e�ort by several initial-value macroscopic modeling

codes (including M3D-C1[76], NIMROD[139], JFNK-FD[125]). The so-called GEM

reconnection challenge[13], initially de�ned to study non-linear evolution of the tear-

ing mode in di�erent collisionality regimes, has been taken as a standard 2D problem

set-up for extended MHD code veri�cation.

This problem has been addressed within both compressible resistive and Hall

MHD models. Within a single-�uid approximation, the following system of energy
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Figure 2.8: Time trace of the reconnection rate from two SEL simulations overlaid
on top of the results obtained by Fitzpatrick (adapted from Fig. 1 of Ref.[52]) in
simulations of forced magnetic reconnection driven by boundary perturbations. The
model, initial, and boundary conditions of SEL simulations exactly reproduce those of
Fitzpatrick[52]. Dissipation parameters for both SEL runs are: η = 10−4, µi = 10−8,
and µe = 10−10.

conserving compressible visco-resistive MHD equations has been evolved:

∂ρ

∂t
+∇ · (ρv) = 0

∂ρvα

∂t
+∇ ·

[
ρvvα +

(
p +

B2

2

)
α̂−BBα − µ

(
∇vα +

∂v

∂α

)]
= 0, α ∈ {x, y}

1

γ − 1

∂p

∂t
+∇ ·

(
γ

γ − 1
pv − κ∇T

)
= v · ∇p + ηJ2 + µ(∇v +∇vT ) : ∇v

∂ψ

∂t
−∇ · [η∇ψ] = −ẑ · v ×B,

where resistivity η, plasma viscosity µ, and isotropic heat conductivity κ are nor-

malized di�usion coe�cients, p = ρT , B = ẑ × ∇ψ, J = ∇2ψ, v = vxx̂ + vyŷ, and

out-of-plane ẑ-components of magnetic �eld and plasma �ow are assumed to be zero

at t = 0 and therefore decouple from the above system of equations. Adiabatic equa-

tion of state with γ = 5/3 has been assumed. Harris current sheet equilibrium[66]
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Figure 2.9: Time traces of the kinetic energy from four di�erent codes JFNK-FD[125],
M3D-C1[76], SEL[61], NIMROD[139] solving identical GEM reconnection problems
[13] within visco-resistive MHD for two values of normalized viscosity (a) µ = 5∗10−2

and (b) µ = 5 ∗ 10−4. All other normalized equilibrium and plasma parameters have
been taken as: Lx = 25.6, Ly = 12.8, λ = .5, pb = .2, η = 5 ∗ 10−3 and κ = 2 ∗ 10−2.

de�ned by ψ0 = −λ ln [cosh(y/λ)], p0 = 1/2 cosh2(y/λ) + pb of width λ, background

pressure pb, uniform temperature T0 = 1/2, and additional large magnetic �eld per-

turbation δψ = 0.1 cos(2πx/Lx) cos(πy/Ly) have been taken as the initial condition

on a rectangular domain (x, y) ∈ [−Lx/2, Lx/2] × [−Ly/2, Ly/2] with perfectly con-

ducting, perfect slip, zero temperature gradient walls on ŷ-boundaries and periodic

b.c. in the x̂-direction.

Using the symmetry of the problem, SEL simulations have been conducted on a

quarter domain (x, y) ∈ [0, Lx/2]× [0, Ly/2] using the full temporal and spatial adap-

tive capability of the code. Figure 2.9 shows the time-traces of total kinetic energy

integrated over the full domain for four di�erent MHD codes solving the identical

problem outlined above for two di�erent values of normalized viscosity µ = 5 ∗ 10−2

(panel a) and µ = 5 ∗ 10−4 (panel b), with all other normalized equilibrium and

plasma parameters taken to be: Lx = 25.6, Ly = 12.8, λ = .5, pb = .2, η = 5 ∗ 10−3

and κ = 2 ∗ 10−2. Remarkable agreement among all four codes, with only the JFNK-
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FD code showing small deviation of < 5% from the other three results, is apparent

in comparing a global quantity, such as the total kinetic energy in the system. No

detailed comparison of any local measurables, such as a local reconnection rate, has

been performed. It is worth noting that the boundary conditions and visco-resistive

MHD equations employed in solving this problem imply conservation of total energy

in the system. The total energy maintained by the SEL code through t = 50 for the

case of µ = 5 ∗ 10−2 is Etotal = 219.4407± 0.0006 and for the case of µ = 5 ∗ 10−4 is

Etotal = 219.4402± 0.0012.

The Hall MHDmodel used in the cross-code veri�cation study extends the resistive

Ohm's Law to include some of the two-�uid terms, thus coupling the evolution of out-

of-plane components of magnetic �eld and plasma �ow to the visco-resistive MHD

model given above and introducing dispersive waves into the system. The following

system of PDEs has been implemented in the SEL code:

∂ρ

∂t
+∇ · (ρvi) = 0

∂ρviα

∂t
+ ∇ ·

[
ρviviα +

(
p +

B2

2

)
α̂−BBα − µi

(
∇viα +

∂vi

∂α

)

− µe∇vez (ẑ · α̂)] = 0, α ∈ {x, y, z}

1

γ − 1

∂p

∂t
+ ∇ ·

(
γ

γ − 1
pvi − κ∇T

)
= vi · ∇p + η|J|2

+ µi(∇vi +∇vT
i ) : ∇vi + µe|∇vez|2

∂ψ

∂t
−∇ ·

[
η∇ψ + diµe

∇vez

ρ

]
= −ẑ ·

(
vi ×B− di

J×B

ρ

)
+ diµe

∇vez · ∇ρ

ρ2

∂Bz

∂t
+∇ ·

[
viBz −Bvez + diβeẑ × ∇p

ρ
− η∇Bz

]
= diBz ẑ · ∇Bz ×∇ρ

ρ2
,
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where resistivity η, ion viscosity µi, electron viscosity µe and isotropic heat conduc-

tivity κ are normalized di�usion coe�cients, p = pi + pe = ρT , B = ẑ ×∇ψ + ẑBz,

J = ∇×B = ρ(vi− ve)/di, di ≡ (c/ωpi)/L0 is the normalized ion skin depth, and βe

is �xed and uniform electron-to-ion plasma pressure ratio βe ≡ (pe/pi). Once again,

adiabatic equation of state with γ = 5/3 has been assumed.

The computational domain, initial and boundary conditions for the Hall MHD

cross-code veri�cation study have been chosen the same as those of the visco-resistive

MHD simulations described above. We note, however, that the explicit presence of

the out-of-plane components of magnetic �eld, ion and electron �ow velocities requires

additional speci�cations in both initial and boundary conditions. In particular, we

have set Bz0 = 0, all of the plasma current at t = 0 has been assumed to be carried

by electrons J0 = −ρve0/di, and zero �ow boundary condition on the electron out-of-

plane �ow has been assumed at the walls. We further note that the latter assumption,

together with the form of the electron viscosity given in the equations above, leads to

the possibility of energy transport in and out of the domain by the electron viscous

forces.

Figure 2.10 presents some of the results from the simulations of the GEM recon-

nection challenge with the Hall MHD model described above and produced within the

scope of the cross-code veri�cation study. Panel (a) shows time traces of the kinetic

energy (K.E.) from the SEL, NIMROD and M3D-C1 codes run with the following nor-

malized equilibrium and plasma parameters: Lx = 25.6, Ly = 12.8, λ = .5, pb = .2,

βe = 1/6, di = 1., η = 5 ∗ 10−3, µi = 5 ∗ 10−2 and κ = 2 ∗ 10−2. The Hall MHD model

equations advanced by the three codes are identical except for implementations of the

electron viscosity terms (formulated as hyper-resistivity in M3D-C1 and altogether

61



absent in NIMROD) and introduction of small arti�cial density di�usion in NIMROD

and M3D-C1 codes. These di�erences in the models are presumed to be responsi-

ble for the small but signi�cant variations in the time-traces shown in panel (a) of

Figure 2.10. Panel (b) shows the sensitivity of the SEL-produced K.E. trace to the

exact magnitude of normalized electron viscosity µe = [2. ∗ 10−5, 1. ∗ 10−5, 5. ∗ 10−6]

and the trace of total energy in the system for µe = 10−5. Observed variation in

the K.E. traces appears to be consistent with the variation between the three codes

demonstarted in panel (a).10

Panels (c) and (d) of Figure 2.10 show the contour plot of out-of-plane electron

momentum, which carries most of the plasma current, and a representation of the

grid density, respectively, from a simulation run with µe = 10−5 at t = 29.125, which

corresponds to the peak of K.E. in the system. Very localized spike of the electron

current at the X-point and sharp separatrices propagating outward are characteristic

of Hall reconnection and are apparent in panel (c). In the SEL code simulations, these

are smoothly resolved by making extensive use of the adaptive grid re-mappings, with

panel (d) of Fig. 2.10 showing a representation of the grid on which the electron cur-

rent of panel (c) has been computed. This particular SEL simulation was conducted

on a logical grid of size [nξ, nη, np] = [40, 40, 8] representing the full simulation domain

shown in Figure 2.10 and made a total of 18 re-mappings in the course of the whole

simulation run, which consisted of 419 time-steps with time-step size varying between

δt = 0.0625 → 0.25.
10As shown elsewhere in this Dissertation, electron viscosity (or hyper-resistivity) has to be in-

cluded in any Hall MHD model that is used to simulate a physical system where magnetic reconnec-
tion takes place and attempts to spatially resolve the reconnection region. In the absence of such
terms, as in the results obtained with the NIMROD code, numerical di�usion facilitated by lack of
spatial resolution e�ectively replaces the local electron viscosity e�ects.
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Figure 2.10: Panel (a) shows time traces of the kinetic energy (K.E.) from three
di�erent codes SEL[61], NIMROD[139], M3D-C1[76], solving GEM reconnection
problems[13] within the Hall MHD model. The problem set-up and Hall MHD models
are identical across the three codes, except for implementations of the electron viscos-
ity terms and presence of arti�cial density di�usion in some of the codes. Panel (b)
presents K.E. traces from three SEL runs with varied values of electron viscosity and
the trace of total energy in the system from one of the runs. Panels (c) and (d)
show the contour plot of out-of-plane electron momentum and a representation of the
grid density, respectively, at the time corresponding to peaking of K.E. in the system
for a simulation run with µe = 10−5. In all simulations presented, all normalized
equilibrium and plasma parameters, aside from µe, have been taken as: Lx = 25.6,
Ly = 12.8, λ = .5, pb = .2, βe = 1/6, di = 1., η = 5 ∗ 10−3, µi = 5 ∗ 10−2 and
κ = 2 ∗ 10−2.

63



We now conclude the description the SEL code's veri�cation studies having demon-

strated its accuracy, e�ciency and robustness on multiple challenging linear and non-

linear problems using a range of plasma �uid models from the simplest reduced to

extended two-�uid MHD. This allows us to rely on the SEL code in the studies of

various physical phenomena we indulge in in the following Sections of this Disserta-

tion.
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Chapter 3

Magnetic Reconnection

In this chapter, dedicated simulations of two-dimensional magnetic reconnection (MR)

using several MHD models of varying collisionality and complexity are described.

Some of the outstanding and unsettled questions of relevance to evolution of an in-

ternal kink mode, as well as many other fusion, space and solar physics phenomena

are addressed below.

3.1 Fundamentals of magnetic reconnection by way
of current layers.

The Sweet-Parker[115, 141] theory of two-dimensional incompressible resistive MR

provides the fundamental framework for describing MR by way of current layers. We

now outline the basic elements of the theory, as well as how it can be extended to

describe MR in a greater and more complex set of plasma models.

Figure 3.1 provides a schematic of a symmetric two-dimensional reconnection re-

gion (RR) with a current layer of length L and width δ. By de�nition, L > δ.

Correspondingly, plasma �ows into RR from top and bottom with velocity vin carry-

ing magnetic �eld of magnitude Bin and �ows out to the left and right with velocity
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vout carrying away reconnected magnetic �eld of magnitude Bout. Horizontal axis is

the x-axis, vertical axis is the y-axis, and z-axis points out of the page. Such ori-

entation of a reconnection region is used throughout this Chapter. We also de�ne

ion and electron Alfv�en velocities vi
A ≡ (B0/

√
4πmin0) and ve

A ≡ (B0/
√

4πmen0),

respectively, based on the magnitude of global magnetic �elds B0 ∼ Bin and some

average plasma number density n0. Here and below in this Chapter, all quantities

are normalized using B0, n0 and some unit of length l0.

3.1.1 Resistive MHD

In a single-�uid model, such as resistive MHD, the plasma velocity corresponds to the

only velocity of a conducting �uid. Then, in the upstream region outside of the current

layer, out-of-plane electric �eld is given by Ez = ẑ · (−v × B) = vinBin. In steady-

state, (∂B/∂t) = −∇×E = 0, and therefore Ez must be uniform over the RR. Thus,

the so-called reconnection electric �eld is given by ER = vinBin = voutBout. At the

center of RR, the X-point, all in-plane plasma �ows go to zero due to symmetry and

therefore ER must be supported by �non-ideal� (i.e. non-v ×B) e�ects. In resistive

MHD, the only non-ideal term in the Ohm's Law is ηJ, where η is appropriately

normalized plasma resistivity, so that at the X-point ER = ηJz.

No plasma accumulation within the current layer is possible in the steady-state.

(In fact, in many of the simulations described below, plasma has been assumed to

be incompressible.) Therefore, from mass conservation, vinL = voutδ. It follows that

Binδ = BoutL. Similarly, energy conservation, or, equivalently, integrating the in-

plane components of the momentum equation along the in�ow and out�ow directions,

provides another relation between the in�ow and out�ow quantities in the RR.

The Sweet-Parker theory e�ectively assumes that L is of the order of the system
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size by presuming δ to be microscopic and in-plane plasma velocities outside of the

current layer to be small relative to vi
A[90]. Then, L À δ, Jz = 2Bin/δ, and vout =

Bin follows from energy conservation under the assumption that plasma density and

pressure are approximately constant outside of the current layer and viscous e�ects

can be neglected.1 W. Park, et.al.[113] have extended the Sweet-Parker model by

including the viscous e�ects in the momentum equation whenever kinematic viscosity

µ is comparable to η. In that case, energy conservation relation gives vout = Bin(1 +

µ/η)−1/2. Using this visco-resistive relationship between Bin and vout, the following

identities are also implied:

δ = η1/2(1 + µ/η)1/4

√
2L

Bin

(3.1.1)

vin = Bout(1 + µ/η)−1/2 = η1/2(1 + µ/η)−1/4

√
2Bin

L
(3.1.2)

ER = (1 + µ/η)−1/4

(
2η

L

)1/2

B
3/2
in , (3.1.3)

where we have expressed all other quantities in terms of plasma resistivity, kinematic

viscosity, in�ow magnetic �eld and current layer length. The reconnection electric

�eld ER is often also referred to as the reconnection rate, which we denote by Rrec, and

the Sweet-Parker reconnection rate is denoted by RSP
rec ∼ η1/2, whenever (µ/η) ¿ 1

and Bin and L are both of order unity.

We emphasize that in the Sweet-Parker model L and Bin have been assumed to be

determined by the global magnetic �eld con�guration, while the steady-state condi-

tion was only necessary to enforce approximate uniformity of the out-of-plane electric
1The Sweet-Parker theory assumes that peaked plasma pressure inside the current layer is re-

sponsible for deceleration of plasma in�ow and following acceleration of plasma out�ow. However,
it is evident from considering an incompressible plasma model that plasma pressure cannot play an
important role in determining the current layer structure and it is magnetic �eld line tension that
accelerates plasma out of the current layer.
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�eld and non-accumulation of plasma and energy in the current layer. Therefore,

whenever global magnetic �eld structure around a RR evolves slowly enough to be

able to approximate the evolution as a sequence of Sweet-Parker steady-states, re-

sistive reconnection may continue to be described by the Sweet-Parker model even

while Rrec may signi�cantly change due to changes in L, Bin, or both.

Below, we consider how the length of a resistive reconnection layer becomes of

the order of the system size. However, we now note that an incompressible resistive

MHD system has no other characteristic length scales except for width of a resistive

di�usion layer and global scales given by the magnetic con�guration. Thus, it is

reasonable to assume that the length of a current layer has to be either on the scale

of reconnecting magnetic structures or proportional to some power of the resistive

di�usion width L ∝ lpη, where 0 < p < 1 and δ ∼ lη. And since in ideal MHD a local

X-con�guration of magnetic �eld not supported by a global structure is intrinsically

unstable to collapse[35], L can only be of order δ when the reconnection process itself

can support local X-con�guration against the collapse. (For example, su�ciently

high resistivity allows for faster reconnection and stronger in�ows, which may allow

the magnetic �eld convected into RR to reconnect fast enough to avoid current layer

elongation.)

3.1.2 Electron MHD

Another single-�uid MHDmodel that can be analyzed using the Sweet-Parker method-

ology is the electron MHD (EMHD) model, where ions are considered to be immobile

neutralizing background and only electrons have non-zero velocity �eld ve. The model
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is described by a single normalized vector equation:

E− d2
e

(
∂J

∂t
+ ve · ∇J

)
= diJ×B− di∇pe + ηJ− d2

i ν∇2J, (3.1.4)

where di ≡ (c/ωpi)/l0 = c
e

√
mi

4π
1

l0
√

n0
, d2

e ≡ d2
i (me/mi), η ≡ η̃c2

√
mi

4π

√
n0

l0B0
, ν ≡

µ̃e

√
4π
mi

1
l0B0

√
n0

and {η̃, µ̃e} are physical values for resistivity and kinematic electron

viscosity. Note that J = ∇ × B = −ve/di, (∂B/∂t) = −∇ × E and an evolution

equation for pe is not necessary, as pe evolution decouples from that for the magnetic

�eld, as is shown in Section 3.3 below.

Unlike resistive MHD, the EMHD system described by Eq. (3.1.4) contains multi-

ple spatial scales. Those are resistive di�usion scale lη, electron viscous di�usion scale

lν , and electron inertial scale de. (Eq. (3.1.4) can be re-normalized to eliminate the

ion inertial scale di, as ions have been assumed to be immobile.) Any one or a combi-

nation of those scales can play a role in determining both the width δ and the length

L of a reconnection layer. In the following analysis, we assume that the e�ects of both

resistivity and electron inertia are negligible in comparison to the electron viscosity,

thus setting η = de = 0.2 Also note that since ions are assumed to be stationary, elec-

tron �ows into and out of the current layer constitute plasma currents carried by the

same electrons that carry the reconnection current in the out-of-plane direction. Such

current pattern is correlated with a quadrupolar out-of-plane magnetic �eld structure

that is inherent in EMHD magnetic reconnection[96]. We denote the magnitude of

this quadrupolar B-�eld generated around the corners of the reconnection current

layer by Bq. (See Figure 3.2.)

Doing the Sweet-Parker-like analysis of an EMHD RR, the assumption of steady-

state once again gives: ER = vinBin = voutBout and vinL = voutδ. And it again follows
2Note that by setting de = 0 all electron inertial e�ects are neglected, electrons are assumed to

carry no kinetic energy, and arbitrarily high electron velocities are allowed.
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Figure 3.2: Schematic of a single scale reconnection region in electron MHD. In�ow
and out�ow velocities are those of an electron �uid carrying B-�eld through the
current layer.

that Bout = Bin(δ/L). We now assume that δ/L is su�ciently smaller than unity to

ignore terms of order (δ/L)2 and higher. Then, at the X-point, ER = d2
i νBin/δ

3.

The only relation still missing is that obtained from the momentum equation in

resistive MHD. In the case of EMHD, it is replaced by a similar relation derived

from
∫
Ω
∇ × E = 0 =

∫
∂Ω

E · dl, where Ω is a quarter of the current layer bounded

by an outside boundary and midplanes of the current layer, as shown in Figure 3.2.

Integrating along such closed path, we have:

B2
in

2
= ν

L

δ2
vout,

where the magnetic �eld line tension force accelerating plasma out of the current

layer is now balanced by the in-plane electron viscous force. (In computing the line

integral, total contribution from di∇pe is exactly zero. Ignoring terms of order (δ/L)2
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and higher, diJ×B term gives two equal contributions from the path segments interior

to the RR, and d2
i ν∇2J term gives two equal contributions from the two horizontal

segments of the path.) From the relations above, the following scalings are derived:

δ =

(√
2diν

L

Bin

)1/3

(3.1.5)

vin =
di√
2

Bin

L
(3.1.6)

vout = Bin

(
d2

i

4ν

Bin

L

)1/3

(3.1.7)

Bout =

[√
2diν

(
Bin

L

)2
]1/3

(3.1.8)

Rν
rec = ER =

di√
2

B2
in

L
. (3.1.9)

We observe that in this case the resulting reconnection rate has no explicit depen-

dence on electron viscosity ν, which breaks the magnetic �eld frozen-in condition

within the current layer, while vout is inversely proportional to L1/3. Assuming an

in�nite reservoir of magnetic energy available to be released through reconnection, it

is reasonable to expect that for given ν, magnetic �eld line tension accelerates the

plasma out�ow to the maximum allowable velocity by shortening the current layer.

Thus, a localized RR with strongly enhanced reconnection rate results.

Various factors might come into play in restricting either the maximum allowable

velocity or the minimum allowable current layer length. An obvious one is the initial

assumption of (δ/L) < 1. Applying that to Eq. (3.1.5) gives a restriction on L of

the form L2 > (
√

2diν/Bin). We also note that to the same order in (δ/L) as above,

vout = di(2Bq/δ), which implies that Bq = (Bin/2
√

2). Another consideration is that

in the case of such localized current layer, Bin itself is no longer uniquely determined
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by the magnitude of the global magnetic �eld convected towards RR, but is only some

fraction of that. Instead, both the reconnection rate and the structure of RR are in

large part determined by the physics of the current layer.

In the above derivation, both plasma resistivity and electron inertia were ne-

glected. However, the same analysis can be done by setting ν = 0 and allowing for

non-zero plasma resistivity. In that case, it is easy to show that:

δ =
η√
2di

L

Bin

,

vout =
4d2

i

η

B2
in

L
,

and

Rη
rec = 2

√
2di

B2
in

L
.

Note that reconnection rate is again independent on the mechanism that breaks the

frozen-in condition and out�ow velocity can be increased by making the current layer

shorter. However (δ/L) is now independent of L, which suggests that the current layer

can contract proportionally and without bound, making the current layer singular.

That is, in fact, what is observed in numerical simulations of MR where electron

dynamics plays an important role and no electron viscosity-like term is included[109,

127].

Finally, when de > 0 but both resistivity and kinematic electron viscosity are

neglected, no steady-state reconnection is possible[29]. That trivially follows from

the fact that in such collisionless model only the time-dependent d2
e(∂J/∂t) term in

Eq. (3.1.4) remains non-zero and can balance the out-of-plane electric �eld at the

X-point. Thus, this system also tends towards a singular current layer.

Based on the above reasoning, one could argue that inclusion of both resistivity
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and electron inertia might be su�cient to allow for EMHD steady-state reconnection

through a current layer of �nite size: resistivity would act to balance the recon-

nection E-�eld at the X-point, while electron inertia would limit the out�ow velocity.

However, as has been shown by numerical simulations where no electron viscosity-like

term is included[109, 127], such RR acquires a two-scale structure where electron �uid

decouples from magnetic �eld on the electron inertial scale, while the current layer

itself contracts to sub-de scales and towards a singularity. Thus, while no straightfor-

ward Sweet-Parker-like arguments can be made for the full multi-scale systems, it is

apparent that kinematic electron viscosity is necessary to enable steady-state MR in

the EMHD regime.3

3.1.3 Two-�uid MHD

We now consider MR in a two-�uid plasma model, where both electron and ion �uids

have non-zero velocity �elds, yet they decouple on some scale which is greater than the

current layer width δ. In 2D systems with no or weak overall out-of-plane magnetic

�guide�-�eld Bguide, such scale is the ion inertial scale di, where ions decouple from

the magnetic �eld due to inertia while electrons continue to E×B-drift together with

the B-�eld[96, 128]. And in systems where the global magnetic �eld is fully three-

dimensional or in the presence of signi�cant guide-�eld Bguide/Bin & 1, the relevant

decoupling scale is generally assumed to be the so-called ion sound radius ρs ≡ cs/ωci,

where cs is the speed of sound, ωci is the ion cyclotron frequency and decoupling is due

to a combination of compressibility and �nite ion Larmor radius e�ects[6, 29, 128].
3It has been shown in recent kinetic simulations of MR by Karimabadi et al.[81] that divergence of

the e�ective electron pressure tensor plays the key role in determining the structure of and balancing
the reconnection electric �eld in the current di�usion layer. However crude, the kinematic viscosity
term diν∇2ve in Eq. (3.1.4) is what models the full electron pressure tensor term ∇ · Πe in the
EMHD approximation.
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Figure 3.3 shows a schematic of a two-�uid multi-scale RR with Bguide = 0. Ob-

serve that within the ion inertial region, ion �ow follows a global convection pattern

independently of how and where current di�usion takes place. Accordingly, B-�eld

evolution within the ion inertial region is independent of vi and therefore can be

described by the EMHD model.

Note that, as discussed above, in EMHD the width of the current di�usion region

is determined by the electron viscous scale lν . Thus, whenever lν > de, no sepa-

rate electron inertial region exists. Similarly, whenever the resistive scale lη is greater

than the ion inertial scale di (or ion sound radius ρs), the current di�usion region con-

sumes the ion inertial region and reconnection proceeds in the resistive MHD manner.

The transition between the two-�uid and resistive MR has recently been numerically

investigated by Cassak et. al.[32, 33] and is described further in Section 3.4 below.

3.2 Visco-resistive magnetic reconnection in large sys-
tems.

Magnetic reconnection in visco-resistive MHD systems has been extensively studied

and is generally well understood[113, 15, 147, 90, 94]. In the simulations described

below, we are interested in following the development of a reconnection layer from

a small localized perturbation in a large semi-periodic system. We then compare

and contrast these results with similar simulations using EMHD and two-�uid MHD

models.

3.2.1 De�nition of the problem.

SEL simulations of a resistive tearing mode within a Harris current sheet[66] were

described in Section 2.2.1 above and showed remarkable agreement of the computed
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linear growth rates with the analytical calculations. Here, we focus on the strongly

non-linear regime of resistive current layer (also referred to as the current di�usion

layer) reconnection.

In order to simplify the model, an assumption of incompressibility has been made.

It can be justi�ed by either presence of large magnetic guide �eld Bguide À B0 or large

plasma β ≡ (p/B2), where p is the plasma pressure.4 It has also been shown[25] that

compressibility e�ects do not play an important role in the evolution of a resistive

current layer.

As in Section 2.2.1, poloidal B-�eld is represented by a �ux function ψ, B =

ẑ ×∇ψ + ẑBz, and poloidal �ow by a stream function φ, v = ẑ ×∇φ + ẑvz. Plasma

density is taken to be initially uniform and remains so due to the assumption of

incompressibility. Then, the momentum equation and the Ohm's Law are su�cient

to specify evolution of the plasma:

∂v

∂t
= −v · ∇v + J×B−∇p + µ∇2v (3.2.1)

E = −v ×B + ηJ, (3.2.2)

where η and µ are plasma resistivity and kinematic viscosity. Using ẑ · ∇× operator

on Eq. (3.2.1) and ẑ· operator on Eq. (3.2.2), plasma pressure and ẑ-components of

magnetic and �ow �elds are eliminated from the problem and the system is reduced

to:

∂ (∇2φ)

∂t
+ ∇ · [(∇2φ)ẑ ×∇φ− (∇2ψ)ẑ ×∇ψ − µ∇(∇2φ))

]
= 0

∂ψ

∂t
+ ∇ · (ψẑ ×∇φ) = η∇2ψ. (3.2.3)

4Strictly speaking, the second condition for incompressibility requires plasma �ows to be much
slower than the sound velocity, cs. However, since it was shown in Section 3.1.1 that in a visco-
resistive RR out�ow velocity is of the order of the ion Alfv�en velocity, vout ∼ vi

A, it has to be true
that β = (cs/vi

A)2 À 1.
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The reduced visco-resistive MHD equations, Eqs. (3.2.3), are solved in a rect-

angular box (x, y) ∈ [−Lx, Lx] × [−Ly, Ly]. Periodic boundary conditions (BC) are

used in the out�ow x̂-direction, while �open� boundary is assumed in the in�ow ŷ-

direction in order to reduce the e�ects of the domain boundary on the reconnection

layer. Here, we de�ne �open� boundary to have zero tangential �ow, zero vorticity

and constant and uniform tangential component of magnetic �eld. Thus, on the y-

boundary, ŷ ·∇φ = 0, ∇2φ = 0, and ŷ ·∇ψ = const are the enforced BC. Simulations

are initialized with a Harris equilibrium[66] with an additional small and localized

perturbation: ψ0 = λ ln [cosh(y/λ)] + δψ, δψ = ε exp [−x2/(2λ)2] exp [−y2/(λ/2)2]),

where λ is the half-width of the Harris equilibrium and ε is the magnitude of the

perturbation. Note that the perturbation is localized within the equilibrium current

sheet.

In order to model the expected development of a macroscopic resistive current

layer from a local perturbation in a large system, the following simulation parameters

are chosen: λ = .5, Lx = 48, Ly = 6, ε = 10−4 and η = µ = 10−4, where width of the

initial Harris equilibrium are taken as the e�ective unit length. Making use of the

symmetries of the initial conditions and those inherent in Eqs. (3.2.3), simulations

are conducted only in the top-right quarter domain and appropriate symmetry BC

are applied.

Though here we are not interested in either linear or early non-linear development

of the tearing instability, it is important to comment on the reason for choosing a

localized perturbation rather than one that spans the whole domain, as is commonly

done. (In numerical modeling of spontaneous MR, it is common to initialize simula-

tions with a macroscopic tearing-unstable current layer in a periodic domain of length

78



Lx and a perturbation δψ ∝ cos(2πx/Lx), which spans the whole domain along the

initial current layer[13, 94].) As discussed in Section 2.2.1, linear growth rate γ of a

tearing mode with a wave number kx in a Harris current sheet of width λ depends on

the quantity λkx. For given λ and η, the function γ(kx), solution to Eq. (2.2.1), is pos-

itive for λkx < 1 and has a maximum at some wave number 0 < kmax < 1/λ [37, 94].

Therefore, whenever a simulation is initialized with an unstable monochromatic per-

turbation, only the tearing mode of that wavelength grows to become non-linear and

form a reconnection current layer whose initial length is correlated with the wave-

length of the perturbation. However, if the initial perturbation is su�ciently small

and contains all wave numbers allowed in the simulation box, it is the tearing mode

with kx closest to kmax which determines the initial length of the reconnection current

layer independently of the shape of the perturbation. We have chosen the perturba-

tion to be a localized Gaussian and Lx su�ciently large such that 2π/kmax < 2Lx,

in order to allow the system to �forget� about the shape of the perturbation when it

forms the reconnection current layer.

3.2.2 Simulation results.

We now study the results of such large scale resistive MR simulation. Following the

linear development phase, a thin and relatively short (L ∼ π/kmax) current layer is

established at t ≈ 400 (not shown). Panels (a) and (b) of Figure 3.4 show time-traces

of Rrec and reconnection layer dimensions as that initial current layer rapidly extends

in the out�ow direction with its length L becoming a large fraction of the domain

size. Two measures of the reconnection layer length are presented: half-length of

the current di�usion layer LJ/2, calculated as half-length at half-max of Jz = ∇2ψ,

and half-length of the plasma out�ow layer Lv/2, calculated as the distance from
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MR in a large semi-open domain. Shown are (a) reconnection rate at the X-point;
(b) reconnection layer dimensions; (c) Bin and vout; and (d) Bout and vin.
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the X-point to the point of maximum vout; yet no characteristic scale could be easily

identi�ed in the plasma in�ow velocity pro�le and the only reconnection layer width

diagnostic is the half-width of the current di�usion layer δJ/2, calculated as half-

width at half-max of Jz. Note that until t ≈ 600− 650, remnants of the initial Harris

current sheet dominate the diagnostic of the current di�usion layer dimensions and

neither LJ nor δJ are meaningful. However, once the reconnection current becomes

su�ciently strong, it is apparent that the current di�usion layer and plasma �ow

scales coincide, as expected in visco-resistive MHD reconnection.

The rate of current layer elongation after t = 650 can be inferred from panel (b)

of Fig. 3.4 and is ≈ 0.15, or about 40% of the ion Alfv�en velocity based on the in�ow

magnetic �eld Bin and nearly 50% of the plasma out�ow velocity vout, shown in panel

(c) of Fig. 3.4.5 It is clear that such dynamic reconnection layer cannot be treated as

if it was in steady-state. Nevertheless, we attempt to compare the simulation results

with the modi�ed visco-resistive Sweet-Parker model described in Section 3.1.1. We

�rst observe that despite the current layer elongation, the reconnection rate increases

until t = 763 due to the simultaneous increase of Bin from ≈ 20% to ≈ 40% of

the B-�eld supplied at the in�ow boundary of the domain. However, since Bin is

ultimately bounded by B(y = Ly) = 1, as the current layer continues to extend, the

reconnection rate begins to drop in accordance with Eq. (3.1.3). Similarly, the width

of the current layer begins to increase and the in�ow velocity and out�ow magnetic

�elds, shown in panel (d) of Figure 3.4, begin to drop in accordance with Eqs. (3.1.1-

3.1.2). Taking a ratio (Bin/vout) during the layer expansion, we also note that it is
5Both Bin in panel (c) and vin in panel (d) of Figure 3.4 are evaluated at y = δJ/2. As discussed

above, δJ is only meaningful after t / 600 − 650, and therefore little value should be put into the
magnitudes of Bin and vin shown for t < 600.
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generally consistent with the visco-resistive relation derived by W. Park, et.al.[113],

which for (µ/η) = 1 gives (Bin/vout) =
√

2. Yet, we observe (Bout/vin) ≈ 3, while the

modi�ed Sweet-Parker model, Eq. (3.1.2), predicts (Bout/vin) ≈ √
2. That is the only

signi�cant discrepancy with the modi�ed Sweet-Parker model and can be attributed

to the time-dependent nature of the elongating current layer.

Panels (a-c) of Figure 3.5 show pro�les of the reconnected magnetic �eld By,

reconnection current Jz, and plasma out�ow velocity vx along the y = 0 axis at four

di�erent times. As the current layer extends, accumulation of the reconnected �eld

just outside of the current layer is apparent. Such accumulation easily accounts for

the discrepancy with the Sweet-Parker model described above. The pro�les of Jz

show how the current layer itself grows and elongates in time. Note that the small

dips in current density observed at the ends of the current layer are the remnants of

the Syrovatsky singularities[144] largely removed by the e�ect of kinematic viscosity.

Similarly, the rounded-o� shape of the current pro�les is due to the viscous force

counter-acting the magnetic tension forces pulling the plasma out of the reconnection

layer. The out�ow velocity itself is observed to increase linearly from the X-point

to the point of maximum out�ow, followed by a sudden drop-o� whenever magnetic

back-pressure becomes signi�cant. It is remarkable that even in the regime of non-

negligible kinematic viscosity, the forces within the current layer self-balance in a way

to provide constant plasma acceleration along the layer.

Contour plots of the magnetic �ux ψ, plasma current Jz, and plasma stream

function φ over the full computational domain at t = 781 are presented in panels

(d-f) of Figure 3.5. At this time the back pressure of the reconnected B-�eld, which

is not being convected away from the RR su�ciently fast, is beginning to in�uence
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the dynamics of the current layer. Panels (d) and (e) demonstrate exactly why that

happens: a pair of merging magnetic islands are formed in the out�ows of the current

layer and begin to obstruct further outward motion of magnetic �eld lines. (One of

the islands can be seen in the �gure, while the other is located symmetrically on the

left hand side of the current layer. Due to the domain periodicity, the two islands

interact and eventually merge.)

Particular attention should be paid to the self-established �ow pattern into and

out of the domain through the current layer, shown in panel (f) of Figure 3.5. Since

no �ow velocity is explicitly speci�ed on the top �open� boundary of the domain, the

�ow pattern that does form is due solely to the properties of visco-resistive MHD and

the drive supplied by the tension of reconnecting magnetic �eld lines. We observe that

none of the �ow that goes through the current layer recirculated within the domain,

but instead chooses to leave the system completely. Thus, the �ow accelerated by the

reconnection has little in�uence on further evolution of the RR.

The large system simulation results described above have also been veri�ed by

varying the size of the simulation domain [Lx, Ly] with no other changes to either

initial conditions or plasma parameters of the simulation. Little quantitative and no

qualitative di�erence in the simulation results was observed in increasing Ly from 6

to 8, or decreasing Lx from 48 to 36. In fact, the former had almost no e�ect on the

simulation at all. And the latter naturally resulted in earlier onset of the boundary

e�ects with no other discernable di�erences in the results. We again point out that

here the periodic boundary only begins to a�ect the reconnection rate and current

layer dynamics when the current layer becomes ≈ 1/2 of the system's period.
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3.3 Magnetic reconnection in electron MHD.

We now turn from visco-resistive MHD to the electron MHD model and conduct a set

of numerical simulations which are equivalent to that described in Section 3.2 above.

3.3.1 Description of the model.

The electron MHD plasma �uid model is completely described by the Equation (3.1.4).

As has already been emphasized in Section 3.1.2, electron MHD is a single-�uid model

where ions are assumed to be stationary and magnetic �eld is coupled only to the

electron �uid. It is also intrinsically an incompressible model, as

ve = −diJ ⇒ ∇ · ve = −di∇ · J = 0.

The key di�erence between the reduced visco-resistive MHD and electron MHD is

that in electron MHD plasma �ows also carry charge and therefore current, thus

self-generating magnetic �elds around any plasma �ow channel.

As in reduced MHD, we employ the condition of incompressibility to eliminate

pressure from Eq. (3.1.4) by reproducing the transformations applied to Eqs. (3.2.1-

3.2.2). Resulting system of two coupled PDEs has the following form:

∂

∂t
(Bz − d2

e∇2Bz) + di∇ · [(∇2ψ)ẑ ×∇ψ − d2
e(∇2Bz)ẑ ×∇Bz + diν∇(∇2Bz)

]

= η∇2Bz (3.3.1)
∂

∂t
(ψ − d2

e∇2ψ) + di∇ · [(ψ − d2
e∇2ψ)ẑ ×∇Bz + diν∇(∇2ψ)

]
= η∇2ψ,

where the out-of-plane magnetic �eld Bz now acts as the poloidal electron �ow stream

function.

Studying Eqs. (3.3.1), we observe that the ion inertial length di can be eliminated

from the system by renormalizing time t → t/di and absorbing factors of di into the

85



dissipation coe�cients. Therefore, while the reconnection rate should vary linearly

with di in accordance with the Sweet-Parker-like estimate in Eq. (3.1.9), evolution of

the system described by Eqs. (3.3.1) is otherwise independent of di, which is only to

be expected in a system where ions have been assumed to be stationary.

Dispersion relation in uniform B-�eld.

It is useful to derive the dispersion relation for the system described by Eqs. (3.3.1) in a

uniform magnetic �eld background. Let the background B-�eld be given by B0 = B̄ŷ,

so that the only non-zero equilibrium quantity in Eqs. (3.3.1) is ∇ψ0 = B̄x̂. Assuming

a perturbation of the form ξ = ξ̃ exp [i(kxx + kyy − ωt)], the following dispersion

relation is easily derived:

ω =
±diB̄kky − i(ηk2 + d2

i νk4)

1 + d2
ek

2
, (3.3.2)

where k2 ≡ k2
x +k2

y and the only wave present in the system is the dispersive Whistler

wave with phase velocity ω/k ∼ ky. Also observe that whenever di(k·B0) À ηk, resis-

tivity does not signi�cantly damp the wave, and even in the limit of dek À 1 electron

inertia only limits the real frequency to (di/de)(k ·B0/dek) without introducing any

explicit damping. Thus, in the limit of high k ‖ ≡ (k ·B/|B|), plasma resistivity plays

little role and the only damping is provided by the electron viscosity term, which is

consistent with the qualitative analysis of the reconnection layer in Section 3.1.2 and

previous numerical studies referenced therein. In the following numerical simulations,

plasma resistivity has been neglected by setting η = 0.

Linear properties of EMHD in non-uniform B-�eld.

Some of the behavior of an EMHD system in non-uniform magnetic �eld can also be

studied analytically. Here, we are interested in �nding potentially unstable modes of
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such a system and therefore discard all of the dissipative e�ects, η = ν = 0, in order

to simplify the analysis. Let the background magnetic �eld have no curvature and

be non-uniform in the direction perpendicular to itself, B0 = B̄y(x)ŷ + B̄z(x)ẑ and

consider a perturbation of the form ξ = ξ̃(x) exp [i(kyy − ωt)].

First, let the gradient scales of interest be much larger than the electron inertial

length � ∇x, ky ¿ 1/de. Then, Eqs. (3.3.1) are reduced to:

ωb̃z + diky

[
B̄′′

y ψ̃ − B̄y

(
∂2

x − k2
y

)
ψ̃

]
= 0

ωψ̃ + diky

(
B̄y b̃z − B̄′

zψ̃
)

= 0,

where F ′ ≡ ∂xF . Assuming B̄y(x) > 0 and substituting for b̃z in terms of ψ̃, these

can be further simpli�ed to yield:[
B̄′′

y

B̄y

+

(
B̄′

z

2B̄y

)2

− (
∂2

x − k2
y

)
]

ψ̃ =

(
ω

dikyB̄y

− B̄′
z

2B̄y

)2

ψ̃. (3.3.3)

From the form of Eq. (3.3.3), it is apparent that for given B̄z(x), whenever (B̄′′
y/B̄y) is

su�ciently large and negative in some interval in x, a localized instability will result.

It is also clear that presence of a non-uniform guide-�eld B̄z acts to stabilize the

instability, while uniform B̄z of arbitrary magnitude does not have any e�ect on the

system. We further observe that B̄′′
y is a gradient of an out-of-plane current density

and (B̄′′
y/B̄y) is always negative on the in�ow sides of a reconnection current layer,

where B̄y are the reconnecting B-�eld components. Figure 3.6 shows a schematic of

how such an instability develops in a system with no magnetic guide-�eld.

In the absence of guide-�eld gradients, B̄′
z = 0, and assuming that ψ̃(x) 6= 0, a

substitution of the form f ≡ (ψ̃′/ψ̃)B̄y
2 − B̄y

′
B̄y reduces Eq. (3.3.3) to a �rst order

non-linear ordinary di�erential equation:

f ′ +
f 2

B̄2
y

= k2
yB̄

2
y − Ω2, (3.3.4)
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Figure 3.6: Schematic of how a large scale instability with ∇x, ky ¿ 1/de can develop
in an electron MHD system with background out-of-plane current density gradient.
A perturbed in-plane magnetic �eld line is swept by the sheared out-of-plane elec-
tron �ow, which generates oscillating out-of-plane magnetic �elds. Resulting in-plane
plasma currents reinforce the perturbation whenever (J̄ ′z/B̄y) < 0.

where Ω ≡ ω/(diky). For a given pro�le of B̄y(x) > 0, Eq. (3.3.4) can be solved

numerically and possibly analytically in some special cases. However, in the present

work, we do not pursue this line of inquiry any further.

When gradient scales of the background, perturbation, or both are su�ciently

small for the electron inertia to begin playing a role, intuitive treatment of the full

linearized form of Eqs. (3.3.1) in non-uniform background B-�eld becomes prohibitive.

In the limit of zero background guide-�eld gradients and no dissipation, linearized

Eqs. (3.3.1) are:

ω
[
1− d2

e

(
∂2

x − k2
y

)]
b̃z + diky

[
B̄′′

y − B̄y

(
∂2

x − k2
y

)]
ψ̃ = 0

ω
[
1− d2

e

(
∂2

x − k2
y

)]
ψ̃ + diky

(
B̄y − d2

eB̄
′′
y

)
b̃z = 0.

We now assume that the perturbation is localized in x such that ξ̃(x) À d2
e

(
∂2

x − k2
y

)
ξ̃(x).

(Note that this does not necessarily imply the length scale of the perturbation to be
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Figure 3.7: Schematic of how a localized instability can develop in an electron MHD
system with strong current gradients in weak magnetic �eld. A localized electron �ow
perturbation in the direction of the current gradient displaces some of the background
current due to the e�ect of electron inertia, resulting in a perturbation in the poloidal
B-�eld. The same sheared background electron current then di�erentially rotates
the perturbation and generates poloidal plasma currents which reinforce the initial
perturbation.

much larger than the electron inertial scale.) Then, for B̄y(x) 6= 0, we have the

following dispersion relation:
(

ω

dikyB̄y

)2

ψ̃ =

(
1− d2

e

B̄′′
y

B̄y

)[
B̄′′

y

B̄y

− (
∂2

x − k2
y

)
]

ψ̃. (3.3.5)

If 1 À d2
e(B̄

′′
y/B̄y), Eq. (3.3.5) is reduced to Eq. (3.3.3). Therefore, we consider a

background pro�le of B̄y such that 1 . d2
e(B̄

′′
y/B̄y). From the assumption above, it

follows that (B̄′′
y/B̄y)ψ̃ À

(
∂2

x − k2
y

)
ψ̃ and Eq. (3.3.5) can be further reduced to yield:

(
ω

diky

)2

= B̄′′
y

(
B̄y − d2

eB̄
′′
y

)
. (3.3.6)

From Eq. (3.3.6) we observe that whenever d2
eB̄

′′
y (x) > B̄y(x) for some region in

x, a localized non-propagating instability with ξ̃(x) À d2
e

(
∂2

x − k2
y

)
ξ̃(x) may grow.

Figure 3.7 shows a schematic of how such localized instability can be generated.
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Qualitative nonlinear analysis of an inertia-less EMHD RR.

An analytic description for the collapse mechanism of an EMHD current layer with

electron inertia e�ects neglected has recently been o�ered by Shaikhislamov[133].

Though, as we explain below, the derivation given by Shaikhislamov does not include

some of the important e�ects present in a reconnecting EMHD system, here we follow

the general spirit of the derivation.

We again begin by neglecting the e�ects of electron inertia and resistivity and

taking the zero magnetic guide-�eld limit. Then, Eq. (3.1.4) that describes the full

EMHD system is reduced to:

E = diJ×B− di∇pe − d2
i ν∇2J.

The key observation made by Shaikhislamov[133] is that application of the ∇×∇×
operator to the above vector equation produces an equation for the time-dependence

of the plasma current density J:
(

∂

∂t
+ d2

i ν∇4

)
J = di∇× [(J · ∇)B− (B · ∇)J] . (3.3.7)

Following Shaikhislamov[133], we also consider two projections of Eq. (3.3.7) � in the

out-of-plane ẑ-direction and plasma out�ow x̂-direction � along the out�ow symmetry

axis (x-axis) of the reconnection layer:
(

∂

∂t
+ d2

i ν∇4

)
Jz = 2Jz

∂vex

∂x
− vex

∂Jz

∂x
−By

∂2vex

∂y2
(3.3.8)

(
∂

∂t
+ d2

i ν∇4

)
vex = d2

i

(
By

∂2Jz

∂y2
+

∂Bx

∂y

∂Jz

∂x

)
, (3.3.9)

where we recall that ve = −diJ and several terms have been dropped due to symmetry

considerations. It is now easy to show from Sweet-Parker-like considerations presented
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in Section 3.1.2, that in a su�ciently elongated current layer every term on the right

hand side (RHS) of Eq. (3.3.8), as well as Eq. (3.3.9), is of the same order in δ/L. It is

this fact that in our view renders further simpli�cation of the system of Eqs. (3.3.8)-

(3.3.9) impossible.

However, here we pursue the method further and apply two more projections of

Eq. (3.3.7) � in the out-of-plane ẑ-direction and plasma in�ow ŷ-direction � along the

in�ow symmetry axis (y-axis) of the reconnection layer:
(

∂

∂t
+ d2

i ν∇4

)
Jz = −2Jz

∂vey

∂y
− vey

∂Jz

∂y
+ Bx

∂2vey

∂y2
(3.3.10)

(
∂

∂t
+ d2

i ν∇4

)
vey = −d2

i

(
Bx

∂2Jz

∂x2
+

∂By

∂y

∂Jz

∂y

)
, (3.3.11)

where all terms on the RHS of each equation are again of the same order in δ/L.

Though it might be possible to solve the system of Eqs. (3.3.8)-(3.3.11) in time

by applying appropriate approximations in the limit of δ/L ¿ 1, we do not attempt

to do it here. Instead, we simply analyze each of the RHS terms for each of the

equations to determine whether it acts to locally increase or decrease reconnection

current and electron in�ow/out�ow velocity in time within the reconnection current

layer. While no de�nitive conclusion can be made about the overall sign of the RHS

for Eq. (3.3.8) and Eq. (3.3.10), it is easy to show that both RHS terms of Eq. (3.3.9)

act to locally increase the electron out�ow and both RHS terms of Eq. (3.3.11) act to

locally increase the electron in�ow velocity within the electron current layer. Thus,

even in the fully non-linear regime, any EMHD current layer should be expected to

collapse by locally self-generating both in�ow and out�ow through the RR.
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Numerical problem set-up.

In all of the simulations described below, di = 2.0 has been chosen. Under the

assumption of hydrogen plasma, it follows that de = 4.667 ∗ 10−2.

To be able to compare reduced MHD and EMHD results, the EMHD simulations

are conducted in the same semi-open, semi-periodic rectangular domain as those

described in Section 3.2.1. On the open boundary, equivalent BC are applied to

the electron stream function Bz as those applied to the plasma stream function φ.

Simulations are also initialized with the identical Harris current sheet of half-width

λ = .5 and a localized perturbation of magnitude ε = 10−4 as in Section 3.2.1. Note

that λ = di/4 ≈ 10de, i.e. gradient scale of the initial condition is a fraction of the

scale on which ions can be legitimately assumed to be stationary in a two-�uid model,

yet much greater than the electron inertial scale.

We now describe a number of EMHD simulations where sensitivity of the solution

to the size of the computational domain [Lx, Ly] and kinematic electron viscosity ν

is investigated.

3.3.2 Viscosity dominated simulation results.

Whenever kinematic electron viscosity is su�ciently large, the viscous di�usion scale

lν becomes greater than the electron inertial scale de and dominates the structure of

the RR.

Figure 3.8 shows snap-shots of magnetic �ux, reconnection current and electron

�ow stream function over a full computational domain, panels (a-b), and directly

around the current later, panels (c-d) from simulations with ν = 4 ∗ 10−5 after an

electron MHD reconnection region has fully developed. It is immediately clear that
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Figure 3.8: Snap-shots of (a) magnetic �ux ψ and (b) out-of-plane B-�eld Bz over
a full computational domain; and (c) out-of-plane current Jz and (d) Bz around the
current layer from simulations with ν = 4 ∗ 10−5 after an electron MHD reconnection
region has fully developed.
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unlike resistive MHD, the EMHD RR remains localized near the X-point. Also unlike

the resistive MHD plasma �ow, the in-plane electron �ow chooses to stay entirely

within the computational domain recirculating the out�ow from the RR back into the

RR. Despite the localization, panel (c) of Fig. 3.8 shows that the EMHD reconnection

current layer remains elongated with δ/L ≈ 5. For the chosen value of electron

viscosity, the half-width of the current layer δ/2 is observed to approximately equal

the electron inertial scale de = 4.667 ∗ 10−2, which suggests that for ν & 4 ∗ 10−5,

lν > de and vice versa. Finally, rotation of the electron �ow through the RR is shown

to be localized within the current layer.

Time evolution of the viscous EMHD reconnection region for various domain sizes

and values of kinematic electron viscosity is described in Figure 3.9. Panel (a) shows

the time evolution of the reconnection rate dψ/dt at the X-point for four di�erent

simulation domain sizes with ν = 4 ∗ 10−5. Unlike analogous resistive MHD results

shown in Fig. 3.4 above, in EMHD we observe a short initial quasi-linear development

of the tearing instability followed by an explosive onset of fast reconnection with peak

reconnection rates orders of magnitude higher than those achieved in resistive MHD.

It is apparent from the data that the dynamics of that transition to fast reconnection

is independent of the system size when the domain sizes considered are su�ciently

large. However, the long-term behavior of the system does appear to be sensitive to

the system length. (The width variation between Ly = 6 and Ly = 8 has virtually no

e�ect on the system. That is to be expected since, as shown in Figure 3.8, in-plane

electron �ow chooses to circulate close to the initial Harris current layer.) Panel (b)

of Figure 3.9 shows time evolution of dψ/dt for a domain size of [Lx, Ly] = [48, 8] and

a range of kinematic electron viscosity values ν ∈ [4∗10−5, 4∗10−4]. Here, we observe
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Figure 3.9: Time-traces of the EMHD reconnection rate and RR dimensions for
di�erent domain sizes and magnitudes of kinematic electron viscosity. Panel (a)
shows the variation in reconnection rate time evolution dψ/dt at the X-point with
domain size for ν = 4 ∗ 10−5; and panels (b,c,d) the variation in time-evolution of
dψ/dt, RR half-width and RR half-length with ν for a given domain size, respectively.
Half-width and half-length of the RR are determined by tracking the location of the
peak in in-plane electron �ow in�ow and out�ow velocities, respectively.
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that the rate of the onset and peak magnitude of fast reconnection can be sensitive to

electron viscosity, while the long term evolution appears to settle to a ν-independent

reconnection rate.

Panels (c) and (d) of Figure 3.9 show the time-evolution of half-width and half-

length of the RR based on the poloidal electron in�ow and out�ow pro�les, respec-

tively. (Note that in the electron viscosity dominated regime, these correspond well

with the reconnection current layer dimensions.) The collapse of the RR from that

developed during the initial linear and early non-linear tearing mode evolution to

a much shorter one following the onset of fast reconnection is apparent. After the

collapse, little temporal variation in RR dimensions is observed. Unlike the ever ex-

panding RR in resistive MHD, viscous EMHD RR width δ and length L appear to

stabilize at de < δ/2 < L/2 < di and are smaller for lower values of ν.

Leaving aside the time-asymptotic behavior of the system, Figure 3.10 shows how

the reconnection rate at the X-point (panel (a)), half-width of the RR (panel (b)),

out�ow electron velocity (panel (c)), and in�ow magnetic �eld (panel (d)) scale with ν

at the time when peak reconnection rate is achieved. In order to separate any possible

e�ects of electron inertia, which are discussed below, several simulation runs with

de = 0 have also been conducted and the data from those runs is shown, as well. It is

apparent that for su�ciently small values of ν, maximum reconnection rate becomes

independent of ν. Yet, other characteristic RR quantities display prominent power

law dependencies on the magnitude of viscous electron dissipation. In particular,

whenever electron inertia has no e�ect on the system, δ ∝ ν2/5, vout ∝ ν−1/5, and

Bin ∝ ν1/5. Observe that these are consistent with the Sweet-Parker-like analysis of

an EMHD RR in Section 3.1.2 above and give a scaling of δ/L ∝ ν0 for the RR aspect
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Figure 3.10: Scaling with kinematic electron viscosity ν of (a) peak reconnection rate
at X-point; (b) half-width of RR � δ/2; (c) out�ow velocity � vout; and (d) in�ow
magnetic �eld � Bin. Quantities in panels (b-d) are evaluated at the time of peak
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have been conducted in a domain of size [Lx, Ly] = [48, 8].
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ratio.

3.3.3 Two scale EMHD reconnection.

We now focus on the simulation results where electron viscosity is su�ciently small to

allow the RR half-width δ/2 to become smaller than de. Panel (b) of Fig. 3.10 clearly

demonstrates that the viscous scaling applicable to the width of the reconnection in-

�ow region becomes invalid for δ/2 < de, suggesting that a new RR structure develops

when lν . de. However, we note that the vout scaling shown in panel (c) of Fig. 3.10

does not appear to depend on the presence of the electron inertia for the range of

kinematic electron viscosities considered here. Similarly, the peak reconnection rate

shows little in�uence of electron inertia on the rate of magnetic �ux passing through

the RR with and without the electron inertia e�ects present in the system.

Figure 3.11 shows the time evolution and the two-scale structure of the RR from

a simulation with ν = 10−6. During the onset of fast reconnection, the peak plasma

in�ow velocity is observed to greatly increase and the in�ow layer is forced to widen

due to the e�ects of electron inertia. At the same time, the reconnection current

channel is observed to peak and become narrower, thus separating the boundary of

the electron in�ow layer from the current di�usion region. Pro�les of the electron

in�ow velocity and reconnection current across the RR downstream of the X-point,

at x = 0.15, show particularly dramatic scale separation: ∼ de wide in�ow layer and a

much narrower sub-de current channel embedded in another wider and weaker current

layer associated with the electron in�ow layer. Thus, it is clear that in EMHD, for

su�ciently small magnitude of ν, the de scale determines the width of the in�ow layer,

while kinematic electron viscosity determines the width of the reconnection current

layer.
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Figure 3.11: Results of a simulation with ν = 10−6. Time evolution of the reconnec-
tion rate and two measures of the RR width are shown in panel (a). Panels (b,c) show
pro�les of in�ow electron velocity and (d,e) of reconnection current across the RR at
two locations along the layer, x = 0.0 and x = 0.15, at three di�erent times during the
evolution. The simulation has been conducted in a domain of size [Lx, Ly] = [48, 8].
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Figure 3.12: Contour plots of Jz, panels (a,c), and Bz, panels (b,d), around the RR
after onset of fast reconnection from two simulation runs with ν = 10−5, panels (a,b),
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Contours of Jz and Bz around the RR following the onset of fast reconnection

are shown in Figure 3.12 from two simulation runs with ν = 10−5, panels (a,b) and

ν = 2∗10−6, panels (c,d), both of which have lν < de. These can be compared to panels

(c,d) of Fig. 3.8 above, where at ν = 4 ∗ 10−5 electron viscous and inertial scales are

about equal. Here, again, continued narrowing of the current layer with decreasing ν

is apparent. But even more importantly, an instability in the out�ow region of the RR

can now be observed. Absent when lν ≥ de, more and more of the instability vortices

appear as the di�usion due to kinematic electron viscosity is decreased. The observed

vortices grow on the out�ow side of the current layer gradient, are non-propagating,

and decay as the reconnection current gradient decreases. These are not signatures of

any kind of turbulence or numerical spatial resolution problems. Instead, we believe

this instability to be the one identi�ed in Section 3.3.1 as a localized instability which

can grow on a current gradient in weak magnetic �elds due to interaction of electron

inertial and ideal electron MHD e�ects.

Very similar signature of a de-scale instability has been previously observed in

two-dimensional EMHD simulations of merging magnetic �ux bundles by Biskamp

et. al.[19]. (See Fig. 4 of [19].) However, there, the instability mechanism was

described as a Kelvin-Helmholtz instability attributable purely to the shear in the

�uid �ow and responsible for generating turbulence.

3.3.4 Discussion and conclusions from the EMHD study.

While the simulation data presented in Figures 3.8-3.12 is not su�cient to determine

the true long-term behavior of a reconnecting electron MHD system, these results

provide several important clues to understanding the dynamic evolution of the system.

We believe that the super-de scale instability described in Section 3.3.1 above serves
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as the trigger for the onset of the RR collapse. In the absence of any magnetic

guide-�eld, current layer formed by the weakly non-linear tearing mode provides

su�cient current density gradient to destabilize the mode. As shown in Figure 3.6,

development of the instability leads to faster electron in�ow and greater compression

of the reconnecting magnetic �eld lines. This, in turn, generates even stronger current

gradients, which is what accounts for the explosive character of the fast reconnection

onset. The qualitative non-linear analysis presented in Section 3.3.1 also supports

that conclusion.

Saturation of the current layer collapse and maximum achievable reconnection rate

appears to be ultimately due to the geometric e�ect of having to bend the in�owing

magnetic �eld lines in order to accomplish reconnection through a microscopic current

di�usion layer; while tension of the reconnected �eld lines forces the plasma out�ow

to accelerate to the maximum velocity allowable by the electron viscous forces and

therefore maximally reduce the current layer length. The main evidence for such a

conclusion comes from the Sweet-Parker-like arguments presented in Section 3.1.2

and observed independence of both the maximum reconnection rate and the current

layer aspect ratio from the magnitude of electron viscosity.

Following saturation of the collapse, observed reduction in the reconnection rate is

attributable to the relaxation of the reconnecting X-point con�guration and resulting

decrease in the magnitude of the in�owing B-�eld. Such relaxation continues until

the e�ect of the periodic boundary in the out�ow direction comes into play. Then,

the formation of large electron �ow vortices on the system-length scale leads to the

feedback of electron out�ows accelerated by the reconnection back into the RR in�ow,

thus forcing the reconnection rate to stay higher than it would in a completely open
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EMHD system.

Most of these conclusions remain valid when the scale of the current di�usion

region becomes smaller than the electron inertial scale and the RR exhibits a two-

scale structure. While plasma in�ow is slowed down by the inertial e�ects, tension in

the reconnected �eld lines continues to accelerate plasma out of the current di�usion

layer up to the maximum velocity allowed by the viscous e�ects. It has to be noted

that for su�ciently small electron viscosity, the maximum out�ow velocity has to

be limited by the electron Alfv�en speed and not the viscous e�ects. This follows

both from simple energy conservation considerations as well as the scalings presented

in Fig. 3.10. Though for such small kinematic electron viscosities the structure of

the EMHD reconnection current layer begins to resemble that of resistive MHD �

with di�usion controlling the width of the current layer and inertia controlling the

maximum out�ow velocity � several important di�erences remain. In particular,

upstream of the current layer the magnetic �eld is not frozen into the plasma �uid and

poloidal �ow through the current layer itself carries poloidal plasma current. While

this parameter regime is outside the scope of the present work, detailed numerical

studies of the electron di�usion region in such absolutely collisionless regime have

recently been conducted by Daughton et. al.[42, 81] with a fully kinetic code.

Finally, clear signature of a localized non-propagating de-scale instability on the

out�ow slope of the reconnection current layer, where magnetic �eld is weak, and

its distinct absence on the in�ow side of the current layer or outside of the region

of strong current gradients � justify the analytic arguments made in Section 3.3.1.

This also provides additional support for our argument that it is the current gradient

driven instability that triggers onset of fast reconnection, as described above.
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3.4 Magnetic reconnection in a two-�uid system.

Having considered both visco-resistive and electron single �uid MHD models, we

now study MR in a two-�uid system represented by the Hall MHD model. The

main goal of this study is to understand how a tearing-unstable two-�uid ion-electron

plasma system, where the ion-electron scale separation is much smaller than either

the dimensions of the domain or the gradient scale of the initial condition, evolves in

time.

3.4.1 Hall MHD model.

Several code veri�cation calculations with two di�erent Hall MHD models have al-

ready been described in the Section 2.2.4. In general, a normalized two-�uid system

of equations with axial symmetry is given by:

∂ρ

∂t
+∇ · (ρvi) = 0

∂(ρvi)

∂t
+∇ ·

[
ρvivi +

(
p +

B2

2

)
I−BB + Πi + Πe

]
= 0

1

γi − 1

∂pi

∂t
+∇ ·

(
γi

γi − 1
pivi − qi

)
= vi · ∇pi − Πi : ∇vi + Qi

1

γe − 1

∂pe

∂t
+∇ ·

(
γe

γe − 1
peve − qe

)
= ve · ∇pe − Πe : ∇ve + Qe

∂ψ

∂t
+

di

ρ
[ẑ · (∇ · Πe −R)] = −ẑ · ve ×B

∂Bz

∂t
+∇ ·

[
viBz −Bvez +

di

ρ
ẑ × (∇pe +∇ · Πe −R)

]
= diBz ẑ · ∇Bz ×∇ρ

ρ2
,

where electron inertia terms have been neglected, γi/e, qi/e, Qi/e, Πi/e are ion/electron

adiabatic constant, heat �ux, heating, and stress tensor terms, R is the electron to

ion momentum transfer term, p = pi + pe, B = ẑ×∇ψ + ẑBz, di∇×B = ρ(vi− ve),
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and di ≡ (c/ωpi)/L0 is the normalized ion skin depth. In Hall MHD, in order to

simplify the system, it is common to evolve only a single pressure[53, 73] by assuming

either a very fast heat exchange and equilibration mechanism or one of the species to

be much colder than the other. In doing so, we let pe = αp, where 0 ≤ α ≤ 1.

A dispersion relation for the Hall MHD system of equations can be derived in

uniform magnetic �eld with normalized uniform background density ρ0 = 1 and

total pressure p0, by neglecting all of the non-ideal terms in the equations above:

Πi = Πe = Qi = Qe = qi = qe = R = 0. Let the perturbation wave vector k

de�ne the x-direction, ξ = ξ̃ei(kx−ωt), and the background magnetic �eld B0 lie in the

[x, z]-plane and be normalized in such a way that k · B/k = 1, i.e. B0 = 1x̂ + b̄z ẑ.

Then, assuming the pressure to be convected by the ion �uid, the following dispersion

relation results:

Ω6 − Ω4
(
b̄2
z + β + 2 + d2

i k
2
)

+ Ω2
[
1 + b̄2

z + β(2 + d2
i k

2)
]− β = 0, (3.4.1)

where Ω ≡ ω/k and β ≡ γip0. Note that here β is normalized to the poloidal magnetic

�eld and b̄z is a measure of the strength of the magnetic guide-�eld relative to the

poloidal magnetic �eld.

It is apparent that the Eq. (3.4.1) has three pairs of roots. One of them, in the

limit of di → 0, is the slow magnetosonic wave, which for di ≈ 1 is found to have

phase velocity Ωs go to zero for k →∞. We now consider how the other two pairs of

waves � the shear Alfven Ωsh and the fast magnetosonic Ωf in the limit of di → 0 �

depend on β and b̄z when di ≈ 1.

Using the Mathematica 5 software package to solve and plot solutions of Eq. (3.4.1)

for Ω(k) with multiple combinations of values for β and b̄z, we �nd the following:

• Fast Compressional Wave:
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Whistler-like dispersion relation: Ω2
f (k) ≈ 1 + b̄2

z + β + d2
i k

2;

• Shear Alfven wave:

β ≤ 1: Ω2
sh(k) monotonically decreases from Ω2

sh(0) = 1 with limdik→∞ Ω2
sh(k) =

β;

β > 1: Ω2
sh(k) ≈ 1 + β−1

β+b̄2z
d2

i k
2, for d2

i k
2 . β with limdik→∞ Ω2

sh(k) = β.

These results can also be reproduced analytically by solving the general dispersion

relation Eq. (3.4.1) with the appropriate orderings for β, b̄z, and dik.

Note that the Whistler wave originates from the fast compressional wave and

for large enough value of dik, as compared to 1, β and b̄z, we have Ωf ≈ dik. We

again point out that, as considered by Rogers et.al.[128] and in Section 3.3.1 above,

inclusion of electron inertia in the evolution equations cuts o� the growth of Ωf (k)

to some constant value for su�ciently high k, limdik→∞ Ωf (k) = Ω∞
f .

The so-called kinetic Alfv�en wave is observed to originate from the shear Alfv�en

wave for β > 1. The dispersive characteristic Ωsh ∝ k associated with the kinetic

Alfven wave in the reduced models[53, 68], in the full compressible model is only a

transitional behavior.6 In the limit of d2
i k

2 ≥ MAX
(
b̄2
z, β

)
, the modi�ed shear Alfven

wave always approaches limdik→∞ Ω2
sh(k) = β.

In the MR simulations described below, we assume all �ows to be subsonic (and

therefore β À 1) in order to simplify the model by making use of the incompressibility

condition ∇·vi = ∇·ve = 0. We again conduct the simulations on a quarter domain

and consider MR without a guide �eld � set b̄z = 0. Note that in this limit, Ω2
sh ≈ d2

i k
2

for 1 < d2
i k

2 < β and Ω2
k ≈ d2

i k
2 for d2

i k
2 > β, thus preserving the dispersive nature

6As noted by Rogers et.al.[128] and Fitzpatrick[53], the reduced two-�uid model, which is derived
under the assumption of large guide �eld b̄z À β[68], is only valid for β À 1.
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of a two-�uid system for a wide range of k magnitudes. Plasma density ρ is assumed

to be uniform at t = 0 and therefore remains constant and uniform due to the

incompressibility and continuity conditions. The simplest form of kinematic viscosity

is assumed for both ion and electron stress tensors: Πi = µ∇vi and Πe = ν∇ve,

where µ and ν are the ion and electron kinematic viscosity coe�cients, respectively.

The electron to ion momentum transfer is given by the usual isotropic resistive term

R = η(ρ2/di)J and plasma pressure is again decoupled from the rest of the system

by applying the ẑ · ∇×-operator to the momentum equation.

The resulting set of incompressible Hall MHD equations evolved by the SEL code

in this study has already been presented in Section ?? and is given here for complete-

ness:
∂ψ

∂t
+∇ · [ψẑ ×∇φi − η∇ψ − diν∇We] = diẑ · ∇ψ ×∇Bz

∂Bz

∂t
+∇ · [Bz ẑ ×∇φi −Weẑ ×∇ψ − η∇Bz + diν∇ωe] = 0

∂ωi

∂t
+∇ ·

[
ωiẑ ×∇φi − 1

di

(Wi −We)ẑ ×∇ψ −∇(µωi + νωe)

]
= 0

∂Wi

∂t
+∇ · [Wiẑ ×∇φi −∇(µWi + νWe)] = ẑ · ∇ψ ×∇Bz

∇ · (di∇ψ) = Wi −We, ωi = ∇ · (∇φi), ωe = ∇ · (di∇Bz +∇φi) ,

where B = ẑ ×∇ψ + ẑBz, vi = ẑ ×∇φi + ẑWi and ve = vi − diJ.

The initial and boundary conditions employed in the Hall MHD simulations are

set to enable direct comparison with the visco-resistive and electron MHD simulation

results described above. The semi-open boundary conditions enforce periodicity in the

x̂-direction, but again allow for zero vorticity ion �ow through the �open� boundary in

the ŷ-direction. The open boundary also has the tangential ion �ow set to zero, while

the tangential components of magnetic �eld are set to be constant and uniform at the

107



value given by the initial condition. Natural boundary conditions are applied to the

electron axial �ow and vorticity variables, We and ωe, respectively. The initial condi-

tion for these simulations is identical to those used in visco-resistive and electron MHD

simulations: ψ0 = λ ln [cosh(y/λ)] + δψ, δψ = ε exp [−x2/(2λ)2] exp [−y2/(λ/2)2]),

λ = .5, ε = 10−4, and all of the initial equilibrium out-of-plane plasma current has

been assumed to be carried by the electron �uid We0 = −di/
[
λ cosh2(y/λ)

]
.

It is important to note that the above system is reduced to the visco-resistive

incompressible MHD system described in Section 3.2 in the limit of di → 0, and

approaches the inertia-less electron MHD limit described in Section 3.3, when di À 1.

3.4.2 Numerical results � three-state solution.

All of the simulations described below have been conducted with the ion inertial scale

di much smaller than the system size [Lx, Ly] or the initial equilibrium gradient scale

λ, yet comparable to the resistive scale lη which determines the width of a reconnection

layer in an equivalent resistive MHD system. While all normalized coe�cients are

kept constant through each simulation run, systematic variation of di and η, with

µ/η ≤ 1 and ν = µ/100, shows a variety of qualitatively and quantitatively di�erent

outcomes in a narrow parameter range.

Quasi-resistive evolution.

We �rst present results from a simulation with di = 0.1, η = 4 ∗ 10−4, and µ =

1 ∗ 10−4 in a semi-periodic �open� box of half-width Ly = 4 and half-length Lx =

24. Figure 3.13 shows the time evolution and the near-�nal state of the simulation.

By comparing the contour plots of poloidal magnetic �ux, panel (a), and ion �ow

stream function, panel (b), to corresponding data from a visco-resistive simulation
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Figure 3.13: Contour plots of (a) ψ, (b) φi, and (c) Bz over the full computational
domain at t = 419.8. Time-evolution of the e�ective growth rate d [ln(δψ)] /dt, and
half-width δ/2 and half-length L/2 of the RR are shown in panels (d),(e), and (f),
respectively. Simulation has been conducted in a quarter-domain of size [Lx, Ly] =
[24, 4] with di = 0.1, η = 4 ∗ 10−4, µ = 1 ∗ 10−4, and ν = 1 ∗ 10−6.
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presented in Fig. 3.5 above, it is apparent that for these parameters the two-�uid

simulation closely reproduces the resistive current layer evolution. Though poloidal

plasma currents are generated (see panel (c) of Fig. 3.13), nothing resembling an

explosive onset of fast reconnection present in EMHD simulations, is observed here.

As shown in panel (d), the e�ective growth rate of the MR process7 is observed to

drop following the linear and early non-linear tearing mode development phase, while

panel (f) shows the length of the RR to grow on the ion Alfv�en time scale as soon as

a current layer stronger than the initial Harris current sheet equilibrium develops.

Due to the multiscale nature of two-�uid MR, in this Section we employ three

separate measures of the width δ and length L of the RR: width and length of a

plasma current layer at half-maximum value are denoted by δJ and LJ , width and

length of the electron in�ow/outfow region from maximum in�ow/outfow on one

side of the RR to maximum on the other are denoted by δve and Lve, and similarly

width and length of the ion in�ow/outfow region are denoted by δvi and Lvi. Time

evolution of all six scales is shown in panels (e-f) of Fig. 3.13. We note that, as

expected, both δve and δvi are well de�ned during the linear tearing mode evolution

with δvi > δve & di. There, they de�ne the width of the tearing layer. However, as

soon as the quasi-resistive non-linear RR forms, both of these scales disappear and

RR width is de�ned purely by the width of the current layer δJ . This, once again,

signi�es that in resistive reconnection in�owing plasma is simply pulled into the RR

by the out�owing plasma, which is itself accelerated by reconnected magnetic �eld

lines.
7We de�ne δψ ≡ (ψmax − ψmin)|y=0, or equivalently the di�erence in poloidal magnetic �ux

between the X-point and O-point along the initial equilibrium current layer. Note that for a linear
perturbation of a static equilibrium with growth rate γ, d [ln(δψ)] /dt = (1/δψ)[d(δψ)/dt] = γ.
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Another interesting feature of the quasi-resistive two-�uid RR structure is noted

by studying time-evolution of the RR out�ow length scales. While the ions and

electrons are shown to �ow together during the linear phase, the out�ows are observed

to acquire somewhat di�erent scales as soon as non-linear reconnection begins to take

place. In fact, for a period of time, electron out�ow layer appears to shorten, but is

later dragged along by the ion out�ow.

Panels (a-d) of Figure 3.14 show the ion and electron out-of-plane current layers,

in-plane current stream function, and the contribution of the ideal ve×B term to the

reconnection electric �eld around the RR at t = 419.8. We observe that despite the

single-�uid-like behavior of the system, most of the reconnection current is carried by

electrons with |We/Wi| > 5. And while the current layer aspect ratio is δJ/LJ ≈ 100,

both the width and length of the electron current layer are distinctly smaller than

the same for the ions. By comparing panels (a) and (e) for the ions and (b) and (f)

for electrons, we also note that the length of ion/electron out�ow layer corresponds

almost exactly with the length of the ion/electron out-of-plane current layer, which

is also con�rmed by the time-traces in panel (f) of Fig. 3.13.

Studying the ion and electron in-plane �ow patterns, we observe that despite

somewhat di�erent locations, the peak magnitudes of ion and electron out�ows are

nearly identical at all �ve times shown in panels (e-f) of Fig. 3.14 and are presumably

determined by the magnitude of in�owing magnetic �eld Bin. On the other hand, the

contour plot of di�erence in the �ows throughout the quasi-resistive RR, i.e. the in-

plane current stream function Bz, shows that the ion-electron in�ow separation scale

is determined by di and electrons are di�erentially rotated and accelerated through

the RR only within the electron reconnection current layer.
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Figure 3.14: Contour plots of (a) Wi, (b) We, (c) Bz and (d) −ẑ ·ve×B over the RR
at t = 419.8. Pro�les of (e) ion and (f) electron out�ow velocities along the RR are
shown at �ve di�erent times during the non-linear evolution. Simulation has been
conducted in a quarter-domain of size [Lx, Ly] = [24, 4] with di = 0.1, η = 4 ∗ 10−4,
µ = 1 ∗ 10−4, and ν = 1 ∗ 10−6.
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Collapse to fast X-point reconnection.

We now present results from a calculation with di = 0.1, η = 2.5∗10−5, and µ = 2.5∗
10−5 in the same simulation domain. Note that resistivity has been reduced by a factor

of eight with respect to the calculation described above. Figure 3.15 again shows the

time evolution and the near-�nal state of the simulation and can be compared panel-

by-panel with Fig. 3.13 above. We observe that the basic di�erence between the ψ

contour plots is that between those achieved with visco-resistive and electron MHD

reconnection simulations described previously: a very elongated current layer versus

an open X-point like structure. Combining the data from in-plane ion �ow and plasma

current stream function contour plots, we observe that both �uids still elect to �ow

together into and out of the computational domain through the open boundary, while

a completely new substructure has formed in the ion �ow that well corresponds with

the electron �ow dominated in-plane current structure.

The direct evidence for explosive onset of fast reconnection precisely correlated

with the RR collapse to an X-point is given in panels (d-f) of Figure 3.15. Instead

of falling o�, the reconnection growth rate is observed to dramatically increase by an

order of magnitude in a time period ∆t ≈ 50, while a sharp drop in the RR length is

observed.

Comparing the temporal evolution of the RR dimensions with the equivalent data

for the more resistive simulation, we note that here even the linear tearing mode has a

distinctly two-scale structure � with the ion tearing layer width determined by di and

electron tearing layer width determined by the resistive scale lη. (It is easy to show

from the two-�uid Ohm's Law that kinematic electron viscosity begins to play a role

only for current layer width δ < di(ν/η)1/2. For the present parameters, that happens
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Figure 3.15: Contour plots of (a) ψ, (b) φi, and (c) Bz over the full computational
domain at t = 536.7. Time-evolution of d [ln(δψ)] /dt, half-width δ/2 and half-length
L/2 of the RR are shown in panels (d),(e), and (f), respectively. Simulation has been
conducted in a quarter-domain of size [Lx, Ly] = [24, 4] with di = 0.1, η = 2.5 ∗ 10−5,
µ = 2.5 ∗ 10−5, and ν = 2.5 ∗ 10−7.
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when δ < 10−2, which is smaller than the width of the observed electron tearing layer

δ ≈ 2.5∗10−2.) Similarly, the ion and electron tearing mode length scales are observed

to diverge during the linear evolution with the electron scale Lve reduced by factor of

two during the early non-linear phase of the simulation t ≈ 300− 450.

In the fully developed non-linear phase, during the explosive onset of fast recon-

nection, it is primarily the out�ow scales which appear to rapidly collapse. We note

that immediately following the collapse, both dimensions of the ion inertial region

also �recoil� in an apparent attempt to relax the magnetic �eld con�guration outside

of the RR. On the other hand, the electron in�ow layer width δve is shown to slowly

decrease from the linear tearing mode width lη to a new electron viscosity dominated

scale lν . Figure 3.16 shows a close up of the ion inertial and electron di�usion regions

following onset of fast reconnection at t = 536.7.

Observe that the sizes and aspect ratios of the respective regions are very di�erent.

The out-of-plane ion current layer, shown in panel (a), has an aspect ratio of ∼ 40,

sub-di width and ∼ 10 − 15di length. The length of the ion current layer exactly

corresponds to the length of the ion out�ow layer, shown in panel (e). However, its

width is signi�cantly smaller than the width of the ion in�ow layer, as seen in panel (e)

of Fig. 3.15 at t = 536.7. (Recall that such relation between the in-plane and out-of-

plane components of the �ow has also been observed in the two-scale EMHD system

when the out-of-plane current layer width was reduced below the electron inertial scale

de.) On the other hand, the out-of-plane electron current layer, shown in panel (b) of

Fig. 3.16, is approximately 10 times as strong as the ion reconnection current, has an

aspect ratio of . 10, width on the electron viscous scale lν . 5 ∗ 10−3 ¿ lη < di and

sub-di length.8 Panels (e) and (f) of Fig. 3.15, as well panels (c) and (f) of Fig. 3.16,
8For hydrogen plasma with di = 0.1, the corresponding electron inertial scale is de = 2.33 ∗ 10−3.
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also show that the dimensions of the electron current channel exactly correspond to

those of the electron in�ow/out�ow layer. We observe that here electron out�ow

velocity greatly exceeds the ion out�ow velocity and therefore dominates the in-plane

distribution of plasma currents.

Finally, we compare the contributions to the reconnection E-�eld made by the

ideal −ve×B term in the quasi-resistive and fast reconnection simulations, shown in

panels (d) of Fig. 3.14 and Fig. 3.16, respectively. In the quasi-resistive case, weak

variation is observed outside of the current layer and the resistive contribution inside

the current layer approximately balances the ideal term outside. On the other hand,

during fast reconnection, it is clear that the resistive term within the electron current

layer is unable to balance the ideal contribution to the out-of-plane E-�eld outside

of the layer and kinematic electron viscosity has to play a role. We note that the

−ẑ · ve ×B term has signi�cant structure of enhanced electric �eld immediately sur-

rounding the collapsed electron current layer, which also corresponds to the locations

of maximum electron in�ow and out�ow velocity.

Intermediate regime with plasmoid generation.

As discussed above and previously shown by Cassak et. al.[32], a su�ciently resis-

tive reconnecting two-�uid system has the macroscopic RR structure of a single-�uid

resistive MHD, while su�ciently collisionless reconnecting two-�uid system generates

an X-point-like microscopic electron current layer. In order to investigate the evolu-

tion of a reconnecting two-�uid system in the regime intermediate between the two
Therefore, since we have shown that electron inertia has no e�ect on a reconnecting system when
lν ≥ de, we have not altered this two-�uid system's behavior by neglecting the electron inertial
e�ects.
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limiting con�gurations, a number of simulations with varying values of di, η and sys-

tem size have been conducted. Table 3.1 summarizes the simulation parameters and

the outcomes sorted by what we de�ne to be the �two-�uid parameter� � di/η
1/2,

where di determines the scale on which ion in�ow separates from the magnetic �eld

and electron �uid, and width of a resistive dissipation layer is proportional to η1/2.

As expected, for lowest values of the two-�uid parameter, formation of a system-

length quasi-resistive current layer is consistently observed. However, as di/η
1/2 is

increased and greater separation between the ion inertial scale and the current dif-

fusion width becomes possible, the formation and elongation of the resistive current

layer is observed to be interrupted by secondary instabilities of the electron current

layer resulting in plasmoid generation. In fact, the electron current layer instabilities

appear to have such high growth rates that simulations with the same plasma pa-

rameters and varied resolution are shown to become unstable at di�erent times and

produce secondary instabilities with di�erent mode numbers. Figure 3.17 shows time-

traces of the reconnection growth rate, panel (a), and half-width of the electron in�ow

layer, panel (b), from four simulations with identical plasma parameters and initial

conditions on adaptive logical domains of varied size. It is immediately apparent that

the four simulations produce identical results for t / 500 with the system behaving

in the quasi-resistive manner. However, as the system enters a strongly non-linear

regime, its sensitivity to numerical noise becomes an important factor in the evolu-

tion. The three highest resolution runs are shown to successfully form a macroscopic

resistive current layer, resulting in a slight drop of the reconnection growth rate and

disappearance of the distinct electron in�ow layer scale.
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di/η
1/2 di η µ Lx nx ny outcome

3.16 0.10 1.0 ∗ 10−3 1.0 ∗ 10−4 24 20 20 layer
4 0.04 1.0 ∗ 10−4 1.0 ∗ 10−4 24 28 30 layer

4.74 0.15 1.0 ∗ 10−3 1.0 ∗ 10−4 24 20 20 layer
5 0.10 4.0 ∗ 10−4 1.0 ∗ 10−4 24 20 20 layer
5 0.05 1.0 ∗ 10−4 1.0 ∗ 10−4 24 20 20 electron m = 2,

secondary electron m = 1
5 0.05 1.0 ∗ 10−4 1.0 ∗ 10−4 24 28 24 layer,

secondary electron m = 3
6 0.06 1.0 ∗ 10−4 1.0 ∗ 10−4 24 20 20 electron m = 1
6 0.06 1.0 ∗ 10−4 1.0 ∗ 10−4 24 28 24 layer,

secondary electron m = 1
6 0.06 1.0 ∗ 10−4 1.0 ∗ 10−4 24 28 30 layer,

secondary electron m = 2
6 0.06 1.0 ∗ 10−4 1.0 ∗ 10−4 24 30 36 layer,

secondary electron m = 1
7 0.07 1.0 ∗ 10−4 1.0 ∗ 10−4 24 20 20 electron m = 1
7.5 0.15 4.0 ∗ 10−4 1.0 ∗ 10−4 24 20 20 electron m = 1
8 0.08 1.0 ∗ 10−4 1.0 ∗ 10−4 24 20 20 electron m = 1
8 0.08 1.0 ∗ 10−4 1.0 ∗ 10−4 24 28 30 X-point
10 0.10 1.0 ∗ 10−4 1.0 ∗ 10−4 24 20 20 electron m = 1
10 0.10 1.0 ∗ 10−4 2.5 ∗ 10−5 24 20 20 electron m = 1
10 0.10 1.0 ∗ 10−4 2.5 ∗ 10−5 36 28 24 X-point
15 0.15 1.0 ∗ 10−4 1.0 ∗ 10−4 24 20 20 X-point
20 0.10 2.5 ∗ 10−5 2.5 ∗ 10−5 24 20 24 X-point
20 0.10 2.5 ∗ 10−5 2.5 ∗ 10−5 36 28 24 electron m = 1
20 0.10 2.5 ∗ 10−5 2.5 ∗ 10−5 36 36 30 X-point

Table 3.1: Results from a set of incompressible Hall MHD simulations with initial and
boundary conditions as described in Section 3.4.1, sorted by the two-�uid parameter
di/η

1/2, with normalized ion inertial scale di, resistivity η, kinematic ion viscosity µ,
kinematic electron viscosity ν = µ/100, in the domain of length Lx and width Ly = 4,
on an adaptive logical grid of size [nx, ny, np], with np = 8.
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Figure 3.17: Time-traces of (a) reconnection growth rate d [ln(δψ)] /dt and (b) elec-
tron in�ow layer half-width δve/2 from four simulations with varied spatial resolution
in a quarter-domain of size (Lx, Ly) = (24, 4) with di = 0.06, η = µ = 10−4, and
ν = 10−6.

We now recall from the analysis of visco-resistive RR evolution, shown in Fig-

ure 3.4 above, that the process of resistive current layer formation and elongation

is accompanied by initial drop in the current layer width, as magnitude of the up-

stream B-�eld Bin is allowed to increase. It is during that intermediate phase that

the current layer di�usion scale δJ becomes smaller than di in these simulations. As

a result, sub-di electron current layer is formed, marked by the reappearance of the

δve scale for t & 550 in Fig. 3.17. Panels (a-b) of Figure 3.18 show the structure of

the macroscopic two-scale RR at t = 573.4. We observe that the aspect ratio of the

electron current layer is δJe/LJe ≈ 100 and its width is determined by the resistive

scale lη. This electron current layer continues to grow narrower and eventually be-

comes unstable to secondary instabilities. Panels (c-d) and (e-f) of Fig. 3.18 show

the structure of the RR a short time later from two simulations with di�erent spatial

resolutions. We observe that the two simulations produced di�erent secondary insta-

bilities: m = 2 for the lower resolution and m = 1 for the higher resolution run. (As
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Figure 3.18: Contour plots of (a,c,e) We and (b,d,f) φi before the onset of secondary
instabilities, panels (a-b), and after, panels (c-d) and (e-f), from two simulations with
di�erent logical grid sizes, (nx, ny) = (28, 30) and (nx, ny) = (30, 36), respectively.
Both simulations used the adaptive temporal and spatial algorithms with the same
spectral element polynomial order np = 8. The simulation were conducted in a
quarter-domain of size (Lx, Ly) = (24, 4) with di = 0.06, η = µ = 10−4, and ν = 10−6.121



shown in Table 3.1, no general correlation is observed between the spatial resolution

and m number of the secondary instabilities.) Yet, in both cases, the secondary in-

stabilities have contracted the electron current layer to the microscopic lν scale, while

the ion �ow pattern demonstrates that the ion di�usion region has not collapsed and

global length of the RR continues to be a large fraction of the simulation domain.

Nevertheless, as shown in panel (a) of Fig. 3.17, onset of the secondary instabilities

produces explosive growth of the reconnection rate, where all three highest resolution

simulations show comparable magnitudes of the maximum growth rate.

We note that although there is a very de�nite correlation between the simulations'

spatial resolutions and how long we are able to track the macroscopic current layer

before it becomes unstable, the contour plots of Fig. 3.18 make it abundantly clear

that in all of the simulations the spatial resolution of the solution is more than suf-

�cient and by far exceeds that which can be expected in two-�uid MR simulations

that rely on numerical di�usion for smoothness of the solution[73].9 Thus, we must

conclude that it is the explosive growth rate of the secondary electron instabilities

which is responsible for the numerical non-reproducibility of the exact solution as the

macroscopic electron current layer evolves in time.

Coming back to Table 3.1 to consider yet higher values of di/η
1/2, we observe

that as the two-�uid parameter is increased, the system transitions from generating a

macroscopic RR with embedded plasmoids, to producing a single localized plasmoid

while the global RR opens into an X-point, to direct generation of an lν-scale electron

current layer in an open global magnetic �eld con�guration.
9As discussed in Section 2.2 above, the Crank-Nicholson time-advance together with the high

order spectral element spatial representation combine to give virtually no numerical di�usion or
dissipation of the solution in the SEL code.
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3.4.3 Summary and discussion on two-�uid magnetic recon-
nection.

We now attempt to summarize the two-�uid results presented above and use them as

well as results from other authors as a guide to form an overall framework for thinking

about two-dimensional MR.

Fundamentally, MR acts to release energy stored in a global con�guration of mag-

netic �elds by changing its topology in a system where magnetic energy is generally

assumed to dominate the kinetic energy of plasma �ow. (MR in systems where energy

of the plasma �ow constitutes a large fraction of the total energy balance is the case

of strongly driven MR, which has not been considered here.) In doing so, the system

attempts to maximize the rate of energy release subject to the restrictions imposed

by the mechanism allowing for the topological change. If and when such maximum

energy release rate is achieved, the system enters a steady-state. On the other hand,

a steady-state process can only happen in a global con�guration which undergoes

no changes in the shape and structure of the RR and magnetic �elds immediately

surrounding it. Therefore, a steady-state RR itself must be in the state of minimum

energy, subject to matching conditions with the global B-�eld structure around it. In

the simulations described above, we have not truly considered the asymptotic steady-

states of two-�uid MR, but rather the various paths the system takes to get to those

states and what those states might be for di�erent values of plasma parameters.

Key observations.

One of the key observations made by combining all of the above results is what degrees

of freedom are available to the full two-�uid system to achieve both the maximum

reconnection rate and minimum energy con�guration of the RR. Across the RR,
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there are four: ion inertial scale (or the in-plane scale on which ions can become

decoupled from the magnetic �eld), ion current layer width determined by the ion

viscous e�ects, electron inertial scale, and electron current layer width determined

either by the resistive di�usion or electron viscous e�ects. However, along the RR

there appears to be only two: lengths of the ion and electron current layers which are

equal to the lengths of the ion and electron out�ow regions, respectively.

The other key observation is that magnetic energy contained in the B-�elds imme-

diately surrounding the RR plays an important role in determining the aspect ratio of

the RR. The two main contributing factors are: (1) whether or not and on what scale

plasma �ows through the RR also carry current and therefore generate additional

out-of-plane B-�elds; and (2) the amount of energy in the reconnecting B-�eld as the

aspect ratio of a RR is varied.

Minimum energy conjecture.

We recall that wherever a di�erential �ow of two oppositely charged �uids exists,

there is also a plasma current. And in the RR in�ow-out�ow con�guration, where

negatively charged electrons �ow through the region faster than the positively charged

ions, the resulting plasma currents also conspire to generate a quadrupolar structure of

out-of-plane magnetic �elds. Thus, a non-trivial con�guration of magnetic �elds and

plasma currents that have non-zero components in all three directions is generated.

We conjecture that in the collisionless limit, on the sub-di scale, it is the minimum

energy state of this con�guration around the X-point subject to matching the global

magnetic �eld geometry constraint that determines the aspect ratio of a steady-state

electron current layer and therefore the reconnection rate. Several observations made

from the EMHD and X-point Hall MHD simulation results support the conjecture:
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• Poloidal plasma currents are maximally aligned with poloidal magnetic �eld

outside of the B ≈ 0 region to minimize Jp ×Bp;

• Free energy available in a super-lν scale out-of-plane electron current layer, as

evidenced by the existence of a current gradient instability described in Sec-

tion 3.3.1 above, is always tapped to collapse the electron current layer to the

lν scale;

• Enhanced reconnection E-�eld corresponding to a peaked pro�le of electron

in�ow and out�ow velocities in the immediate neighborhood of the X-point

signi�es a self-driven system;

• The RR is consistently observed to relax following the explosive onset of fast

reconnection, �.e. longer and wider RR than that which generates maximum

Rrec appears to be consistent with the constraints of the steady-state solution.

Yet, even stronger evidence in favor of the conjecture comes from the moderately

collisional regime, where resistivity is su�ciently high to form a macroscopic out-of-

plane current layer of width δJ/2 ≥ di, while it is low enough to only bind the poloidal

electron �ow to the poloidal ion �ow on the super-di scale. It is remarkable that in

that regime, despite the formation and apparent overall stability of a system-size RR,

as soon as the half-width of the electron out-of-plane current layer is pulled in by the

electron in�ow to below the di scale, a secondary instability breaks up the macroscopic

electron current layer to form a series of microscopic lν-scale electron current layers

joint by one or more ∼ di-width plasmoids within the global reconnection current

layer. And the local structure of each of the inter-plasmoid current di�usion regions

is identical to that observed in the EMHD and collisionless two-�uid regimes.
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While not considered here so far, two-�uid MR in the presence of magnetic guide-

�eld has been extensively studied elsewhere[53, 73, 122, 142, 77] and demonstrates fur-

ther agreement with the proposed model. In particular, introduction of non-negligible

magnetic guide-�eld has been shown to reduce the reconnection rate as a layer of en-

hanced out-of-plane B-�eld forms in the RR[73, 77]. In view of the conjecture, we

believe that it is ultimately the gradient of the Bz-�eld within the RR which reduces

Rrec by providing extra tension to an X-point con�guration and forcing a more elon-

gated current di�usion region. That conclusion is also consistent with the result of

Section 3.3.1, where presence of a Bz-�eld gradient is shown to have a stabilizing

e�ect on the electron current gradient layer instability.

As a side note, we have to point out that evidence of fast reconnection has recently

been reported in two-dimensional particle simulations of collisionless electron-positron

plasmas[11, 43]. There, due to equal mass of the species, no signi�cant in-plane

plasma currents are generated[11] and size of the current di�usion region is limited

by a combination of kinematic viscosity and inertial e�ects[11, 43]. However, fast

reconnection and very active plasmoid generation is still observed. While one could

argue that these results contradict our conjecture, we believe that they only serve

to further support it. We note that, on one hand, the Sweet-Parker-like derivation

of Rrec and other RR parameters in the EMHD regime (see Section 3.1.2) does not

make use of the in-plane plasma currents and still results in dissipation-independent

fast reconnection, while on the other hand plasmoid generation by way of secondary

tearing is in itself a form of local magnetic �eld relaxation and energy minimization.
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Two-�uid RR structure.

Based on the simulation results and the discussion above, we suggest the following

explanation for the structure of a two-�uid RR. Given a magnetic X-point which is

somewhat longer than wider, the tension of the bent magnetic �eld lines accelerates

them outward from the point of zero B-�eld through the smaller opening of the X-

point. On distances beyond their inertial scale, charged particles are bound to the

�eld lines and move together with them. Since electrons are d2
i /d

2
e À 1 times lighter

than ions, it is the electrons which are accelerated in the interior of the RR. The region

of acceleration is naturally the region of strongest current density, where most of the

B-�eld curvature is accumulated, thus the corresponding lengths of the reconnection

current and electron out�ow layers.

As electron �uid is ejected from the X-point, it is kinematic viscosity and resistive

drag plus electron inertia that counteract the acceleration. Whenever collisionality

is su�ciently weak for the electron inertia to be the main counteracting force, the

maximum electron out�ow velocity, ve
out ≤ ve

A, is determined by the magnitude of the

reconnecting magnetic �eld. On the other hand, in the strong collisionality regime, it

is the ion drag that counteracts electron out�ow acceleration. Electrons are forced to

drag ions along, while the resulting ion out�ow is itself slowed down by the kinematic

ion viscosity and ion inertia. It is the balance of the ion inertial and viscous forces

against acceleration by the electron drag and the tension of reconnected magnetic �eld

lines that determines the maximum ion out�ow velocity, vi
out ≤ vi

A, independently of

plasma collisionality.

The length of the electron out�ow region and therefore of the electron current

layer is also limited by the forces acting to locally relax the B-�eld structure of
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the RR. Since di�erential out�ow generates in-plane currents perpendicular to the

reconnected B-�eld and mainly carried by electrons, those electrons are de�ected from

the acceleration region to �ow parallel to the magnetic �eld lines. They then can carry

parallel poloidal current over large distances outside of the RR itself. (As has been

recently shown in fully collisionless particle simulations by Karimabadi et.al.[81], the

electron out�ow has a two scale structure consisting of an acceleration region and a

free out�ow region. Here, we use �electron out�ow region� to denote the acceleration

region of Karimabadi et.al..) On the other hand, the length of a steady-state ion

out�ow region beyond the di-scale is determined purely by a global con�guration

of B-�elds which allows for maximum Rrec. As long as there is curvature in the

reconnected magnetic �eld lines, i.e. out-of-plane plasma current, plasma continues

to be accelerated from the X-point outwards.

Di�erent factors determine the respective widths of the ion and electron in�ow

and dissipation regions. As plasma is ejected from the X-point, su�cient amount of

plasma �uid must be �sucked in� to replace it. In a collisional regime, that is the only

force acting to pull plasma in and therefore no peak in the plasma in�ow velocity

is observed. Nevertheless, the in�owing plasma carries with it oppositely directed

poloidal magnetic �eld, thus generating further out-of-plane current with the width

of the current layer determined by resistive di�usion.

In the collisionless limit, it is the electron �uid that is ejected and therefore must

be replaced within the current layer. It is then mainly electrons that bring in fur-

ther reconnecting B-�eld and are accelerated in the resulting out-of-plane current

layer. Since the ion in�ow velocity is also limited by its inertia within di of the X-

point, EMHD approximation is generally applicable there and, as we have shown in
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Section 3.3.1, electron in�ow is not simply pulled towards the X-point, but is e�ec-

tively pushed inwards by the out-of-plane current gradient. The width of the electron

out-of-plane current layer is determined by the balance between the out-of-plane re-

connection E-�eld and the forces acting to transport the electron momentum away

from the electron current layer � electron viscous force and the resistive drag; and the

width of the electron in�ow layer is limited either by the width of that accelerating

current layer or a mixed scale between lν and de, whenever lν < de. Similarly, the

width of the ion out-of-plane current layer is determined by the balance between the

reconnection E-�eld on one hand and the ion viscous force and the resistive drag on

the other; and the width of the ion in�ow layer is limited by the ion inertial scale

di. We note that fundamentally the same 4-scale structure of a collisionless RR has

been observed by Ishizawa et. al.[74] in two-dimensional particle simulations, where

the meandering orbits of ions and electrons played the roles of the e�ective ion and

electron kinematic viscosities, respectively.

Conclusion.

We end this chapter on two-dimensional magnetic reconnection with the following

proposition: A system that has free magnetic energy that can be released by way of

magnetic reconnection will do so by whatever means are available to it and as fast as

possible. Systems that allow for su�ciently fast magnetic reconnection by forming a

steady-state RR which is itself in a local minimum energy state, such as a collisionless

two-�uid system, do so. And systems that can �nd no such RR con�guration maxi-

mize Rrec by producing �bursty� behavior, such as plasmoid formation and ejection,

which results in the absence of a single steady-state RR.
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Chapter 4

Incompressible internal kink mode
simulations in helical geometry

Simulations of initially unstable, internally driven and externally driven m = 1 in-

ternal kink mode in a periodic cylinder are described in the Chapter below. Under

the assumption of helical symmetry, both short-term and long-term evolution of two-

dimensional incompressible visco-resistive and Hall MHD systems is studied in the

regime of large axial guide-�eld. Aspects of the observed self-organization and mag-

netic reconnection phenomena, as well as sensitivity of the results to various plasma

parameters are emphasized.

4.1 Helical symmetry.

Consider a periodic cylindrical geometry of radius r0 and periodicity length 2πL.

Using the usual {r, θ, z} cylindrical coordinates, a helical angular coordinate τ is

de�ned as:

τ ≡ θ + εz

where ε is the inverse-aspect-ratio parameter ε ≡ L−1 with all length normalized to

r0. We note that the helical coordinate τ has periodicity of 2π and L → ∞ implies
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ε → 0, thus reducing τ to the cylindrical angular coordinate θ. The unit vector

corresponding to the helical coordinate is

τ̂ = g(θ̂ + εrẑ),

where we have de�ned g(r) ≡ (1 + ε2r2)−1/2. The third orthonormal vector ê of the

helical coordinate system is de�ned as

ê ≡ r̂ × τ̂ = g(ẑ − εrθ̂).

With the de�nitions above, the system is said to be helically symmetric if

∂F

∂e
∝ ∇F · ê = 0,

for any scalar function F (r). It follows that F (r) = F (r, τ).

From here on, in this chapter, we consider only two-dimensional systems with

helical symmetry, unless explicitly stated otherwise. A number of useful vector-

di�erential identities in helical coordinates are given in Appendix A.1. We note

that the assumption of helical symmetry, as de�ned above, excludes any perturba-

tions with m/n 6= 1 from the system, where m and n are the angular and axial mode

numbers that could, in principle, exist in a periodic cylinder. By the same token, all

modes with m/n = 1 are included in the dynamics of the system being considered.

Using the helical coordinates, it is easy to show that any three-component divergence-

less �eld can be expressed in terms of a potential function representing the �eld in

the helical plane and an out-of-plane helical component. In particular any magnetic

�eld B can be represented as

B = g[ê×∇ψ + Beê] = r̂

(
−1

r

∂ψ

∂τ

)
+ τ̂

(
g
∂ψ

∂r

)
+ ê (gBe) ,
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for some helical �ux function ψ(r, τ) and helical B-�eld function Be(r, τ). Using such

representation, we readily �nd that the current density J = ∇×B can be expressed

as

J = r̂

(
1

r

∂Be

∂τ

)
+ τ̂

(
−g

∂Be

∂r

)
+ ê

(
g∆∗ψ − 2εg3Be

)
= g[ê×∇(−Be) + Jeê],

where we have de�ned

∆∗F ≡ 1

g2
∇ · (g2∇F ) =

1

rg2

[
∂

∂r

(
rg2∂F

∂r

)
+

1

r

∂2F

∂τ 2

]

and

Je ≡ ∆∗ψ − 2εg2Be.

Similarly, an incompressible velocity �eld v can be represented as

v = g[ê×∇φ + Veê],

where φ(r, τ) is the helical stream function and gVe(r, τ) is the out-of-plane component

of the plasma �ow.

In this study, we use only the helical coordinates {r, τ} as the independent vari-

ables describing the two-dimensional physical space in which all simulations are per-

formed. However, this is not the only possible set of independent spatial variables

suitable for a system with helical symmetry. In fact, cylindrical (see Zhukov[161]) or

Cartesian coordinate systems with appropriately expressed di�erential operators that

account for the helical symmetry can also be used to represent the two-dimensional

helical physical space. (See Appendix A.2 for the coordinate transformations of dif-

ferential operators from helical to Cartesian coordinate systems preserving the helical

symmetry.) We remark that the representation in the Cartesian coordinate system,

in particular, can become very useful and/or necessary whenever a computational
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grid does not itself have a polar r = 0 axis or adaptive evolution of the grid requires

movement of the grid's polar axis or the τ = 0 = 2π equivalence line.

4.2 Linear study of the n = 1 internal kink mode.

We begin the numerical study with the linear growth rate calculations.

It was shown early on by Shafranov[132], Rosenbluth[129] and others that a pe-

riodic cylindrical plasma column surrounded by a �xed boundary and in magneto-

hydrodynamic equilibrium with embedded axisymmetric magnetic �elds can be lin-

early unstable to an m = 1 internal kink instability if the so-called "safety factor"

q(r) ≡ (rBz/LBθ) of the magnetic �eld con�guration equals unity for some r = rs.

We use the SEL code described in Chapter 2 to conduct linear studies of the

ideal and resistive m = n = 1 internal kink mode by advancing the full system

of non-linear resistive MHD equations in time from a very small perturbation to a

kink-unstable ideal equilibrium con�guration through linear evolution to the early

non-linear development stage. This linear study was done in order to verify the

earlier numerical results by Park, et.al.[112] and the SEL code against each other and

asymptotic analytic calculations of the instability growth rates made in the limit of

ε → 0 and η → 0.[129, 37]

4.2.1 Resistive incompressible MHD in helical symmetry.

In all of the calculations presented in this Chapter we make the assumption of exact

incompressibility. Partial justi�cation for the assumption is that here we only consider

systems where energy contained in the out-of-plane helical magnetic �elds |B · ê|2

dominates that contained in in-plane magnetic �elds or in-plane �ows. Under such
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conditions, in-plane plasma �ows can be assumed to be largely incompressible, as they

lack the energy necessary to compress the helical B-�elds imbedded in the plasma

�uid. Yet, as shown by Fitzpatrick[53], even in the presence of large magnetic guide-

�eld the assumption of exact incompressibility is only strictly valid in the limit of

large plasma pressure (p/B2) À 1. Thus, while we conduct the simulations using the

assumption in order to simplify both the calculations and their analysis, we must be

conscious of the e�ects we are potentially neglecting.

We now consider the well known normalized resistive MHD equations in the limit

of uniform density:

∂v

∂t
+ v · ∇v = J×B−∇p

E + v ×B = ηJ. (4.2.1)

By taking the ê-projection of Eqs. (4.2.1) and ∇×[Eqs. (4.2.1)], and using the above

representation for the B and v-�elds, the incompressible resistive MHD system can

be written in the following form:

∂ψ

∂t
+ v · ∇ψ = ηJe

∂(g2Be − 2εg4ψ)

∂t
+ v · ∇(g2Be) = B · ∇(g2Ve) + ηg2∆∗Be

∂Ω

∂t
+ v · ∇Ω = B · ∇(g2Je)

+ ε2g4 ∂

∂τ

(
B2

e − V 2
e

)
+ 2εv · ∇(g4Ve)

∂Ve

∂t
+ v · ∇Ve = B · ∇Be, (4.2.2)

where we have de�ned Ω ≡ g2∆∗φ to be the ê-component of �ow vorticity and η is

the uniform plasma resistivity.
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4.2.2 Asymptotic linear growth rates.

The growth rates for both ideal and resistive internal kink modes in a periodic cylinder

with given axisymmetric B-�eld con�guration can be analytically computed in the

asymptotic limit of εrs ¿ 1 and resistive layer thickness δη ¿ rs, when η 6= 0[129, 37].

In that limit, the normalized ideal m = 1 internal kink growth rate given by

Rosenbluth,et.al.[129] is

γI = − π

|∂(k ·B)/∂r|r=rsr
3
s

∫ rs

0

G(r)dr, (4.2.3)

where k is the wave vector of the perturbation and function G(r) is de�ned as:

G(r) ≡ k2
zr

2

1 + k2
zr

2

[
2(JθBz − JzBθ) + r(k ·B)2 +

2

r

k2
zr

2B2
z −B2

θ

1 + k2
zr

2

]
.

The growth rate γR for the resistive internal kink instability is given by Coppi,et.al.[37]

as a solution to the following equation:

γR = γI
(γRλ)9/4

8

Γ
(

(γRλ)3/2−1
4

)

Γ
(

(γRλ)3/2+5
4

) , (4.2.4)

where λ ≡ τ
2/3
A τ

1/3
R , τA is the poloidal Alfv�en time and τR ≡ (1/η) is the resistive

time at the singular surface r = rs.

4.2.3 Initial ideal equilibrium.

Following Park,et.al.[112], we take the ideal incompressible equilibrium con�guration

of magnetic �elds to be of the form:

g2∆∗ψ0 = 2r2 − r2
s =>

∂ψ0

∂r
=

r

2g2
(r2 − r2

s)

Be0 = ε−1, (4.2.5)
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where all spatial scales are normalized to the radius of the periodic cylinder r0 and

location of the singular surface rs is chosen to be rs = .7. There are no equilibrium

�ows.

For this equilibrium, we calculate
∫ rs

0
G(r)dr of Eq. (4.2.3) to the fourth order in

ε to be ∫ rs

0

G(r)dr ≈ −0.039817ε2 + 0.019805ε4

and the ideal m = 1 growth rate γI to be:

γI

ε2
≈ 0.52097− 0.51440ε2. (4.2.6)

We note that due to symmetry inherent in the chosen equilibrium, the asymptotic

polynomial expansion in ε for γI contains only even powers of ε.

The normalized λ factor of Eq. (4.2.4) is calculated for this equilibrium to be

λ = η−1/3
[
rs(1 + ε2r2

s)
]−2/3

.

4.2.4 Numerical implementation.

Implementation of Eqs. (4.2.2) in the �ux-source form required by the SEL code is

straightforward and is not discussed here. The equations are advanced in time using

the Crank-Nicholson scheme.

The equilibrium given by Eq. (4.2.5) is perturbed with a small perturbation in

Be:

δBe = α sin(τ) ∗ e−w0(r−rs)2 , (4.2.7)

where α = 10−9 and w0 ≈ 10− 100.

Perfectly conducting, perfect-slip wall boundary conditions are desired at r = rw

for the linear study. These are implemented by satisfying the following set of boundary
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PDEs:
∂ψ

∂t
|r=rw = 0

∂Be

∂t
|r=rw = 0

φ|r=rw = 0
(

∂Ve

∂r
− εrg2Ve

)
|r=rw = 0

(
rΩ + 2εg2Ve − g2∂φ

∂r

)
|r=rw = 0.

Additionally, when studying the linear evolution of the resistive internal kink,

resistive decay of the underlying ideal equilibrium has to be taken into account. The

decay is prevented by introducing an e�ective current source throughout the domain

to exactly cancel out the resistive decay of the ideal equilibrium, i.e. in Eqs. 4.2.2

the term ηJ is replaced by η(J − J0), where J0 is the plasma current density of the

initial equilibrium.

As expected from the shape of the ideal eigenfunctions calculated by Rosenbluth[129]

in the limit of ε → 0, it is found that the gradient scale of the ideal eigenfunction (i.e.

width of the singular layer) tends to zero as ε → 0. Thus, in order to accurately resolve

the eigenfunctions, strongly non-uniform computational grid is employed. Using the

logical-to-physical space mapping described in Section 2.1.2, the physical radial coor-

dinate r is designed to vary particularly slowly with the logical coordinate ξ around

the singular layer radius rs, while having much faster variation everywhere else. To

satisfy this criteria, the following cubic function r(ξ) that has the necessary values

r(0) = 0 and r(1) = 1 at the boundaries of the logical and physical domains is chosen:

r(ξ) =
(ξ − ξs)

3 + 5αξ + ξ3
s

1 + 5α + 3ξs(ξs − 1)
.
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ε δt α γI γI/ε
2

.245 8 .1 1.556 ∗ 10−2 .259
.18 15 .075 1.027 ∗ 10−2 .317

.1225 20 .075 5.802 ∗ 10−3 .387
.06125 50 .025 1.775 ∗ 10−3 .473
.04 75 .012 7.974 ∗ 10−4 .498
.03 150 7 ∗ 10−3 4.571 ∗ 10−4 .508
.02 250 2.5 ∗ 10−3 2.058 ∗ 10−4 .5145
.01 1000 6.5 ∗ 10−4 5.19 ∗ 10−5 .519

Table 4.1: Computed growth rates γI of the ideal m = 1 internal kink mode for
various values of the inverse-aspect-ratio ε. Also shown are the time-step δt and
computational grid non-uniformity parameter α used in each of the simulation runs.

Here, ξs ≡ 1.5αrs + 1−1.5α
1+((1−rs)/rs)1/3 is de�ned by taking an approximate inverse of r(ξ)

to achieve high density grid at r(ξ = ξs) = rs. The free parameter α ≈ 6.5∗10−4−0.1

is an input parameter designed to determine the width of the highly resolved singular

layer around r = rs. An example of the resulting grid with rs = .7 and α = 6.5∗ 10−4

is shown in Fig. 4.1.

4.2.5 Computed ideal growth rates.

A set of ideal MHD simulations (η = 0) was conducted by varying the parameter

ε to numerically determine the dependence of γI on ε for the equilibrium given by

Eq. (4.2.5). Table 4.1 summarizes the input parameters and results of the simulations.

Linear growth rates of the m = 1 eigenmode for di�erent values of ε are determined

by calculating γ = ∂[ln(Ψ−Ψ0)]
∂t

at some point on the (r, τ) plane and extracting the

value from the prolonged �at part of the curve between the initial setting up of the

eigenmode and time when the evolution becomes nonlinear.

Two separate quadratic �ts to the data are attempted. (See Figure 4.2.) By

�tting γ/ε2 to f = a + bε + cε2 for the set of �ve values of ε in the similar range
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Figure 4.2: Two separate quadratic data �ts for γI/ε
2 are presented for data points

ε = {.03, .04, .06125, .1225, .18} and ε = {.01, .02, .03, .04}. Quadratic behavior is
shown to dominate for the set of data corresponding to smaller values of ε.

as those used to make a linear �t in Park,et.al.[112] linearized numerical calculations

(ε = {.03, .04, .06125, .1225, .18}) � a reasonably good �t of the form γ/ε2 = .55 −
1.33ε + .17ε2 is achieved, which reproduces the previous result almost exactly.

However, by �tting γ/ε2 to f = a + bε + cε2 for the set of four smallest available

values of ε = {.01, .02, .03, .04}, we instead have functional dependence of the form

γ/ε2 = .520 − .0075ε − 13.75ε2, which is primarily a quadratic. That is consistent

with the result in Eq. (4.2.6). Furthermore, in the limit of ε → 0, this quadratic �t

produces a surprisingly good match to the asymptotic value of .5210 predicted by

Eq. (4.2.6).

Since the above simulations were conducted by evolving the full non-linear set of

ideal MHD equations with no di�usion on a non-uniform computational grid and near-

perfect match to analytically computed asymptotic value of the internal kink growth
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rate was achieved � we conclude that the SEL implementation of the Crank-Nicholson

time-advance scheme can be taken to be entirely non-dissipative.

4.2.6 Computed resistive growth rates.

The code is further tested by conducting a systematic study of the resistive m = 1

internal kink growth rates. Results are compared against the growth rates predicted

by Eq. (4.2.4). The same initial conditions as for the study of the ideal mode are

employed. For the given B-�eld con�guration, Eq. (4.2.4) is solved for γR by making

use of the Mathematica 5.2 software package.

The results are presented in Fig. 4.3. (The presentation method was adopted

from Tanaka,et.al.[145]). The analytical calculation is expected to be valid only in

the limit of the resistive layer width δη being much smaller than the minor radius of
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the equilibrium. That condition is satis�ed only for su�ciently small values of both

resistivity η and inverse aspect ratio ε. The numerical results in Fig. 4.3 are shown

to appropriately converge to those calculated from the analytical model in that limit.

Having reproduced the linear analytic results for both ideal and resistive inter-

nal kink modes, we have the con�dence to proceed to non-linear simulations of the

phenomenon.

4.3 Visco-resistive non-linear internal kink simula-
tions.

Below, we describe the results of multiple simulation runs, where incompressible visco-

resistive MHD equation are evolved in time from some initial axisymmetric quasi-

equilibrium perturbed to initialize an m = 1 internal kink instability. The evolution

is followed through a single or multiple re-occurring internal reconnection events.

The inverse-aspect-ratio ε, plasma resistivity η, ion viscosity µ, initial equilibrium

con�guration, and the drive applied to sustain and/or re-create a con�guration of

B-�elds with safety factor q below one on the magnetic axis, � are all systematically

varied among the various simulation runs presented here.

4.3.1 Incompressible visco-resistive MHD equations in helical
symmetry.

We begin the non-linear study of the internal kink mode by keeping the exact in-

compressibility condition and adding viscous terms to the resistive MHD system used

for computing the linear growth rates. Once again, we assume plasma density to be

initially uniform and therefore to stay constant and uniform due to the incompress-

ibility condition. With those assumptions, the normalized system of visco-resistive
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MHD equations is:
∂v

∂t
+ v · ∇v = J×B−∇p + µ∇2v (4.3.1)

E + v ×B = ηJ (4.3.2)

J = ∇×B, ∇ · v = 0,

where µ is uniform ion viscosity and η is resistivity, which we now allow to have radial

dependence η = η(r).

As in Section 4.1, both B- and v-�elds are expressed through the combination of

in-plane helical �ux/stream functions and out-of-plane �eld components:

B = g[ê×∇ψ + Beê], v = g[ê×∇φ + Veê].

Taking the ê-projection of Eqs. (4.3.1)-(4.3.2) and ∇×[Eqs. (4.3.1)-(4.3.2)], the visco-
resistive MHD system can be written in the following form:

∂ψ

∂t
+ v · ∇ψ = ηJe

∂(g2Be − 2εg4ψ)

∂t
+ v · ∇(g2Be) = B · ∇(g2Ve) + ηg2∆∗Be + g2∂η

∂r

∂Be

∂r

∂(g2Ω + 4εg4Ve)

∂t
+ v · ∇(g2Ω + 2εg4Ve) = B · ∇(g2Je + 2εg4Be)

+ ε2g4 ∂

∂τ

(
B2

e − V 2
e

)− 8ε3g6

(
Be

∂ψ

∂τ
− Ve

∂φ

∂τ

)
+ µg2∆∗Ω

∂Ve

∂t
+ v · ∇Ve = B · ∇Be + µ(∆∗Ve + 2εg2Ω), (4.3.3)

where Je ≡ ∆∗ψ − 2εg2Be and Ω ≡ ∆∗φ− 2εg2Ve.
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4.3.2 Internal kink evolution with direct current drive.

It is the goal of this work to not only observe and describe the evolution of a single

internal reconnection (IR) event triggered by an internal kink instability in a prepared

initial equilibrium, but also to describe how a periodic cycle of such events can be

self-generated in a screw-pinch system with a given drive. In this Section, we describe

the simulations conducted with direct current drive distributed across the simulation

domain.

The ideal equilibrium given by Eqs. (4.2.5) with a perturbation given by Eq. (4.2.7)

is taken as the initial condition. Resistivity η is taken to be spatially uniform and

the same boundary conditions as in Section 4.2 are applied. The current source is

chosen such that it exactly cancels the resistive decay of the initial ideal equilibrium,

thus satisfying the boundary condition E|r=rs = 0 and working to drive the system

towards the initial B-�eld con�guration after an IR event takes place.

Direct current drive simulations have been conducted with two di�erent values for

the location of the q|r=rs = 1 surface at rs = 0.5 and rs = 0.7 with the aspect-ratio of

the equilibrium at 1/ε = 25. (We note that here and in all of the simulation results

presented below, initial axisymmetric equilibrium has axial magnetic �eld Bz = 1/ε

on the magnetic axis and initial poloidal B-�eld Bθ ∼ 1. Thus, ε is also a measure of

the e�ective out-of-plane magnetic guide-�eld present in the system.)

Time traces of the e�ective growth rate of the internal kink instability in the

linear and non-linear phases of the simulations with rs = .7 are shown in panel

(a) of Figure 4.4. Following Aydemir[6], we measure the e�ective growth rate as

d[ln(Ek)]/dt, where Ek is the total integrated kinetic energy in the system. (Note that

for an exponentially growing linear eigenmode ∝ exp(γt), this de�nition of a growth
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Figure 4.4: Time traces of (a) the e�ective growth rate of the linear and non-linear
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rate is equivalent to 2γ.) In these simulations, equilibrium was perturbed with a small

δBe = 10−6 perturbation and after the initial set-up phase (not shown) exponential

growth of the internal kink is apparent during the linear phase for t ≈ 200 − 800.

In the non-linear phase, during the time period t ≈ 900 − 1100, another period of

quasi-exponential growth appears to be present, thus reproducing a previous result

that suggested fast reconnection of the central plasma core to be possible even within

the single-�uid resistive MHD model[7]. In fact, panel (b) of Figure 4.4 shows the

reconnection rate of the central core during the non-linear phase. Here, reconnection

rate was measured by following the radially moving X-point in time(see Figures 4.5

and 4.6) and evaluating dψ/dt at the X-point. (The hash visible on the plot should

be regarded as experimental noise due to inability to precisely pinpoint the exact

location of the X-point at each time-step.) It is apparent that the reconnection rate

does increase signi�cantly during the non-linear phase, however no sign of explosive

onset of fast reconnection observed in two-�uid simulations (see Section 3.4 above) is

present here. We note that the numerical values presented in Figure 4.4 have to be

re-normalized to estimate the true reconnection rate of the B-�eld in the system. As

shown in panel (a) of Figure 4.6, the reconnecting helical B-�eld is only ≈ .1 of the

poloidal B0 �eld all quantities are normalized to.

Finally, the �ve separate time-traces shown in each panel of Figure 4.4 come from

�ve separate simulations of precisely the same system, but with di�erent sizes of the

computational spectral element grid. All �ve use the polynomial basis of order np = 8,

but di�erent numbers of cells in each of the two directions of the logical grid were

used. It is clear that although simulations with smaller grid sizes fail to resolve all the

structure present in the solution and therefore terminate prematurely, the data from
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all �ve of the simulations falls on top of each other until right before those lacking

su�cient resolution are terminated. This result con�rms the accuracy of the adaptive

re-gridding algorithm which was used heavily in these simulations.

Figure 4.5 shows snap-shots of the non-linear evolution of helical magnetic �ux

and helical stream function during the same internal kink simulations described in

Figure 4.4. (Results from the highest resolution simulation are shown.) Complete

Kadomtsev reconnection[79] of the central plasma core is observed. During the re-

connection process, a long resistive current sheet accelerating plasma out of the layer

is created. Furthermore, panels (b) and (c) of Figure 4.5 show that just prior to reach-

ing the peak reconnection rate and immediately after the non-linear quasi-exponential

growth of plasma kinetic energy is completed, the plasma core begins to be radially

compressed with �ux surfaces acquiring an elliptical shape. Such compression is a

clear indication of inability of resistive di�usion to facilitate su�ciently fast recon-

nection of magnetic �eld lines and leads to further elongation of the current layer and

resulting slow down of the reconnection rate, in agreement with the Sweet-Parker

theory[115, 141] described in Section 3.1.1 above.

We note the remarkable up-down symmetry of the contour plots presented in

Figure 4.5 to once again emphasize the accuracy of the algorithm used by the SEL

code. Though no explicit symmetry requirements were enforced and the grid was

adapted and the solution re-interpolated 27 times during the simulation, the exact lack

of plasma rotation responsible for preserving the up-down symmetry introduced by

the initial perturbation in single-�uid MHD was preserved throughout the simulation.

Figure 4.6 presents radial cuts at τ = π of the reconnecting component of B-

�eld Bτ and out-of-plane reconnection plasma current Je at several times during
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function φ at three di�erent times ta,d = 1037, tb,e = 1104, and tc,f = 1170. The
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the reconnection cycle. As reconnection progresses, the current sheet is observed to

become narrower and magnitude of the reconnection current higher, corresponding to

the higher reconnection rate. Radial cuts of Bτ at late times, t = 1151 and t = 1176,

show that the radial compression of the core discussed above is also accompanied by a

pile-up of B-�eld on the inner side of the plasma core (i.e. opposite to the reconnecting

side). Such pile-up serves as further evidence of the core being driven outwards by

re-circulating reconnection out�ows, while slow Sweet-Parker reconnection cannot

di�use away magnetic �elds fast enough.

Mixing radius rM of an IR event is de�ned here as the outer most radius to

which the plasma core reconnects before the reconnection process is either complete

or is terminated by other intervening e�ects. It is easy to calculate from the initial

equilibrium con�guration given by Eq. (4.2.5), that in the case of complete Kadomtsev

reconnection � the mixing radius for this equilibrium is given by:

r2
M =

3

4

[
−(1/ε2 − r2

s) +
√

(1/ε2 − r2
s)

2 + 16r2
s/3ε

2
]
. (4.3.4)
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periodic cylinder for an internal kink simulation with η = µ = 10−5, ε = .04, rs =
0.5, perturbation δBe = 10−4 and direct current drive. Markers (a)-(f) note the
approximate times at which corresponding panels of Figs 4.8-4.10 were taken.

For rs = .7 and 1/ε = 25, Equation (4.3.4) gives for the mixing radius rM = 0.9898.

That is consistent with the results presented above and produces near-complete de-

struction of the initial equilibrium with the possibility of boundary e�ects having

strong in�uence on the plasma dynamics.

Since we are also interested in observing the long-term evolution of the system

following the initial internal kink reconnection event, we have attempted to remove

the potential in�uence of the boundary by considering a B-�eld con�guration whose

Kadomtsev mixing radius is shifted inward and therefore moved away from the bound-

ary of the computational domain. To do so, we have conducted simulations with the

functional form of the initial B-�eld still given by Eq. (4.2.5), but with the initial

q = 1 surface ar rs = .5. For 1/ε = 25, Eq. (4.3.4) gives rM = .707.

Results from a direct current drive simulation run with η = µ = 10−5, ε = .04,
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Figure 4.8: Contour plots of helical magnetic �ux from the same simulation run and
at six di�erent times as noted in Figure 4.7. Min/max values associated with the
color bar of the contours are shown at the top of each panel.
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Figure 4.9: Contour plots of Be − 1/ε2 from the same simulation run and at six
di�erent times as noted in Figure 4.7. Min/max values associated with the color bar
of the contours are shown at the top of each panel.
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Figure 4.10: Contour plots of Je from the same simulation run and at six di�erent
times as noted in Figure 4.7. Min/max values associated with the color bar of the
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rs = 0.5 and perturbation δBe = 10−4 are shown in Figures 4.7-4.10. Figure 4.7

shows the time-trace of total kinetic energy in the system per unit length.1 The large

spike during t ≈ 700 − 1300 corresponds to the �rst IR event, which is very similar

in character to the one described above. As shown in panels (a-c) of Figures 4.8-

4.10, outward motion of the plasma core is again accompanied by radial compression,

with the main di�erence from the previous result being that the mixing radius of the

complete Kadomtsev reconnection observed in this simulation run is further inwards

at rM ≈ .7. Then, following a period of relatively quiet evolution with a minor IR

event around t ≈ 2400, a nearly axisymmetric state is achieved around t ≈ 3000.

Panel (d) of Figs. 4.8-4.10 demonstrates the quasi-equilibrium in which plasma is

observed to stay for a prolonged period of time while the current source works to

rebuild the initial equilibrium con�guration of B-�elds. However, unlike the initial

equilibrium with Be constant throughout the domain and q = 1 at rs = .5, the

singular surface of this new equilibrium appears to be located further inwards and

out-of-plane B-�eld has a slightly paramagnetic pro�le within the new q = 1 surface2.

The new equilibrium is then observed to also become unstable to the internal kink

producing another spike in the system's kinetic energy. However, free magnetic energy

deposited into the self-generated equilibrium before it becomes unstable appears to

be signi�cantly lower than that of the initial equilibrium, and both the �ow energies

and magnitude of the out-of-plane current in the reconnection current layer shown in

Fig.4.10 are also much lower. Finally, we note that unlike the initial non-linear kink,
1Here and elsewhere in this Chapter, all integrals over the domain are taken over a two-

dimensional computational plane and no account of the length of the periodic cylinder is taken.
Thus, all energy measurements quoted below are those of energy per unit length of the cylinder.

2The shape of the self-generated equilibrium and its dependence on various physical parameters
is discussed in detail in later Sections.

154



radial compression of the plasma core is not observed during the non-linear kinking

of the new self-generated B-�eld con�guration.

4.3.3 Comparing directly driven and boundary driven sys-
tems.

Having considered internal kink evolution with direct current drive, we now turn

to a more realistic scenario of electric �eld being applied at the boundary of the

domain and allowing it to di�use radially inwards to drive the system. We begin by

considering a problem set up as similar as possible to the one described above in order

to compare the internally driven and boundary driven systems.

Since the equilibrium given by Eq. (4.2.5) contains no �ows and purely ê-directed

out-of-plane current, E-�eld initially present in the system is also purely ê-directed.

Therefore, in order to consistently reproduce the current-driven system, ê-directed

electric �eld E = Ebê of magnitude Eb = ηrsJ0|r=1 is applied at the boundary and

uniform resistivity is replaced by a radially dependent pro�le η(r) ≡ Eb/J0(r) with

ηrs ≡ η(r = rs) set to the same input value of ηrs = 10−5, as the previous direct

current driven simulations.

Panel (a) of Figure 4.11 compares time histories of the total kinetic energy in the

internally driven and boundary driven systems. Though some slight di�erences are

apparent, qualitatively and, to a large degree, quantitatively, the two curves track

each other. Both the initial and the self-generated IR events are observed to happen

at about the same time and to produce similar magnitude spikes in kinetic energy in

the two systems. Panel (b) of Figure 4.11 shows the time evolution of the local value

of the safety factor q0 ≡ q(r = 0) (or equivalently � the local pitch of the magnetic

�eld, which is generally the experimentally measured quantity[157, 138, 151, 108]) for
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Figure 4.11: Time traces of (a) total kinetic energy and (b) local value of the safety
factor q at r = 0, for two equivalent simulation runs � one with internally distributed
current drive source and the other driven by corresponding E-�eld applied at the
boundary of the domain.

the two systems.3 These are also observed to be very similar both quantitatively and

qualitatively. Following the initial IR event, q0 is shown to sharply rise above 1.0 and

then to fall back to about unity, where it stays until the self-generated equilibrium

begins to form around t ≈ 2700. After the self-generated IR event, q0 is observed

to again oscillate around unity until, presumably, a new self-generated equilibrium is

formed at some later time.
3Here, we de�ne q(R) ≡ ∣∣dΦ̄/dΨ̄

∣∣, where, in a toroidal system, Φ̄ is the toroidal magnetic �ux
de�ned as Φ̄ ≡ ∫

B · ∇φ dV and Ψ̄ is the poloidal magnetic �ux de�ned as Ψ̄ ≡ ∫
B · ∇θ dV .

Replacing ∇φ by (ẑ/ε) in the periodic cylindrical system, the following expressions for Φ̄ and Ψ̄ in
terms of the helical components of the magnetic �eld are derived:

Φ̄(R) =
∫ 2π

0

∫ R

0

εrg2

(
εr

∂Ψ
∂r

+ Be

)
drdτ

Ψ̄(R) =
∫ 2π

0

∫ R

0

g2

(
∂Ψ
∂r

− εrBe

)
drdτ.

Numerically, we evaluate limr→0 q(r) as:

q0 =
∣∣∣∣
Φ̄(r + ∆r)− Φ̄(r −∆r)
Ψ̄(r + ∆r)− Ψ̄(r −∆r)

∣∣∣∣ ,

with r ≈ 10−2 and ∆r = r/4.
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This simple comparison study demonstrates that although not identical, the in-

compressible directly driven and boundary driven systems with time-independent

resistivity are qualitatively and quantitatively similar. Thus, the conclusions drawn

from the simulations of the boundary driven systems described below, are expected

to also apply to similar directly driven systems.

4.3.4 Resistive axisymmetric equilibrium with axial electric
�eld.

One of the more straightforward and widely used techniques for driving toroidal (ax-

ial) current in toroidal (straight cylinder) magnetic con�nement devices is application

of electric �eld in the corresponding direction at the boundary of the device, the so-

called Ohmic current drive[156]. For the periodic cylinder system considered in this

work, such axial electric �eld is a ẑ-directed E-�eld. With that in mind, we conduct

the rest of the simulations with constant electric �eld Eb = Ebẑ applied at the bound-

ary of the domain. As an initial condition for these simulations, an axisymmetric

resistive equilibrium with ∇× E = 0 is desired.

Reduction of a helically symmetric system to axisymmetry implies that all non-

zero quantities dependent only on radius r. Then, due to ∇·B = 0, radial component

of B-�eld is exactly zero and the condition of incompressibility in a circular domain

also gives vr = 0. Thus, in an incompressible time-independent system, the momen-

tum equation is automatically satis�ed and we only need to satisfy the Ohm's Law to

derive a resistive equilibrium. (We return to the question of compressible equilibrium

in later sections.)
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Using ê = g(ẑ − εrθ̂) and τ̂ = g(εrẑ + θ̂), we have:

E · ê = g
∂ψ

∂t
= gη(r)

[
∆∗ψ − 2εg2Be

]
= g(Ez − εrEθ) (4.3.5)

E · τ̂ = −gη(r)
∂Be

∂r
= g(εrEz + Eθ). (4.3.6)

On a circular domain, ∇× E = 0 implies:

Ez = g(Ee + εrEτ ) = Eb (4.3.7)

Eθ = g(Eτ − εrEe) = 0 (4.3.8)

From Eq. (4.3.5) and Eq. (4.3.6), we have a system of equations:

η(r)g2

[(
∆∗ψ − 2εg2Be

)− εr
∂Be

∂r

]
= Eb (4.3.9)

εr
(
∆∗ψ − 2εg2Be

)
+

∂Be

∂r
= 0 (4.3.10)

We now again assume the equilibrium pro�le of helical magnetic �ux to be as in Park

et.al.[112]:

ψ0 =
r2

4

(
ε2r4

3
+

r2

2
(1− ε2r2

s)− r2
s

)
, (4.3.11)

where rs is the radial location of the singular surface. We also assume Be0(r = 0) =

1/ε. Then, from Eq. (4.3.10):

Be0 =
1

g2

[
1

ε
− εr2

2
(r2 − r2

s)

]
. (4.3.12)

Evaluating Eq. (4.3.9), we have:

η(r)

[
(1 + 2ε2r2)(r2 − r2

s) +
r2

g2
− 2

]
= Eb.

The constant E-�eld Eb is set by evaluating Eq. (4.3.7) at r = rs and setting η(r =

rs) ≡ ηs to be an input parameter:

Eb = ηs

[
r2
s(1 + ε2r2

s)− 2
]
.
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It follows that:

η(r) =
Eb

(1 + 2ε2r2)(r2 − r2
s) + r2/g2 − 2

, (4.3.13)

and Je is evaluated to be:

Je0 = (1 + 2ε2r2)(r2 − r2
s) + r2/g2 − 2. (4.3.14)

The q-pro�le corresponding to such axisymmetric con�guration with concentric �ux

surfaces can also be easily evaluated as:

q(r) =

∣∣∣∣
rεBz

Bθ

∣∣∣∣ =

∣∣∣∣∣
εr ∂Ψ

∂r
+ Be

1
εr

∂Ψ
∂r
−Be

∣∣∣∣∣ =
1

1− (r2 − r2
s)/2g

2
. (4.3.15)

4.3.5 Modi�ed incompressible equilibrium.

As shown below, we have attempted to initialize our simulations of a self-reproducing

Ohmic driven cycle of internal kink plasma relaxations with the resistive equilibrium

derived above. We �nd that the amount of magnetic energy released during the

relaxation event triggered by a small perturbation to the initial ideal kink-unstable

equilibrium exceeds by more than an order of magnitude the magnetic energy released

in the subsequent self-generated relaxation events. (See Fig 4.12 below.) Here, we

derive a modi�ed initial condition to have less magnetic energy available for release

in the �rst reconnection event, while preserving the resistive equilibrium outside of

the singular surface.

We modify the initial condition by �nding a new helical �ux function ψ1(r) for

0 ≤ r ≤ rs and matching it to ψ0(r) for rs ≤ r ≤ 1 at r = rs with the following
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matching conditions:

ψ1|rs = ψ0|rs = −r4
s

8

(
1 +

ε2r2
s

3

)

∂ψ1

∂r
|rs =

∂ψ0

∂r
|rs = 0

∂

∂r

(
rg2∂ψ1

∂r

)
|rs =

∂

∂r

(
rg2∂ψ0

∂r

)
|rs = r3

s

∂

∂r

[
1

rg2

∂

∂r

(
rg2∂ψ1

∂r

)]
|rs =

∂

∂r

[
1

rg2

∂

∂r

(
rg2∂ψ0

∂r

)]
|rs = 2rs

(
2 + 3ε2r2

s

)
,

where the matching conditions guarantee continuity of the helical magnetic �ux, τ -

component of magnetic �eld, helical plasma current density Je, and radial derivative

of Je, respectively. The following form for ψ1 is assumed:

ψ1 =
a1

8
r8 +

a2

6
r6 +

a3

4
r4 +

a4

2
r2 + a5.

By satisfying the matching conditions above, we derive ψ1 to be:

ψ1 =
r2

4

(
ε2r4

3
+

r2

2
(1− ε2r2

s)− r2
s

)
− ψ̄

8r4
s

(
1 +

ε2r2
s

3

) (
r2 − r2

s

)4

= ψ0 − ψ̄

8r4
s

(
1 +

ε2r2
s

3

) (
r2 − r2

s

)4
, (4.3.16)

where ψ̄ is an arbitrary constant such that for ψ̄ = 1, ψ1(0) = ψ1(rs). It is easy to show

that ψ1(r) has no local maxima or minima for r ∈ (0, rs) when 0 ≤ ψ̄ ≤ 1

2

(
1+

ε2r2
s

3

) .

Finally, we evaluate Je(r) for 0 ≤ r ≤ rs to be:

Je1 = Je0 − 2ψ̄

r4
s

(
1 +

ε2r2
s

3

) (
r2 − r2

s

)2 [
g2

(
r2 − r2

s

)
+ 3r2

]
.

Though the expressions derived above are valid for any 0 < rs < 1, we note

that due to our desire to study long-term evolution of the system while limiting the

in�uence of boundary e�ects on it, all simulations described below are conducted

with rs = 0.5. As discussed in the previous sections, such choice guarantees that the
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mixing radius of the IR events remains well within the boundaries of the domain,

while allowing for the plasma core to occupy a large fraction of the domain.

4.3.6 Boundary conditions for Ohmic current drive simula-
tions.

There are two separate boundary conditions that have to be enforced to simulate

application of a purely axial electric �eld at the wall of a device. They are: Eb · ẑ =

g(Ee + εrEτ ) = Eb and Eb · θ̂ = g(Eτ − εrEe) = 0. Within the incompressible visco-

resistive MHD model and with the representation of B and v-�elds described above,

we implement them by enforcing the ẑ-projection of the Ohm's Law to guarantee

Eb · ẑ = Eb and θ̂-projection of the Ohm's Law to guarantee Eb · θ̂ = 0, as follows:

g2∂ψ

∂t
= Eb + εg2rw

[
η(rw)

∂Be

∂r

]

εrw
∂ψ

∂t
= −η(rw)

∂Be

∂r
,

where rw is the wall radius. The same as above boundary conditions on ion �ow � no

�ow onto the wall and perfect slip �ow tangential to the wall � are enforced.

4.3.7 Sensitivity to the initial conditions.

Before we proceed with detailed examination of the sawtoothing phenomena observed

in the Ohmic driven incompressible resistive MHD simulations, we demonstrate the

existence and apparent uniqueness of the limit cycle for given radial pro�les of dissi-

pation coe�cients, magnitude of the applied E-�eld and conserved integral quantities,

such as total axial magnetic �ux in the domain.

Panel (a) of Figure 4.12 shows time-traces of total kinetic and poloidal magnetic

energies integrated over the domain for two simulation runs identical except for the
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Figure 4.12: Comparison of two simulation runs identical except for the initial pro�le
of helical magnetic �ux ψ within the singular radius rs = .5 given by Eq (4.3.11) for
exact resistive equilibrium and by Eq (4.3.16) for modi�ed equilibrium. Panel (a)
shows time traces of total kinetic energy Ek and poloidal magnetic energy Em; and
panel (b) local value of safety factor q0. Run parameters in both cases are: ηs = 10−5,
µ = 5 ∗ 10−5, 1/ε = 25 and δBe = 10−3 with ohmic current drive.

initial pro�le of helical magnetic �ux. It is immediately apparent that both the drop

in poloidal magnetic energy and spike in kinetic energy are decreased by a large

fraction when the exact resistive equilibrium is substituted by the modi�ed initial

condition described above. However, traces from the two runs are shown to converge

to quantitatively the same quasi-periodic behavior we denote as the sawtoothing phe-

nomena. The systematic rise in poloidal magnetic energy observed in both simulation

runs is attributed to resistive rearranging of the magnetic �elds outside of the mixing

radius to match the value of B-�elds at rM of the internal reconnection events which

constitute the sawteeth. Still, it is clear that magnetic energy released during the

self-generated sawteeth is at least an order of magnitude less than that during the

initial internal kink event. Panel (b) of Figure 4.12 shows that the local measure of

the magnetic �eld con�guration, q0, also converges for the two simulation runs after
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two distinctly di�erent initial phases of evolution.

Thus, results shown in Figure 4.12 not only demonstrate the existence of quasi-

periodic sawteeth, but also that their dynamics is independent of the exact initial

conditions of the simulation. This justi�es using modi�ed resistive equilibrium as

an initial condition for studying the sawteeth themselves, as the initial internal kink

observed to develop with the modi�ed equilibrium has less magnetic energy to release

and is therefore less violent than that with the exact resistive equilibrium. Below,

when studying the incompressible sawteeth, we do not distinguish between these two

initial conditions.

4.3.8 In�uence of the helical aspect ratio on the sawtoothing
behavior.

We now consider how the aspect ratio of the periodic cylinder � and therefore the

helical curvature of the assumed lines of symmetry and helicity of the initial equi-

librium B-�eld � in�uence the plasma dynamics following the initial violent internal

kink event.

Figure 4.13 compares evolution of total kinetic energy, panel (a), and q on the

geometric axis, panel (b), for three values of the aspect ratio 1/ε = 5, 10, and 25.

While qualitatively di�erent, periodic behavior of the measured quantities is apparent

for the two largest values of the aspect ratio. However, the simulation with 1/ε = 5

appears to settle into some stable state and no sawtoothing phenomena are observed.

We note that although both the magnitude of the electric �eld applied at the wall

and the exact resistivity pro�le depend on ε, the dependence is only second order in

εr and is not expected to in�uence the results for the values of ε being considered.

The details of the sawtooth dynamics for the two larger aspect ratios are described
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Figure 4.13: Time-traces from three simulation runs with varied helical aspect ratio
1/ε. Panel (a) shows evolution of total kinetic energy Ek and panel (b) local value of
safety factor q0 following the initial internal kink event. The dissipation parameters
for all three runs are: ηs = 10−5 and µ = 5 ∗ 10−5.

in Figs. 4.14-4.19 below, while the stable state is discussed in the next section.

Large aspect ratio simulations � Kadomtsev sawteeth.

A single sawtooth of the largest aspect ratio simulation 1/ε = 25 is shown in Fig-

ure 4.14. The six di�erent times at which the contour plots of helical magnetic �ux and

stream function are shown in Figs. 4.15-4.16 are marked with arrows in Figure 4.14.

Panel (a) of Figs. 4.15-4.16 show poloidal magnetic �eld con�guration and �ow

pattern when minimum in kinetic energy and near-minimum in q0 are achieved. We

consider that to be the quasi-equilibrium state which then becomes unstable to an

internal kink and produces a sawtooth. While mainly axisymmetric, contours of

magnetic �ux show a sign of a small m = 1 component even in that quasi-equilibrium

state. A �ow double-vortex is consistent with having an m = 1 B-�eld component.

As the internal kink develops, panels (b)-(d) follow what appears to be complete

Kadomtsev reconnection of the plasma core, with generated �ows resulting in peaking
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Figure 4.14: Time-traces of (a) total kinetic energy and (b) q0 from a single sawtooth
with helical aspect ratio of 1/ε = 25. Arrows denote the times at which contour plots
of Figs. 4.15-4.16 are generated.

of kinetic energy and q0 brie�y rising above 1.0. During the sawtooth reconnection

process, the shape of the core �ux surfaces is observed to remain approximately

circular, consistent with the previous observations of a directly driven system in

Fig. 4.8.

Once the core has completely reconnected, panels (e) and (f) show how �ux sur-

faces within r < rs begin to re-seal themselves and q0 drops back to its lowest value.

It is apparent that the new �ux surfaces are initially formed by a pattern of return

�ows which force the �ux surfaces to re-seal through a weak reconnection process,

followed by further build up of the peaked current pro�le with Ohmic drive. This

process of return �ows is very similar to the "quasi-interchange" instability proposed

by Wesson[153, 154] for the sawtooth crash mechanism and inferred to be observed

experimentally on the JET Tokamak[67, 154, 155]. We note that consistent with the

"quasi-interchange" mechanism proposed by Wesson, in these simulations, q within

rM is near unity following the complete Kadomtsev reconnection of the core.
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Figure 4.15: Contour plots of helical magnetic �ux from the same simulation run and
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associated with the color bar of the contours are shown at the top of each panel.
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Figure 4.17: Time-traces of (a) total kinetic energy and (b) q0 from a single sawtooth
with helical aspect ratio of 1/ε = 10. Arrows denote the times at which contour plots
of Figs. 4.18-4.19 are generated.

Moderate aspect ratio simulations � Porcelli sawteeth.

A similar set of �gures (Figs. 4.17-4.19) describes dynamics of a single sawtooth for

simulations with aspect ratio of 1/ε = 10. Comparing Fig. 4.17 to Fig. 4.14, it is

immediately apparent that the smaller aspect ratio sawteeth acquire lower kinetic

energy and take much longer for the internal kink to develop and raise q on the

geometric axis, while q0 never quite reaches unity. Panels (a)-(c) of Figs. 4.18-4.19

demonstrate evolution of poloidal magnetic �eld and plasma �ow during this slow

build up stage. With smaller aspect ratio, and therefore stronger e�ects of the helical

curvature, magnetic axis of the quasi-equilibrium is shifted further from r = 0, thus

exhibiting more of an m = 1 component and a prominent island structure which

persists through the evolution. In the later stages of the sawtooth, unlike the 1/ε = 25

case, panels (d) and (e) show radial elongation of the plasma core with plasma �ow

beginning to reverse near the magnetic axis. This is immediately followed by a sharp

drop in q0 and secondary peak in the systems kinetic energy, when plasma core is
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Figure 4.18: Contour plots of helical magnetic �ux from the same simulation run and
at six di�erent times as noted in Figure 4.17 (1/ε = 10). Min/max values associated
with the color bar of the contours are shown at the top of each panel.
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observed to snap back towards the geometric axis before its reconnection is completed.

Once the magnetic axis is returned to near-center of the domain, as in the case of

1/ε = 25, return plasma �ows again proceed to wrap additional �ux surfaces around

it in a manner similar to the quasi-interchange mode. In this case, however, q on the

magnetic axis is ≈ 0.9, which appears to be inconsistent with the quasi-interchange

theory[153, 154].

Thus, for 1/ε = 10, no complete Kadomtsev reconnection during the sawteeth

is observed and only partial reconnection of the core, as in the Porcelli model[121],

occurs. This result is in contradiction to the previous resistive MHD simulations of

the internal kink[67]. Furthermore, incomplete reconnection of the internal kink is

observed to be followed by a quasi-interchange-like behavior, which, nevertheless, is

not easily describable by the existing theory of the quasi-interchange mode.

Compare and contrast.

We believe, the observed dynamics of a sawtooth for 1/ε = 10 can be qualitatively

explained by studying and comparing its quasi-equilibrium con�guration and kinking

evolution with that of a sawtooth with very large aspect ratio case of 1/ε = 25. Panels

(a) and (d) of Figure 4.20 demonstrate the feature of key importance: Unlike the

axisymmetric resistive equilibrium the simulations are initialized with, where Bz0 =

1/ε = const, the self-generated quasi-equilibria have distinctly paramagnetic pro�les

of Bz. Since the model being considered is formulated as absolutely incompressible,

the observed paramagnetism cannot be due to any transport related pinching e�ects,

but has to be caused by plasma relaxing to a smaller energy state within the allowed

helical symmetry. The largest aspect ratio case of 1/ε = 25 shows paramagnetic

increase in Bz on axis to be δBz ≈ 7.5 ∗ 10−3, while simulation with 1/ε = 10
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Figure 4.20: Pro�les of axial component of magnetic �eld Bz normalized by the inverse
aspect ratio [panels (a,d)], derived pressure [panels (b,e)], and helical component of
plasma current Je [panels (c,f)] through geometric and magnetic axes (r = [−1, 1], τ =
0) are shown at several times during sawtooth cycles with helical aspect ratio 1/ε = 25,
panels (a-c), and 1/ε = 10, panels (d-f). Pro�les are taken from the same sawteeth
as shown in Figs. 4.14-4.19 above.
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produces δBz ≈ 3 ∗ 10−2. (We consider the structure of the helical quasi-equilibria

in further detail in the next Section.) Though very small compared to the domain

averaged values of Bz of 25 and 10, respectively, these perturbations are comparable

to the magnitude of poloidal B-�elds within rs generated by the Ohmic current drive

before each new IR event takes place.

The e�ects of the paramagnetic axial B-�eld on the sawtooth dynamics become

apparent when one considers the resulting radial distribution and temporal evolu-

tion of plasma and magnetic pressure. Panels (b) and (e) of Figure 4.20 show the

corresponding pro�les of plasma pressure along the same cut across the domain:

r ∈ [−1, 1], τ = 0 � where plasma pressure has been calculated by integrating the

radial component of the momentum equation along the cut and making use of the

up-down symmetry of the solution (as shown in Figs. 4.15-4.16 and Figs. 4.18-4.19).

(In integrating the momentum equation, pressure has been assumed to have some

value p0 at the wall and contributions of the inertia, advection and viscous terms has

been neglected as |vr| < 5 ∗ 10−3 everywhere along the cut and (J × B)r is of order

unity at the times shown.) Before the onset of kinking, a hollow pro�le of plasma

pressure within the singular radius rs with pressure peaking near r = rs is observed.

Correlated with the magnitude of the paramagnetic δBz, depression in pressure at

r = 0 is stronger and peak pressure at r = rs is lower for the smaller aspect ratio

quasi-equilibrium. During kinking, axial B-�eld in the core is shown to increase, re-

sulting in further expulsion of plasma pressure from the core into the m = 1 island

on the other side of the geometric axis.

It is also intuitively obvious that a kinking perturbation that radially displaces

the plasma core together with the paramagnetic peak in Bz, as shown in Figure 4.20,
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stretches magnetic �eld-lines by making the path of more magnetic �eld lines longer.

Over a single period length of the cylinder 2πL, to the leading order in ε, increase in

the length of helical magnetic �eld lines due to such displacement to some radius r

is δl ≈ εrL. Then, increase in helical magnetic energy per unit length of the cylinder

due to stretching is given by δEMz ∼ (BzδBz)(εr), and since Bz ≈ 1/ε, we have

δEMz ∼ rδBz. Thus, as δBz has been shown to increase with ε, paramagnetism of

the helical quasi-equilibrium should be expected to produce greater increase in non-

axisymmetric fraction of magnetic energy in the system during kinking for greater

ε. Figure 4.21 shows temporal evolution of magnetic energy stored in the three

lowest non-axisymmetric m-modes Em
M during sawtooth oscillations in simulations

with helical aspect ratios 1/ε = 25 [panel (a)] and 1/ε = 10 [panels (b)]. We note

that the time periods shown in Figure 4.21 include those presented in Figure 4.14

and Figure 4.17 for the two helical aspect ratios. Not surprisingly, peak magnetic

energy in the m > 0 modes is achieved at the time of maximum displacement (or
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immediately prior to full reconnection) of the plasma core. The ratio of peak magnetic

energy in the m = 1 mode for 1/ε = 10 to that for 1/ε = 25 is observed to be about

(10−4.6/10−5.0) ≈ 2.51, consistent with the estimate presented above. Furthermore,

the minimum of magnetic energy stored in the m = 1 mode over an 1/ε = 10 sawtooth

cycle is over an order of magnitude greater than that in an 1/ε = 25 sawtooth cycle,

thus con�rming the greater non-axisymmetry of the quasi-equilibria achieved with

smaller helical aspect ratio.

Conclusions.

It follows from the observations above, that the paramagnetism of the helical quasi-

equilibria has a stabilizing e�ect on the internal kink mode that develops in that

quasi-equilibria due to continued Ohmic current drive imposed on the system. This

appears to have several key consequences:

1. As evidenced by comparing magnetic �ux contours in Fig. 4.15 and Fig. 4.18,

more poloidal magnetic �ux is generated by Ohmic current drive before the

instability sets in when 1/ε is smaller. Therefore, q on axis is lowered.

2. Given a plasma core with paramagnetic Bz, when radially displaced from r = 0,

tear-drop shape radial elongation of the core minimizes δEMz (see panels (d,e) of

Figure 4.18). As a result, magnetic reconnection proceeds through a short point-

like layer, which greatly accelerates the process[7]. Greater peak reconnection

currents for greater ε, shown in panels (c) and (f) of Figure 4.20, are the evidence

of the accelerated magnetic reconnection.

3. As reconnection proceeds, the core has to move further and further outward
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and increase δEMz. For large enough δBz, the energy gain from continued re-

connection of the poloidal B-�eld looses out to the the energy loss due to helical

stretching of axial B-�eld before reconnection is complete. Thus, instability

drive is exhausted and incomplete reconnection may result.

In simulations with 1/ε = 10, such incomplete reconnection is exactly what we

have observed. Once reconnection ceases with a much smaller plasma core remaining,

the stretched helical magnetic �eld lines act as a spring and quickly pull the remnants

of the core back towards r = 0, as evidenced by a sudden drop in q0 in Figure 4.17.

Though q on the magnetic axis clearly stays signi�cantly below unity, the large mag-

netic island shown on panel (e) of Figure 4.18 and occupying the region between the

unreconnected core and mixing radius rM , represents the region of q ≈ 1 required by

the Wesson's theory of the ideal quasi-interchange instability. We note that although

local measurements of the pitch of magnetic �eld lines in and around the remaining

core would yield q < 1, magnetic �eld lines immediately adjacent to the core also

sample the plasma near rM , where q > 1, with �ux-surface averaged q being close to

unity.

The results discussed above also provide a plausible explanation for the observa-

tions of density �snakes"[152, 60] and of central cold bubble in the tomographic soft

x-ray emission reconstruction[155] during sawteeth in the JET Tokamak. The persis-

tence of the large m = 1 island through multiple sawtooth cycles would allow for a

density perturbation localized within such an island to survive through the sawteeth.

Furthermore, while during the relatively slow resistive kinking the central core would

become exposed to colder plasma by reconnecting with �eld lines lying outside of rs,
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the interior of the island would remain surrounded by plasma with the same aver-

age temperature. (Colder �ux-surfaces on the outside of the island reconnect with

hotter ones on the inside, thus approximately preserving the temperature around the

island.) Then, during the fast quasi-interchange motion of the cooled down core back

into the center of the domain, an e�ective cold bubble would be produced. We also

note that the depression in plasma pressure in the center of plasma core shown in

panels (b) and (e) of Fig. 4.20 could be interpreted as hollow plasma density pro�les.

Although plasma density was not evolved and, in fact, was assumed to be uniform in

these simulations, such hollow density pro�les would not be expected to signi�cantly

modify the sawtooth dynamics of an incompressible system.

Somewhat similar results of sawtooth oscillations around a helical quasi-equilibrium

within a fully three-dimensional simulation with temperature dependent resistivity

have been reported by Theobald, et.al.[146]. However, those simulation reported

complete Kadomtsev reconnection, while they had very limited spatial resolution and

high dissipation parameters.

4.3.9 Self-generated helical equilibrium.

We now study the structure of the helical quasi-equilibria in more detail, by turning

to the apparently stable helical equilibrium self-generated in simulations with even

lower helical aspect ratio 1/ε = 5.

Panels (a)-(c) of Figure 4.22 show contour plots of ψ, Be, and φ at t = 9940 (see

Fig. 4.13), when the plasma has settled into a stable steady-state con�guration with

∇×E = 0 and ∂v/∂t = 0 to a very good approximation.4 A prominent m = 1 island,
4Note that the initial perturbation to an ideally unstable equilibrium is up-down symmetric and

results in violent kinking during which a small plasmoid is produced and is eventually ejected to one
side (upwards), thus breaking up-down symmetry otherwise preserved by the incompressible resistive
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paramagnetic peak in axial B-�eld in the core (δBz ≈ 6.5∗10−2), and a double-vortex

of electrostatically driven �ows are present in the equilibrium. The m = 1 signature

of the helical equilibrium appears to extend to some critical radius rc, beyond which

complete axisymmetry is observed. In fact, the stable equilibrium con�guration shown

in Figure 4.22 greatly resembles that achieved in fully three-dimensional reversed

�eld pinch (RFP) simulations[51, 21, 31] and identi�ed as a resistive dynamo by

Bon�glio et.al.[21, 31]. Panel (d) of Fig. 4.22 shows E ·B throughout the equilibrium.

Depression in E ·B within the core and peaking outside of the separatrix signify the

rearrangement of B-�eld accomplished by the resistive dynamo action, as described

by Blackman and Ji[20] for an equivalent RFP con�guration. In e�ect, electrostatic

dynamo �ows work to convert the poloidal B-�eld generated by the Ohmic drive

into a paramagnetic pro�le of axial B-�eld, which appears to make the con�guration

stable against kinking and would otherwise resistively decay. Radial and angular

components of the electrostatic E-�eld responsible for the E × B dynamo �ows are

shown in panels (e) and (f) of Fig. 4.22 and well correspond to those computed in

single helicity RFP con�gurations[21, 31].

Though more often discussed in the context of RFPs, where the q-pro�le generally

decreases with radius, the self-organization observed in the simulations presented

here should not be surprising. Even while reduced to a two-dimensional system, the

helical terms in Eqs. (4.3.3) allow for the presence of the resistive dynamo e�ect

described above[51]. Furthermore, the shape of the axisymmetric con�guration of

B-�eld outside of rc does not appear to in�uence the helical part of the equilibrium
MHD equations. The symmetry breaking here is due purely to �nite precision of computing. Several
runs with slightly di�erent resolution have been performed and the plasmoid ejection both upward
and downward has been observed. No qualitative di�erence between such runs is noted. Integral
measures of the results (such as total kinetic energy) remain quantitatively the same.
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within rc, thus diminishing the importance of the q-pro�le outside of rc.

The dependence of the helical steady-state on magnitude of resistivity was studied

by reducing the value of ηs, thus simultaneously reducing electric �eld applied at

the wall and resistivity inside the domain. In this way, the shape of the resistivity

pro�le and the axisymmetric part of the resistive equilibrium remained unchanged,

while the helical part of the equilibrium was allowed to self-adjust. The steady state

shown in Fig. 4.22 was taken as an initial condition at t0 = 9940 and ηs was given

temporal dependence of the form, ηs(t) = (η0− η1) exp
[−(t− t0)

2/t2decay

]
+ η1, where

ηs(t = t0) = η0 = 10−5, tdecay = 200 and several values for η1 were taken. Ion

viscosity was unchanged at µ = 5∗10−5 and the simulations were continued until new

steady-state was reached at some tf , with (tf − t0)/tdecay ≈ 20− 40.

Panels (a) and (c) of Figure 4.23 unequivocally demonstrate the resistive nature

of the �ows present in the helical steady-state. Both maximum absolute velocity and
√

Ek are shown to scale linearly with ηs, converging to zero as resistivity is reduced

to zero. The helical plasma �ow, which dominates the poloidal kinetic energy in

this helical steady-state, is also shown to reduce by a factor of 10 as resistivity is

reduced by a factor of 10. The cut through the plasma core, shown in panel (c),

additionally demonstrates the nature of the sheared helical �ow, acting to e�ectively

rotate the poloidal B-�eld generated by Ohmic drive to maintain a paramagnetic

pro�le of Bz against resistive decay. However, panels (b) and (d) of Fig. 4.23 show that

an order of magnitude reduction in resistivity has very little in�uence on the magnetic

con�guration of the helical steady-state. As resistivity is reduced, the gradients in the

current pro�le become sharper, but, unlike the saturated state of an ideal kink[129,

112], no singular current layers are generated. Instead, as η → 0, the current pro�le
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tends to a step-function across rc with some jump in helical current δJe.

For small but �nite resistivity and viscosity, the width of the step function ∆

can be easily estimated. As shown above, plasma �ow within rc is proportional to

resistivity v ∼ η in such a way that vpBp ≈ ηδJe to maintain resistive equilibrium

and uniform axial E-�eld across rc, with Bp and δJe independent of resistivity. Curl

of the momentum equation gives:

∇× [v · ∇v] = ∇× [
J×B + µ∇2v

]
.

As shown in panel (c) of Fig. 4.22, the steady-state plasma �ow is channeled through

the X-point and then makes a 90 degree turn over width ∆. In such con�guration, at

the X-point, curl of the inertial term scales like v2
p/∆

2 ∼ η2/∆2, curl of the viscous

term scales like µvp/∆
3 ∼ µη/∆3 and curl of the J × B term, as δJe/∆ ∼ 1/∆.

Then, for su�ciently small η and non-zero µ, the inertial term can be neglected and

∆ ∼ √
µη. Therefore, as resistivity is reduced to zero, plasma relaxes to an ideal

helical equilibrium with no singular current layers.

The importance of the helical equilibrium states in preference to the commonly

considered axisymmetric con�gurations has been previously highlighted by Mont-

gomery, et.al.[99, 100]. In fully three-dimensional periodic cylinder, Montgomery,

et.al.[99] analytically derived and Theobald, et.al.[146] numerically observed a mini-

mum energy-dissipation rate state with �antidynamo" electrostatic �ows apparently

acting to reduce helical plasma current in the core. It is important to note that

the analytic derivation was conducted by assuming the helical perturbation to be

a small perturbation to a uniform axisymmetric q-pro�le and the numerical quasi-

equilibrium was observed following a complete reconnection event, which would also

�atten the q-pro�le in the domain. As discussed above, such conditions are exactly
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those assumed by Wesson[153, 154] for onset of an ideal quasi-interchange mode,

whose �nal state (see Fig. 10 of Ref. [154]) strongly resembles that computed by

Theobald, et.al.[146]. We therefore suggest that the helical quasi-equilibrium observed

by Theobald, et.al.[146] can be equally well explained as a state of local minimum of

magnetic energy, with plasma �ows simply acting to maintain resistive equilibrium

in that state.

The helical steady-state described by the present simulation results also appears

to be a local minimum of magnetic energy stored in the system under the constraint

of maintaining a resistive equilibrium. However, due to an assumed time-independent

radial pro�le of resistivity given by Eq. (4.3.13) and designed to have axisymmetric

q > 1 outside of r = rs while keeping it below unity at r = 0, a distinctly di�erent

steady-state is established. As shown in panel (d) of Fig. 4.23, the poloidal �ows act

to enhance the helical plasma current in the core and reduce it in the surrounding

m = 1 island, thus serving as a direct resistive dynamo mechanism.

4.3.10 Sensitivity of sawtoothing dynamics to kinematic vis-
cosity in large aspect ratio simulations.

The visco-resistive sawtooth simulations described so far have all been conducted

with the same plasma resistivity pro�le given by Eq. (4.3.13) with ηs = 10−5 and

uniform kinematic viscosity µ = 5∗10−5. With these parameters, the Prandtl number

P ≡ (µ/η) within the mixing radius of the sawteeth has the value P ≈ 4 − 6. We

have conducted additional large aspect ratio (1/ε = 25) simulations of ideally unstable

internal kink mode followed by Ohmic driven sawteeth with lower values of kinematic

viscosity, µ = 2 ∗ 10−5 and µ = 10−5. (Note that the latter of the two has P ≈ 1

within the mixing radius.)
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Figure 4.24: Panels (a-c) show time-traces of (a) Ek, (b) q0, and (c) maximum over
the domain of helical plasma velocity ve for three sawtooth simulations with varied
kinematic viscosity, resistivity pro�le given by Eq. (4.3.13) with ηs = 10−5, and helical
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energy to measure the sawtooth timing.
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Figure 4.24 compares time-traces of magnetic energy [panel (a)], pitch of the

magnetic �eld on the geometric axis [panel (b)] and maximum magnitude of heli-

cal component of plasma velocity [panel (c)] for the three sawtooth simulations with

varied kinematic viscosity. As could be expected, lower viscosity simulations show

higher peaks in both Ek and maximum �ow magnitudes during the sawteeth and have

stronger �ows in the quasi-equilibria that form between the sawteeth. While overall

evolution of q0 appears to be similar in the three simulations, we observe somewhat

di�erent pattern of periodicity in the higher and lower viscosity sawteeth: high vis-

cosity sawteeth all have the same shape that is very well reproduced throughout, low

viscosity sawteeth clearly show bi-periodic behavior, while the median viscosity run

produces irregular sawteeth of varying shape and size. The sawtooth periods τsw for

each of the sawteeth are shown in panel (d) of Figure 4.24 and also demonstrate the

varied periodicity pattern of the simulations with di�erent viscosities. The simula-

tion with the Prantl number P ≈ 1 appears to have two di�erent sawtooth states

it oscillates between: (1) shorter sawtooth period with stronger helical �ows in the

quasi-equilibrium preceding the sawtooth; (2) longer sawtooth period with weaker

helical �ows, yet greater peak kinetic energy during the internal reconnection event.

The high viscosity sawtooth period settles to be approximately the same as that of

the type (2) P ≈ 1 sawteeth, and the simulation with µ = 2 ∗ 10−5 produces widely

scattered values of τsw.

Figure 4.25 further illuminates the di�erences between sawteeth obtained with

di�erent kinematic viscosity by showing time-traces of magnetic energy stored in

the six lowest non-axisymmetric modes Em=1,6
M for each of the three viscosity values

considered. We note that in all three cases, maximum magnetic energy put into the
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m = 1 mode during kinking of the plasma core is approximately the same. However,

lower viscosity simulations are observed to have higher peak magnitudes of the higher

m modes during those events. Furthermore, in panels (a) and (b) of Fig. 4.25, the

magnetic energy in the m = 2 mode leads the m = 1 mode during build up of

many of the sawteeth and a correlation between a sawtooth period shown in panel

(c) of Fig. 4.24 and the distribution of magnetic energy among the modes in the

quasi-equilibrium prior to a sawtooth can be observed: quasi-equilibria with less

energy in the m = 1 mode have greater sawtooth periods and vice versa. Figure 4.25

also clearly demonstrates the existence of several di�erent sawtooth types: P À 1

simulations produce laminar sawteeth, where there is always more magnetic energy

in the lower m modes; P ≈ 2 simulations generate both laminar and more chaotic

sawteeth, where the even m modes sometimes overtake their odd m−1 counterparts;

and P ≈ 1 simulations show two types of �chaotic� sawteeth with di�erent quasi-

equilibria magnetic energy distributions.

The results described above are consistent with those from three-dimensional sim-

ulations and stability analysis in a periodic cylinder by Shan and Montgomery[135,

136, 100], where vastly di�erent behavior of m > 1 modes in a magnetic �eld con-

�guration with q > 1 everywhere was demonstrated for di�erent values of viscosity.

In particular, for given plasma resistivity, low values of viscosity resulted in desta-

bilization of an axisymmetric Ohmic driven screw-pinch by high m modes, followed

by characteristic �pulsation� behavior[136], while high viscosity simulations gener-

ated laminar time-independent solutions[135]. Similarly, three-dimensional numerical

studies of RFP con�gurations in di�erent visco-resistive regimes show that for given

resistivity, a laminar single-helicity state that can be achieved with high kinematic
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viscosity transitions to a turbulent multi-helicity state when viscosity is lowered past

some critical value[51, 30].

In light of the previous results cited above and considering that the sawteeth

presented in Figs. 4.24-4.25 were obtained in two-dimensional helical simulations with

q ≈ 1 within some radius rs ≈ .5, we attribute the di�erence in the observed sawtooth

shapes and duration to di�erent mechanisms responsible for triggering the internal

kink instability. We suggest that in high viscosity simulations, it is primarily the

resistive m = 1 kink that becomes linearly unstable and causes the ejection of the

plasma core, while in low viscosity simulations m > 1 interchange-like instabilities

of the same origin as that observed by Shan and Montgomery[135, 136] couple to

the m = 1 mode and trigger the internal kink. Thus, from the large aspect ratio

simulations described above, we conclude that the magnitude of kinematic viscosity

in�uences the shape and duration of the sawteeth primarily through its a�ect on

the stability of the quasi-equilibria achieved between the sawteeth, rather than the

reconnection rate of the plasma core during kinking itself.

4.3.11 Sensitivity of sawtoothing dynamics to resistivity and
kinematic viscosity in moderate aspect ratio simula-
tions.

In Section 4.3.10, we have concluded that the strong variability of sawtoothing dy-

namics with kinematic viscosity in the large aspect ratio simulations was in part due

to lack of magnetic �eld shear within the q = 1 radius rs of the quasi-equilibria

achieved between sawteeth (i.e. q(r) ≈ 1 for r < rs). Below, we describe results of

several sawtooth simulations with �moderate� helical aspect ratio 1/ε = 10, where the

magnitudes of both resistivity ηs and viscosity µ have been varied. We point out that,
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as discussed in Section 4.3.8, the quasi-equilibria achieved between sawteeth in the

1/ε = 10 simulations have signi�cant local shear and lower e�ective plasma pressure

within r < rs, both of which act to stabilize the interchange-like modes.

Since the focus of the present investigation is on the sawtooth dynamics as opposed

to the evolution of the internal kink mode from an ideally unstable axisymmetric B-

�eld con�guration, we did not initialize all of these simulations from the axisymmetric

initial condition given by Eqs. (4.3.11-4.3.12) or Eq. (4.3.16). Instead, a snap-shot of

the simulation with ηs = 10−5 and µ = 5 ∗ 10−5 already described in Section 4.3.8

above was taken at tr = 3998., well after the the initial axisymmetric state has gone

through the complete Kadomtsev reconnection cycle, and used as an initial condition

for the other computations. Once restarted, resistivity, viscosity, or both have been

smoothly transitioned to the new desired values in the same fashion as described in

Section 4.3.9. Only results su�ciently removed in time from t = tr are analyzed

below. As in Section 4.3.9, we note that any change in resistivity is accomplished by

adjusting the scaling parameter ηs, while the shape of the resistivity pro�le remains

unchanged and is given by Eq. (4.3.13).5

Figure 4.26 presents evolution of magnetic energy in the six lowest m-modes over

a sawtooth cycle for two di�erent combinations of kinematic viscosity and resistivity.

These can also be compared to panel (b) of Fig. 4.21, where another set of viscosity

and resistivity values (µ = 5 ∗ 10−5, ηs = 1.0 ∗ 10−5) was considered with the same

helical aspect ratio 1/ε = 10. Comparing the time-traces, it is apparent that a single

mechanism for sawtooth instability is at work in the 1/ε = 10 simulations. Though
5Note that such resistivity adjustments also result in proportional changes of the axial electric

�eld Eb applied at the r = 1 boundary of the domain, as well as the ηJ contribution to the E-�eld
throughout the domain.
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somewhat stronger high m-mode activity is observed in the lower Prandtl number

quasi-equilibria, it is clear that in these cases only the m = 1 perturbation leads the

instability. This points to the resistive kink as the sole trigger for the sawtooth onset.

Results from sawtooth simulations with four di�erent combinations of kinematic

viscosity and resistivity are shown in Figure 4.27. Two values of µ, each with two

di�erent values of ηs, have been considered. The set also includes two simulations

with the same values of ηs, but di�erent µ values. Time-traces of the reconnection

rate Rrec during the IR events and the corresponding sawtooth periods τsw are shown.

We observe that varying kinematic viscosity at constant resistivity and vice versa has

a non-negligible e�ect on the �m=1� resistive kink reconnection rate. (This has also

been previously shown by W. Park et.al.[113].) In particular, both the peak values

of Rrec and the total duration of the IR events τIR
6 are observed to depend on the

6We de�ne the duration of an internal reconnection event τIR as the period of time when Rrec

remains positive in panel (a) of Figure 4.27.
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dissipation parameters: lower η results in lower peak Rrec and longer IR events, while

lower µ results in higher peak Rrec and shorter IR events.

As in panel (b) of Fig. 4.4, where reconnection rate during evolution of the internal

kink from an ideally unstable initial condition was shown, no period of constant Rrec

is observed during the sawtooth internal reconnection events. Furthermore, the peak

values of Rrec have a very weak scaling with resistivity (i.e. much weaker that the

Sweet-Parker scaling RSP
rec ∼ η1/2[115, 141]) and are at least as sensitive to µ at to

η, while τIR appears to scale like η1/2 when µ ≈ η with even stronger dependence

when P ≡ (µ/η) À 1. We note that the latter is well explained by the modi�ed visco-

resistive Sweet-Parker scaling given by W. Park, et.al.[113] RPark
rec ∼ η1/2(1+µ/η)−1/4.

Similarly, the visco-resistive Sweet-Parker scaling reproduces the observed variation of

the sawtooth period τsw with µ and η to within approximately 5%. On the other hand,
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the former signi�es that the magnitude of resistivity plays little role in determining

the maximum Rrec in the late stages of an IR event. As follows from derivations

by Petschek[116], Kulsrud[90] and W. Park, et.al.[113], in visco-resistive MHD, such

situation is only possible when external forcing controls the reconnection rate and/or

length of the current layer L is globally restricted to be of the same order as its width

δ.

Structure of the reconnection region (RR) at the time of peak reconnection rate in

a sawtooth with µ = 2.5 ∗ 10−5 and ηs = 2.5 ∗ 10−6 is shown in Figure 4.28. Panel (a)

presents contours of plasma �ow stream function and helical plasma current around

the RR, while panels (b) and (c) show details of the magnetic and velocity �elds along

the in�ow and out�ow directions. Two important observations about the nature of

this RR can be made based on the data shown in Figure 4.28: (1) current layer length

is L ≈ 0.1 with the aspect ratio of (L/δ) ≈ 10, so that L is much smaller than the

radius of the core, yet (L/δ) À 1; (2) out�ow velocity is signi�cantly smaller than the

Alfv�en velocity based on the reconnecting B-�eld � out�ow pressure balance is largely

supported by the viscous e�ects (consistent with W. Park, et.al.[113] for P ≈ 10).

Comparing Figure 4.28 with the corresponding data from the other simulation runs

(not shown), we also note that L at the time of peak Rrec is independent of µ or

η, while width and magnitude of the reconnection current depend on the particular

dissipation values.

Based on the evidence described above, we conclude that the observed visco-

resistive IR process is generally well described by the modi�ed Sweet-Parker theory

by W. Park, et.al.[113]. The length of the reconnection layer during an IR event

is controlled by the global magnetic �eld structure. The observed increase in the
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reconnection rate with time is explained by, �rst, decrease in L due to decrease in

the radius of the reconnecting plasma core[7], followed by accelerated shrinking of L

due to transformation of the core from circular into a tear-drop shape, as described

in Section 4.3.8. The time when the growth of the reconnection rate is stopped,

then reversed, and the incompletely reconnected plasma core is pulled back towards

r = 0 is determined by external forcing, as also described in Section 4.3.8. Thus,

the maximum value of Rrec during an IR event is mainly determined by the global

magnetic �eld structure and how much helical �ux has reconnected prior to achieving

that value.

We additionally note that the observed near-perfect visco-resistive Sweet-Parker

scaling of τsw ∝ η−1/2(1 + µ/η)1/4 strongly suggests that magnetic reconnection plays

the key role not only during an IR event itself, but also during the plasma core

re-building process.

4.4 Hall MHD internal kink simulations.

Having thoroughly examined dynamics of a driven visco-resistive screw-pinch, we now

consider what, if any, signi�cant changes in the system's dynamics and time-scales of

interest can be observed when weak two-�uid e�ects are introduced into the system.

We note that large-scale tokamaks, such as JET, have minor radius r0 ≈ 1 meter

and plasma number density ne ≈ 1019 − 1020m−3, which translates into normalized

ion inertial scale di ≡ (c/ωpi)/r0 ≈ 2 − 3 ∗ 10−2 ¿ 1[89]. We therefore do not

expect the two-�uid e�ects to greatly modify the large scale properties of the system,

such as the existence of a resistive dynamo described above. However, as shown in

Section 3.4, any visco-resistive process that may occur on the sub-two-�uid scale, e.g.
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magnetic reconnection, stands to undergo signi�cant changes in both local dynamics

and time-scales associated with the phenomenon.

4.4.1 Incompressible Hall MHD equations in helical symme-
try.

In this study we maintain the condition of exact incompressibility and add the two-

�uid Hall terms to the incompressible visco-resistive MHD system given by Eqs. 4.3.3.

Additionally, kinematic electron viscosity is added to the system to de�ne a di�usion

scale for electron dynamics. And by assuming plasma density to be initially uniform,

it is removed from the system.

With those assumptions, the normalized system of incompressible Hall MHD equa-

tions is:
∂vi

∂t
+ vi · ∇vi = J×B−∇(pi + pe) + µ∇2vi + ν∇2ve (4.4.1)

E + ve ×B = ηJ− di∇pe + diν∇2ve (4.4.2)

diJ = vi − ve, ∇ · vi = ∇ · ve = 0,

where µ is kinematic ion viscosity, ν is kinematic electron viscosity, and η is resistivity,

which we again allow to have radial dependence η = η(r).

Using the same representation for B- and vi-�elds as in Section 4.3.1 and taking

the ê-projection of Eqs. (4.4.1)-(4.4.2) and ∇×[Eqs. (4.4.1)-(4.4.2)], the incompress-

ible Hall MHD system can be written in the following form:

∂ψ

∂t
+ v · ∇ψ = ηJe + diB · ∇Be

− diν
[
∆∗(diJe − Ve)− 4ε2g4(diJe − Ve)

]
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∂(g2Be − 2εg4ψ)

∂t
+ v · ∇(g2Be) = B · ∇(g2Ve) + ηg2∆∗Be + g2∂η

∂r

∂Be

∂r

+ di

[
J · ∇(g2Be)−B · ∇(g2Je)

]

− diνg2∆∗ [
2εg2(diJe − Ve)

]

∂(g2Ω + 4εg4Ve)

∂t
+ v · ∇(g2Ω + 2εg4Ve) = B · ∇(g2Je + 2εg4Be)

+ ε2g4 ∂

∂τ

(
B2

e − V 2
e

)− 8ε3g6

(
Be

∂ψ

∂τ
− Ve

∂φ

∂τ

)

+ µg2∆∗Ω + νg2∆∗ [
2εg2(diJe − Ve)

]

∂Ve

∂t
+ v · ∇Ve = B · ∇Be + µ(∆∗Ve + 2εg2Ω)

− ν
[
∆∗(diJe − Ve)− 4ε2g4(diJe − Ve)

]
, (4.4.3)

where Je ≡ ∆∗ψ − 2εg2Be, Ω ≡ ∆∗φ − 2εg2Ve and the in-plane components of the

electron viscous tensor ∇2ve have been neglected7.

Note that by assuming exact incompressibility and uniform density, the∇pα terms

in the momentum equation, Eq. (4.4.1), and the Ohm's Law, Eq. (4.4.2), e�ectively

play no role in the evolution, while the Hall term di(J × B) in the Ohm's Law

introduces some of the two-�uid e�ects into the model. We again point out that,

as shown by Fitzpatrick[53], in a plasma with strong guide-�eld B À Bp and small

total plasma beta, βT ≡ p/B2 ¿ 1, compressibility e�ects should not be completely

discarded. Furthermore, as discussed in Section 3.4.1 above, in the regime of poloidal
7In all of the simulations described below, ν ¿ µ and di ¿ 1. Thus, electron viscosity terms

become non-negligible only whenever |vi − ve| À |vi| and gradient scales become smaller than di.
In systems we consider, where di is much smaller than any equilibrium gradient scale, the conditions
above are only observed when fast Hall mediated reconnection takes place. As discussed elsewhere in
this Dissertation, two-dimensional Hall reconnection produces very fast out-of-plane electron �ows
whose perpendicular scale is limited only by the electron viscosity, while the in-plane out�ows are
observed to be signi�cantly slower. Thus, perpendicular viscosity of the out-of-plane electron �ow has
to be included in the model in order to de�ne the scale of Hall mediated reconnection current layer,
while viscosity of the in-plane electron �ow can be neglected in favor of computational e�ciency.
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beta smaller than unity, βp ≡ p/B2
p . 1, the dispersive nature of the kinetic Alfv�en

wave is lost altogether while the dispersive characteristic of the Whistler wave is only

recovered when d2
i k

2 > βp/βT À 1. Similarly, when βp À 1 À βT , the dispersive

coe�cient of the kinetic Alfv�en wave is reduced by ≈ √
βT , thus reducing the e�ective

two-�uid separation scale from di to the ion sound radius ρs[53, 68, 128]. Nevertheless,

in the present study we enforce the condition of exact incompressibility, which in

the presence of strong magnetic guide-�eld is equivalent to the assumption of βp À
βp/βT À 1.

4.4.2 Internal kink with direct current drive in Hall MHD
regime.

We �rst present Hall MHD simulation results obtained from modeling an ideally

unstable initial condition with uniform plasma resistivity and supported by a cur-

rent source chosen such that it exactly cancels the visco-resistive decay of the initial

ideal equilibrium. These simulations are exactly analogous to those described in

Section 4.3.2 above, where the ideal equilibrium is given by Eqs. (4.2.5) with a per-

turbation given by Eq. (4.2.7). Again, same boundary conditions as in Section 4.2 are

applied with an additional condition of (∂Je/∂t)|r=rw = 0 necessary due to inclusion

of the electron viscosity term in Eqs. (4.4.3).

Figure 4.29 presents time-traces of the e�ective internal kink growth rate, d(ln Ek)/dt =

2γ, and the reconnection rate, ∂ψ/∂t = Rrec at the location of maximum current den-

sity, from three simulation runs, where η = µ = 100ν = 10−5 and the magnitude of

di has been varied between 0.00 and 0.02. It is apparent that all three cases have

very similar linear growth rates. Furthermore, the di = 0.01 simulation run clearly

demonstrates quasi-resistive behavior, where the two-�uid e�ects slightly enhance
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Figure 4.29: Time-traces of (a) e�ective internal kink growth rate and (b) core re-
connection rate from three simulation runs with di = {0, 0.01, 0.02} and 1/ε = 25,
rs = 0.5, η = µ = 100ν = 10−5, δBe = 10−6.

the reconnection rate in the non-linear regime, yet no onset of fast reconnection is

observed. On the other hand, in the simulation with di = 0.02, the transition to

fast reconnection correlated with explosive growth of kinetic energy in the system

is apparent. Note that similar transition to fast reconnection is also observed in a

simulation with the dissipation coe�cients halved, η = µ = 100ν = 5 ∗ 10−6, and

di = 10−2 (not shown).

It is easy to understand the system's divergent behavior by comparing the two-�uid

scale to the expected Sweet-Parker width of the visco-resistive reconnection current

layer for each simulation run. Recall from Section 3.1.1 that for a current layer of

length L with reconnecting magnetic �eld of magnitude Bin, the visco-resistive Sweet-

Parker reconnection current layer width is given by Eq. (3.1.1) as δSP = η1/2(1 +

µ/η)1/4
√

2L/Bin.8 Using L ≈ rs and Bin ≈ 0.04 (see Figures 4.30-4.31 below), for
8We note that the Sweet-Parker derivation assumed a symmetric RR, while the present con�g-

uration's plasma in�ow is distinctly one-sided. This can introduce factors of order unity into the
derivation, though those are not considered here.
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simulations with η = µ = 10−5, we have δSP ≈ 0.019. Thus, for di = {0.01, 0.02},
δSP /2 ∼ di with di = 0.02 su�ciently large to decouple ions from the magnetic �eld

outside of the resistive current layer and allow for EMHD physics to determine the

reconnection current layer evolution.

These results are in very good agreement with those discussed in Section 3.4 above,

where incompressible two-�uid reconnection of a �at Harris sheet is studied. Similar

explosive onset of fast m = 1 reconnection in the semi-collisional βp À 1 À βT regime

has been previously demonstrated by Aydemir[6] in the limit of δSP ¿ ρs.

Snap-shots of helical magnetic �ux, magnetic �eld and plasma current immediately

before and near saturation of fast reconnection transition are shown in Figure 4.30.

Several important features of the solution should be highlighted. First, we note that

introduction of two-�uid e�ects broke the symmetry of the solution and slow counter-

clockwise rotation of the reconnecting core around the geometric axis is observed in

the helical plane. This diamagnetic rotation is a quasi-linear e�ect fundamentally due

to decoupling of the electron and ion �ows[126]. Second, we observe that, as shown in

panel (c), approximate symmetry of the quasi-resistive reconnection layer with respect

to the plasma core prior to onset of fast reconnection is preserved. That is despite

the presence of non-negligible poloidal currents Jp ≈ (δBe/δ) ≈ 0.4. Finally, after the

onset of fast reconnection, we observe the expected collapse of the current layer; yet

it occurs simultaneously with a rapid (relative to the diamagnetic rotation of the core

plasma) clockwise rotation of the X-point. It should be emphasized that the rotation

of the X-point is not only in the direction opposite to but is also much faster than the

rotation of the core. The resulting displacement of the X-point relative to the core

is, in part, what leads to saturation and damping of the reconnection rate shown in
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immediately before onset of fast reconnection at t = 1250 (τ = 3.4120) and near peak
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Je (solid contours) overlaid onto the contours of helical ion �ow Ve (dashed contours)
near the X-point at t = 1292. Simulation parameters are di = 0.02, 1/ε = 25, rs = 0.5,
η = µ = 100ν = 10−5 and δBe = 10−6.

panel (b) of Fig. 4.29. We note that the Rrec saturation mechanism observed here is

distinctly di�erent from that described by Biskamp and Sato[18], where rapid rotation

of the plasma core itself was shown to be responsible for incomplete reconnection

whenever equilibrium pro�le of plasma pressure is su�ciently steep.

The reason for the rapid X-point rotation appears to be the radially asymmetric

pro�le of the reconnection current that forms during the current layer collapse. In

panel (a) of Figure 4.31, we show two radial pro�les of Je and Bτ each, taken through

the X-point (location of peak reconnection current density at rX) at t = 1250 before

and at t = 1292 after the collapse. It is apparent that accounting for the initial equi-

librium Je0, the quasi-resistive reconnection pro�le of Je remains radially symmetric

around the RR; and therefore the contributions of diJeBτ on the inner and outer sides

of the X-point to the overall diamagnetic rotation of the RR approximately cancel.
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However, in the fast reconnection phase, distinctly asymmetric radial pro�le of Je

with most reconnection current concentrated on the inner side of the RR leads to

strong diamagnetic rotation of the X-point.

Panel (b) of Figure 4.31 shows the nature of the asymmetry with contour plots

of the helical current density Je (solid contours) and the helical ion �ow Ve (dashed

contours) in the immediate vicinity of the RR after the current layer collapse at

t = 1292. Recalling that ve = vi − diJ, we note that ion current constitutes . .25

of the total reconnection current, electron reconnection current is localized to a small

fraction of the di scale, and peaks in the ion and electron helical �ows are radially

displaced by ≈ di/2.

The explanation for the observed structure of the two-�uid RR before and after

the collapse lies in the mechanism responsible for driving reconnection and the pri-

marily one-sided plasma in�ow into the RR. During the early evolution of the ideally

unstable internal kink, it is the ideal instability of the kinking plasma core that drives

reconnection by forming a long current layer of length L ∼ rs, i.e. it is not the ten-

sion of the reconnected �eld lines but the in�ow velocity drive that pushes plasma

through the RR. As the core begins to reconnect out, the drive of the kinking core

diminishes and is replaced by the drive provided by the pressure of the recirculat-

ing reconnection out�ows on the core (see discussion in Section 4.3.2) and tension

of the reconnected �eld lines, which pull plasma through the RR. In the presence of

su�ciently high resistivity, the system proceeds to reconnect resistively, preserving

a current layer of macroscopic length as it becomes narrower due to increase in up-

stream magnetic �eld and decrease in the RR length as the core's radius decreases.

No signi�cant ion/electron-�uid separation is observed and reconnection current layer
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remains approximately symmetric as the one-sided in�ow remains slow.

However, as discussed above, whenever the current layer half-width becomes

smaller than the two-�uid separation scale, δJ/2 . di (or δJ/2 . ρs, when �nite

compressibility is considered), EMHD e�ects may act to destabilize the electron cur-

rent layer leading to its collapse to an X-point with magnetic �eld line curvature

on the much smaller electron viscous scale. As a result, the magnetic �eld line ten-

sion becomes the dominant mechanism driving the reconnection and the one-sided

plasma in�ow is greatly accelerated. Furthermore, since during ideal and resistive

kinking all reconnected �eld-line curvature is also located on the inner side of the

current layer, r ≤ rX , it is energetically favorable for the two-�uid RR magnetic �eld

con�guration to adjust and shift the location of the greatest �eld-line tension, the

X-point, radially inwards with respect to the outer un-reconnected region. That is

where the electron reconnection current is localized. Yet, as ions decouple from the

in-plane magnetic �eld on the two-�uid separation scale, ion reconnection current is

distributed over a larger region around the X-point with the peak in helical ion cur-

rent density corresponding to the point of zero poloidal ion �ow � the location where

the one-sided radial ion �ow is stopped by the outer un-reconnected magnetic �eld.

Thus, asymmetric reconnection current layer results.

4.4.3 Hall MHD simulations with Ohmic current drive.

Having considered directly driven Hall MHD internal kink simulations, we now return

to the more realistic boundary driven con�guration and study its evolution in the

semi-collisional regime.
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Problem setup.

The two E-�eld boundary conditions that have to be enforced to simulate application

of a purely axial electric �eld at the wall of a device remain principally the same �

Eb · ẑ = g(Ee + εrEτ ) = Eb and Eb · θ̂ = g(Eτ − εrEe) = 0. However, with di 6= 0,

the implementation presented in Section 4.3.6 is complicated by the addition of the

Hall and kinematic electron viscosity terms to the Ohm's Law. The resulting E-�eld

boundary condition equations take the following form:

∂ψ

∂t
= Eb

εrwEb = −η(rw)
∂Be

∂r
− di

Be

rw

∂Be

∂τ
− 2diνεg2

(
di

∂Je

∂r
− ∂Ve

∂r
− 2rwε2g2(diJe − Ve)

)
,

where a linear combination of the two E-�eld equations was used to simplify the above

boundary condition expressions.

We again use the same boundary conditions on ion �ow � no �ow onto the wall

and perfect slip �ow tangential to the wall. We additionally note that the presence of

kinematic electron viscosity in the Hall MHD equations requires specifying another

boundary condition on electron �ow (or current) along the boundary. We have set

[∂(J · ẑ)/∂t]|rw = 0, but other boundary conditions might be more appropriate.

The initial conditions used for all simulations presented in this Section are those

described in Section 4.3.5 above.

Plasmoid generation by secondary current layer instabilities.

As we have shown in the self-driven Hall MHD reconnection simulations of the semi-

open Harris equilibrium described in Section 3.4.1 above, the transitional regime be-

tween the slow quasi-resistive and fast virtually collisionless reconnection is occupied
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Figure 4.32: Time-trace of kinetic energy in a semi-collisional Hall MHD internal
kink simulation with plasmoid formation. Arrows correspond to the snap-shots of
the system shown in Figure 4.33. Simulation parameters are di = 0.01, 1/ε = 25,
rs = 0.5, ηs = 5 ∗ 10−6, µ = 5 ∗ 10−5, ν = 10−8 and δBe = 10−3.

by an intermittent state of macroscopic quasi-resistive current sheets strongly unsta-

ble to secondary EMHD instabilities. Here, we describe the results of an equivalent

simulation within the context of the internal kink mode.

Figure 4.32 shows a time-trace of the system's kinetic energy as the ideally un-

stable initial condition develops the non-linear internal kink mode. The �rst peak

around t ≈ 800 corresponds to the increase in the kinetic energy due to the kink

itself. Panels (a,d) of Figure 4.33 show contour plots of ψ over the whole domain

and Je around the RR at t = 845.3 immediately after the peak in Ek is achieved and

display a resistive current layer of length L ≈ 2rs. The high Prandtl number used in

this simulation, µ/η ≈ 5 ∗ 10−5/5 ∗ 10−6 = 10, is likely responsible for the observed

decrease in the system's kinetic energy once such a long Sweet-Parker current layer

has formed. However, after a period of quasi-resistive evolution, Fig. 4.32 shows a
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Figure 4.33: Contour plots of (a-c) ψ and (d-f) Je from a semi-collisional Hall MHD
internal kink simulation with plasmoid formation. Three times corresponding to those
marked in Figure 4.32 are shown in panels (a,d) t = 845.3, (b,e) t = 940.3, and (c,f)
t = 995.4. Simulation parameters are di = 0.01, 1/ε = 25, rs = 0.5, ηs = 5 ∗ 10−6,
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rapid increase in the system's kinetic energy, which is exactly correlated with the

break up of the current layer and formation of a plasmoid, as shown in panels (b,e)

of Fig. 4.33. By comparing panels (d) and (e) of Fig. 4.33, we observe that the two

resulting shorter current layers are also signi�cantly thinner than the macroscopic

one and thus facilitate faster overall magnetic reconnection of the plasma core.

As the plasmoid grows by accumulating magnetic �ux reconnected through the

two X-points surrounding it, it is eventually ejected to one side of the core, as shown in

panels (c,f) of Fig. 4.33. With the plasmoid ejected, the system is observed to convert

back to a wider and weaker current layer with Ek rapidly falling o� as magnetic

reconnection is slowed down again.

We now note that at each stage of the evolution from generation through ejection

of the plasmoid, the dimensions and dynamics of the observed current layers appear

to be quasi-resistive. However, in the absence of two-�uid e�ects (di = 0), the only

internal kink simulations in which we have ever observed resistive current layer break-

up and plasmoid formation are those of the ideally unstable 1/ε = 5 con�guration,

where the ideal kink drive is su�ciently strong to compress the current layer to

the point where it becomes unstable to a secondary resistive tearing mode. In the

presently described 1/ε = 25 simulation, no such compression takes place.

We conclude that in the regime of δJ/2 ≈ di, current layer break up, plasmoid

formation and ejection is a likely outcome and results in higher overall reconnection

rate than an equivalent purely visco-resistive Sweet-Parker reconnection.
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Figure 4.34: Time-traces of (a) q0 and (b) Rrec in incomplete sawtooth simulations
with di = {0, 0.01, 0.02}. Corresponding sawtooth periods are shown in the legend of
panel (a). As in Fig. 4.27, traces of Rrec in panel (b) are adjusted for the timing and
background electric �eld of the sawteeth. Arrows correspond to the snap-shots of the
system shown in Fig. 4.35. Simulation parameters are 1/ε = 10, rs = 0.5, ηs = 10−5,
µ = 5 ∗ 10−5, ν = 2 ∗ 10−8 and δBe = 10−3.

Incomplete sawteeth with two-�uid e�ects.

We now turn to consider if and how the sawtoothing behavior observed in the purely

visco-resistive simulations is modi�ed by the two-�uid e�ects. In particular, we con-

duct 1/ε = 10 aspect ratio simulations with di 6= 0 to evaluate whether or not the

incomplete sawteeth persist in the presence of accelerated reconnection and diamag-

netic rotation.

Figure 4.34 compares time-traces of q0, panel (a), and Rrec, panel (b), from saw-

tooth simulations with di = {0, 0.01, 0.02} holding all other parameters identical. It

is apparent from evolution of the magnetic �eld-line pitch at the geometric axis that

there is no qualitative di�erence between the three cases. Incomplete reconnection

of the core is observed as clearly in the two-�uid simulations as in the single �uid
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visco-resistive results presented above. However, it is just as clear that the two-

�uid sawteeth have shorter period τsw, given in the legend of panel (a) of Fig. 4.34.

Nearly all of the reduction in the sawtooth period is due to the shorter kink-driven

IR events, as shown in panel (b) of Fig. 4.34. While the total amount of poloidal

core �ux reconnected during an incomplete sawtooth is approximately the same in all

three simulations, the rate of reconnection increases signi�cantly as di is increased.

And the di�erences between the internal reconnection event durations account for

nearly all of the di�erences in the measured τsw.

We note that unlike the equivalent comparison between the three ideally unstable

internal kink simulations with di = {0, 0.01, 0.02} and η = 10−5 shown in Figure 4.29

above, the Rrec time-traces of 1/ε = 10 sawteeth are qualitatively not very di�erent.

An explosive increase in the reconnection rate when the two-�uid parameter exceeds

some resistive current layer width does not take place in these sawtooth simulations.

Instead, Rrec(t) varies relatively gently with time for each value of di and its maximum

over a sawtooth appears to also be a smooth function of di.

Nevertheless, the di = 0.02 incomplete sawteeth have a distinctly two-�uid char-

acter, as shown in the contour plots of Je, in panels (c-d) of Figure 4.35. While

the contour plots of ψ, shown in panels (a-b) of Figure 4.35, are very similar to the

equivalent ones in purely visco-resistive simulations (see Fig. 4.18), the two-�uid re-

connection current exhibits a clear signature of a localized and asymmetric current

channel (see Fig. 4.28 for comparison), as discussed in Section 4.4.2 above.

The explanation for the lack of explosive onset of fast reconnection in the 1/ε =

10 sawteeth lies in the macroscopic con�guration of the magnetic �elds which are

supposed to reconnect during the incomplete internal reconnection events. As we
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note in the previous sections, the reconnecting plasma core of these sawteeth takes a

tear-drop shape preserving a relatively short current layer with L ¿ rs and L/δ ≈ 10

even in a purely visco-resistive regime. Thus, no signi�cant current layer collapse

takes place when the two-�uid e�ects become important and no rapid change in the

reconnection rate is observed.

We note that we have also conducted two-�uid long-term simulations of an Ohmic

driven screw-pinch with the aspect ratio of 1/ε = 25 and 1/ε = 5 in order to compare

them with the visco-resistive results described above. (See Appendix B for a summary

table of all incompressible internal kink simulations conducted for the study described

in this Dissertation.) However, no di�erences of signi�cant interest with the single

�uid simulations have been observed and therefore the data is not presented here.

4.4.4 Discussion of the two-�uid results.

The incompressible Hall MHD simulation results presented above demonstrate that

while the two-�uid physics should not be ignored and may be important in explaining

the time-scales observed in experiments, it does not qualitatively alter the underlying

global self-organization properties of the system. The main features of the visco-

resistive sawteeth � the dynamo-generated paramagnetism and the observed limit-

cycle behavior of a relaxed weakly driven system, leading to a possibility of incomplete

reconnection sawteeth, � are preserved.

At the same time, the characteristics of magnetic reconnection that takes place

during the sawtooth IR events in the semi-collisional regime are in very good agree-

ment with those observed and described in the reconnection focused simulations dis-

cussed in Chapter 3 above. The correspondence of the results in two very di�erent

con�gurations gives us con�dence that the understanding achieved in the easiest to
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analyze setups can be carried over to the more complex systems. This statement, how-

ever, has to be quali�ed by emphasizing that the temporal evolution and structure of

a magnetic reconnection region can be strongly in�uenced by the global magnetic �eld

structure and can, therefore, change depending on the exact problem being considered

� that is an integral part of the understanding.

As we have already discussed, the exact incompressibility approximation made in

these calculations is not appropriate for realistic tokamak plasmas with βT ¿ 1. Yet,

based on the previously published results[53, 68, 128], we suggest that the character

of the two-�uid internal kink will not change signi�cantly aside from the reduction

of the relevant two-�uid scale from di to ρs. We note that the presence of a strong

magnetic guide-�eld, in and of itself, does not inhibit onset of fast reconnection and

collapse of the reconnection current layer to the electron viscous scale.

4.5 Summary of the internal kink simulations.

In this study, we have accomplished several somewhat independent goals:

1. Further verify the SEL code, described in Chapter 2, against asymptotic an-

alytical and other published numerical linear results in helical geometry. Re-

produce known non-linear behavior of the ideally unstable visco-resistive and

semi-collisional internal kink.

2. Demonstrate the importance of self-organization and relaxation phenomena in

a tokamak-relevant magnetic �eld con�guration and make connections with

known results in the RFP community. For the �rst time, produce an m = 1

sawtooth simulation which exhibits incomplete reconnection of the plasma core

and maintains q < 1 throughout the cycle.
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3. Con�rm the understanding of visco-resistive and two-�uid magnetic reconnec-

tion achieved in simulations of �at two-dimensional domains described in Chap-

ter 3. Evaluate how the possibility of fast two-�uid reconnection a�ects the

time-scales and dynamics of the sawteeth observed in the visco-resistive regime.

We now conclude this Dissertation with a discussion of overall results and future

directions of the research described herein.
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Chapter 5

Conclusions, discussion and future
work.

5.1 SEL code

All of the simulation results presented in this Dissertation have been obtained with the

2D implicit adaptive parallel spectral element code SEL. The details of the code's core

algorithm, its grid adaptation technique and both linear and non-linear veri�cation

studies conducted with the code are described in Chapter 2. As demonstrated with the

veri�cation studies and even more so with the results of the magnetic reconnection

and internal kink simulations described above, the numerical approach chosen for

implementation in the SEL code is highly accurate, robust and e�cient, capable of

long time-integration of strongly non-linear extended MHD systems. As discussed

below, we believe that the accuracy of the code has been critical in obtaining the new

results and understanding of the physics achieved in this Dissertation.

In conducting the non-linear simulations, we take advantage of the �exibility af-

forded by SEL's use of the PETSc library and, during the Newton iteration, try

di�erent parallel linear solvers, such as the iterative ILU preconditioned GMRES or

the parallel direct solver SuperLU_dist, for di�erent sets of PDEs and problem sizes.
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Although we have not yet done a thorough scaling study, it appears that when us-

ing the direct SuperLU_dist solver, the code, employing all of its capabilities, scales

slightly worse than weakly1 to ∼ 100 − 150 processors on the National Energy Re-

search Scienti�c Computing (NERSC) IBM POWER 5 Bassi system[102]. In these

preliminary scaling studies, all of the memory-per-processor available on the system

is used and the biggest long time-integration problem solved so far is the Hall MHD

Ohmic driven internal kink problem with 6 independent variables on an adaptive

[nx, ny, np] = [48, 72, 8] grid, run on 12 Bassi nodes of 8 processors and ≈ 19 GB of

available memory each for ≈ 42 hours of wall-clock time. (Results of that simulation

are presented in Section 4.4.3 and the description of the input parameters is given

in Appendix B under �run #33�.) It is well known that a direct solver intrinsically

cannot scale to many more processors, and attempts to use the iterative GMRES

solver on the same problem show a signi�cantly worse scaling (to the same number of

processors) and wall-clock run-time 3-4 times longer than the SuperLU_dist direct

solver, though somewhat less memory is taken up by the iterative solver, as well.

We quote these numbers here to show the present limitations of the SEL code.

While we see no good alternative to using the high order �nite element (or, equiv-

alently, spectral element) spatial representation and implicit temporal advance for

future anisotropic extended MHD simulations in fully 3D systems[137], it is apparent

that a new parallel linear solver for high order �nite element based codes with better

scaling properties is necessary to be able to accurately solve any problem of practical

interest in reasonable time. Active research on that subject is now taking place, where

the SEL code is used as a test-bed for the new algorithms recently developed in the
1Doubling problem size on a doubled number of processors results in ≈ 15 − 20% increase in

wall-clock run-time.
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applied mathematics community[63, 84].

5.2 Magnetic reconnection

In this work, we consider only the two-dimensional aspects of magnetic reconnection.

We qualitatively describe the structure of a 2D reconnection region and then proceed

to analyze simulations of the same large scale semi-open tearing unstable magnetic

�eld con�guration with the visco-resistive, electron and two-�uid (Hall) MHD models

in Chapter 3.

Well known visco-resistive result � slow Sweet-Parker reconnection through a

macroscopic system-size current layer � is reproduced. In electron MHD (EMHD),

observed structure and scalings of characteristic quantities of a microscopic EMHD

reconnection region are shown to agree with the derived qualitative estimates. Width

of the electron current layer is shown to be determined by electron viscosity, not elec-

tron inertia, and observed electron current layer instability is derived and numerically

con�rmed to be due to the interaction of electron inertia and frozen-in magnetic �eld

e�ects, not Kelvin-Helmholtz instability of the sheared electron �ow, as has been

suggested previously[18].

In Hall MHD, in the semi-collisional regime, the reconnection region is shown to

allow three di�erent solutions: large aspect ratio system-size quasi-resistive reconnec-

tion region, localized X-point microscopic reconnection region, and an intermittent

solution of a plasmoid formation unstable electron current layer embedded within

a system-size reconnection region. The intermittent solution that we �nd to lie in

between the quasi-resistive and X-point magnetic reconnection con�gurations is dis-

tinctly di�erent than that recently reported in the literature[33]. We note that the
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discrepancies between the previously obtained numerical results and those reported

here are likely due to the lower physical dissipation coe�cients and better numerics,

particularly the improved spatial resolution and near-absence of numerical di�usion

and dispersion, employed in this study.

Based on these and other reported two-�uid and collisionless particle simulation

results, we propose an explanation for the numerically observed structure of a two-

�uid reconnection region � 2-scale in the out�ow direction and 4-scale in the in�ow

direction in the collisionless limit and single scale in both directions in the collisional

limit. Based on the qualitative analysis which states that spontaneous magnetic

reconnection is fundamentally driven by the tension of magnetic �eld lines in the

out�ow region, we propose that the velocity of the plasma out�ow from a reconnection

region will always be maximized subject to the inertial, collisional and kinetic e�ects

present in any given plasma, plus the condition of local minimum energy state of the

reconnection region itself. In our view, it is the combination of the two that determines

the steady-state structure of a reconnection region in the various plasma parameter

regimes. And in systems that can �nd no such reconnection region con�guration,

reconnection rate is e�ectively maximized by producing �bursty� behavior, such as

plasmoid formation and ejection, which results in the absence of a single steady-state

reconnection region.

Here, we fully recognize that our conclusions about the nature of two-dimensional

magnetic reconnection are based solely on qualitative estimates and evidence obtained

from multiple numerical experiments. While we believe that our explanation does not

contradict any of the available numerical or experimental evidence, there still exists no

precise analytical derivation determining the structure and reconnection rate of even
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the simplest multi-scale reconnection region. We hope that the insights presented in

this work might accelerate the arrival of such a theory.

5.3 Internal kink, sawtooth oscillations, and mag-
netic self-organization

We study a driven m = n = 1 internal kink unstable helical screw-pinch system

in an incompressible cylindrical tokamak approximation in Chapter 4. Ideal and

resistive linear and visco-resistive and Hall MHD non-linear simulations of the ideally

unstable internal kink mode are shown to reproduce the known asymptotic analytical

and previous numerical results. In particular, the observations by Aydemir[7] of the

quasi-exponential non-linear growth of the visco-resistive kink mode in the limit of

very small dissipation, and by Aydemir[6] and others of the explosive onset of fast

reconnection during the semi-collisional and collisionless internal kink evolution, are

con�rmed.

Over a longer time-integration period, in systems driven towards a hollow q-pro�le

with q(r = 0) < 1, regeneration of the plasma core followed by another smaller

internal reconnection event is observed. Both the quantitative and qualitative long-

term behavior of the system is shown to be independent of the nature of the drive

� Ohmic boundary drive with assumed hollow resistivity pro�le or direct interior

current-drive with uniform resistivity. Precise initial conditions are also observed

to have little e�ect on the eventual limit-cycle of the resulting sawtooth oscillations

and/or relaxation of the magnetic �eld con�guration.

By varying the aspect ratio of the screw-pinch and relying on similar results in
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simulations of reversed �eld pinches, clear evidence of self-organization of a tokamak-

like magnetic �eld con�guration is identi�ed for the �rst time. Complete Kadomtsev

reconnection sawteeth are observed in the very large aspect ratio 1/ε = 25 simulations,

while stable helical resistive dynamo is demonstrated in the smallest aspect ratio

1/ε = 5 simulations. (Note that for these results, the physically relevant aspect

ratio parameter is the ratio of the periodic length of the screw-pinch to the radius

of the q = 1 surface, not to the radius of the domain.) However, for the �rst time,

simulations of m = 1 sawteeth are also shown to exhibit incomplete reconnection of

the plasma core and maintain q < 1 throughout the cycle in a screw-pinch system

with 1/ε = 10. In all of the sawtooth simulations, �quasi-interchange�-like mechanism

is observed to also be partially responsible for the restoration of the closed magnetic

surfaces in the plasma core.

During both the ideally unstable internal kink and the following sawtooth oscil-

lations, the coupling between the structure of the reconnection region and the global

magnetic �eld con�guration is emphasized and shown to play an important role in

determining the observed reconnection rates. The results are well understood in the

context of the visco-resistive and two-�uid magnetic reconnection simulations de-

scribed in Chapter 3. In particular, during the sawtooth oscillations, presence of the

Hall physics in shown to accelerate the non-linear development of the internal kink

mode, while having little e�ect on the dynamics and time-scales observed during the

remainder of a sawtooth cycle.

Finally, we note that the present study is only a �rst step towards improved

understanding of the sawtooth phenomenon, universally observed in tokamaks and

other toroidal con�nement devices, by using high accuracy numerical methods. Even
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within the cylindrical tokamak approximation, compressibility, non-uniform density,

self-consistent and anisotropic heating and di�usion coe�cients are bound to have

non-negligible e�ects on the character of the time-asymptotic self-organized limit-

cycle (or stable equilibrium) of the system. While preliminary simulations using such

extended MHD model are presently under way (see Appendix C for the description

of the extended MHD equations, their SEL implementation and employed initial

and boundary conditions), we believe it is critical to maintain the accuracy level

demonstrated in this study in order to continue to generate trustworthy results with

the more complete systems.
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Appendix A

Calculus in helical coordinates.

A.1 Useful vector-di�erential identities in helical co-
ordinates with 2D helical symmetry.

Within helical symmetry, the usual di�erential operators in terms of the helical coor-

dinates (r, τ) are as follows:

∇r = r̂, ∇τ =
1

rg
τ̂ , ∇F =

∂F

∂r
r̂ +

1

rg

∂F

∂τ
τ̂

∇ · F =
1

r

∂(rFr)

∂r
+

1

rg

∂Fτ

∂τ

∇× F =
r̂

rg

∂Fe

∂τ
− τ̂ g

∂

∂r

(
Fe

g

)
+ ê

[
1

rg

∂(rgFτ )

∂r
− 1

rg

∂Fr

∂τ
− 2εg2Fe

]

Additional useful vector-di�erential identities are:

∇× ê = εg2(εrτ̂ + 2ê),
∂g

∂r
= −rε2g3,

1

rg

∂(rgF )

∂r
=

∂F

∂r
+

g2

r
F

r̂ · ∇r̂ = 0, r̂ · ∇τ̂ = εg2ê, r̂ · ∇ê = −εg2τ̂

τ̂ · ∇r̂ =
g2

r
(τ̂ − εrê) , τ̂ · ∇τ̂ = −g2

r
r̂, τ̂ · ∇ê = εg2r̂

ê · ∇r̂ = −εg2 (τ̂ − εrê) , ê · ∇τ̂ = εg2r̂, ê · ∇ê = −rε2g2r̂
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∇A = r̂r̂
∂Ar

∂r
+ τ̂ r̂

[
1

rg

∂Ar

∂τ
− g2

r
(Aτ − εrAe)

]
+ êr̂

[
εg2 (Aτ − εrAe)

]

+ r̂τ̂

[
∂Aτ

∂r
− εg2Ae

]
+ τ̂ τ̂

[
1

rg

∂Aτ

∂τ
+

g2

r
Ar

]
+ êτ̂

[−εg2Ar

]

+ r̂ê

[
∂Ae

∂r
+ εg2Aτ

]
+ τ̂ ê

[
1

rg

∂Ae

∂τ
− εg2Ar

]
+ êê

[
rε2g2Ar

]

[(A · ∇)B] · r̂ = Ar
∂Br

∂r
+

Aτ

rg

∂Br

∂τ
− g2

r
(Aτ − εrAe)(Bτ − εrBe)

[(A · ∇)B] · τ̂ = Ar
∂Bτ

∂r
+

Aτ

rg

∂Bτ

∂τ
+

g2

r
BrAτ − εg2(ArBe + AeBr)

[(A · ∇)B] · ê = Ar
∂Be

∂r
+

Aτ

rg

∂Be

∂τ
+ εg2(ArBτ − AτBr) + rε2g2AeBr.

A.2 Coordinate transformations from helical to carte-
sian coordinates for di�erential operators.

We note that ∂F/∂τ = ∂F/∂θ. Using that and the well known coordinate transfor-

mation between cylindrical and cartesian coordinate systems, we have the following

relationships:
∂

∂r
=

1

r

(
x

∂

∂x
+ y

∂

∂y

)
,

∂

∂θ
=

(
x

∂

∂y
− y

∂

∂x

)

∂2

∂r2
=

1

r2

(
x2 ∂2

∂x2
+ 2xy

∂2

∂x∂y
+ y2 ∂2

∂y2

)

∂2

∂θ2
= x2 ∂2

∂y2
− 2xy

∂2

∂x∂y
+ y2 ∂2

∂x2
−

(
x

∂

∂x
+ y

∂

∂y

)

∂2

∂r∂θ
=

1

r

[
(x2 − y2)

∂2

∂x∂y
− xy

(
∂2

∂x2
− ∂2

∂y2

)
+

(
x

∂

∂y
− y

∂

∂x

)]

g2∆∗[F ] =
1

r

[
∂

∂r

(
rg2 ∂

∂r

)
+

1

r

∂2

∂θ2

]
F

=
∂

∂x

[(
1− ε2x2

1 + ε2r2

)
∂

∂x
− xyε2

1 + ε2r2

∂

∂y

]
F

+
∂

∂y

[(
1− ε2y2

1 + ε2r2

)
∂

∂y
− xyε2

1 + ε2r2

∂

∂x

]
F
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B · ∇F =
∂

∂y

(
F

∂ψ

∂x

)
− ∂

∂x

(
F

∂ψ

∂y

)
, J · ∇F =

∂

∂x

(
F

∂Be

∂y

)
− ∂

∂y

(
F

∂Be

∂x

)
,

where r =
√

x2 + y2.
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Appendix B

Summary table of all incompressible
Hall MHD internal kink simulation
runs.

All incompressible Hall MHD attempts at simulating the internal kink mode, either

from an ideally unstable initial condition or in the sawtooth phase, are summarized in

the table. Spectral elements of np = 8 order are used in all of the simulations. �Park�

initial condition corresponds to the one given by Eqs. (4.2.5); resistive equilibrium

(�resist. equil.�) corresponds to that described in Section 4.3.4; and modi�ed resistive

equilibrium (�resist. equil.†�) corresponds to that described in Section 4.3.5. Constant

resistivity η = ηs is used in directly driven simulations with the current source given

by Eq. (4.3.14); and radial resistivity pro�le given by Eq. (4.3.13) with η(r = rs) = ηs

is used in Ohmicly driven simulations. �*� mark next to the run number signi�es that

the simulation was conducted on the NIP parallel computer cluster of the Plasma

Theory Group at the Los Alamos National Laboratory; otherwise, the simulations

were conducted on the Bassi system of the NERSC Center.
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# 1/ε rs di ηs µ/ηs ηs/ν nx ny δBe drive init. cond.
03 25 .7 0 1e-5 1 100 32 26 1e-6 direct Park
03b 25 .7 0 1e-5 1 100 32 36 1e-6 direct Park
03c 25 .7 0 1e-5 1 100 32 42 1e-6 direct Park
03d 25 .7 0 1e-5 1 100 32 48 1e-6 direct Park
03e 25 .7 0 1e-5 1 100 40 60 1e-6 direct Park
04a 25 .7 1e-2 1e-5 1 100 40 60 1e-6 direct Park
06 10 .7 0 1e-5 1 100 32 26 1e-6 direct Park
05* 10 .7 1e-2 1e-5 1 100 36 28 1e-6 direct Park
07* 10 .7 2e-2 1e-5 1 100 36 28 1e-6 direct Park
16* 25 .5 0 1e-5 0.2 100 36 42 1e-4 Ohmic Park
08 25 .5 0 1e-5 1 100 40 60 1e-6 direct Park
08* 25 .5 0 1e-5 1 100 36 42 1e-4 direct Park
14* 25 .5 0 1e-5 1 100 36 42 1e-4 Ohmic Park
29 25 .5 0 1e-5 1 500 32 48 1e-3 Ohmic resist. equil.†
20 25 .5 0 1e-5 2 100 32 40 1e-3 Ohmic resist. equil.†
15* 25 .5 0 1e-5 5 100 28 33 1e-4 Ohmic resist. equil.
19* 25 .5 0 1e-5 5 100 28 30 1e-4 Ohmic resist. equil.†
12 25 .5 1e-2 5e-6 1 100 40 60 1e-4 direct Park
13* 25 .5 1e-2 5e-6 10 100 36 42 1e-4 direct Park
24 25 .5 1e-2 5e-6 1 500 40 60 1e-3 Ohmic resist. equil.†
09 25 .5 1e-2 1e-5 1 100 40 60 1e-6 direct Park
23* 25 .5 1e-2 1e-5 5 500 28 36 1e-3 Ohmic resist. equil.†
10 25 .5 2e-2 1e-5 1 100 40 60 1e-6 direct Park
10b 25 .5 2e-2 1e-5 1 100 48 72 1e-6 direct Park
21* 25 .5 2e-2 1e-5 5 20 28 36 1e-3 Ohmic resist. equil.†
25* 10 .5 0 1e-5 5 500 28 30 1e-3 Ohmic resist. equil.†
25b* 10 .5 0 5e-6 10 500 28 30 1e-3 Ohmic from #25*
25c* 10 .5 0 1e-5 2.5 500 28 30 1e-3 Ohmic from #25*
25d* 10 .5 0 2.5e-6 10 500 28 30 1e-3 Ohmic from #25*
26 10 .5 1e-2 1e-5 5 500 40 60 1e-3 Ohmic resist. equil.†
26b 10 .5 1e-2 5e-6 10 500 40 60 1e-3 Ohmic from #26
26e 10 .5 1e-2 5e-6 10 100 40 60 1e-3 Ohmic from #26
26c 10 .5 1e-2 1e-5 1 500 40 60 1e-3 Ohmic from #26
26d 10 .5 1e-2 2.5e-6 20 250 40 60 1e-3 Ohmic from #26
33 10 .5 2e-2 1e-5 5 500 48 72 1e-3 Ohmic resist. equil.†
27* 5 .5 0 1e-5 5 500 28 34 1e-3 Ohmic resist. equil.†
30* 5 .5 0 1e-6 50 500 28 34 1e-3 Ohmic from #27*
31* 5 .5 0 5e-7 100 500 28 34 1e-3 Ohmic from #30*
32* 5 .5 0 4e-6 12.5 500 28 34 1e-3 Ohmic from #27*
28 5 .5 1e-2 1e-5 5 500 32 48 1e-3 Ohmic resist. equil.†
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Appendix C

Preliminary two-�uid extended MHD
simulations in helical symmetry.

The formulation of the two-�uid extended MHD system of equation in helical symme-

try, the implementation in the SEL code, and initial and boundary conditions for the

preliminary simulations of the internal kink mode with a fully compressible two-�uid

model are described below.

C.1 Extended MHD equations in helical coordinates.

We formulate two-�uid extended MHD equations in helical coordinates with the fol-

lowing primary variables:

1. n � plasma density;

2. vr ≡ nvi · r̂ � r̂-component of ion momentum;

3. vτ ≡ nvi · τ̂ � τ̂ -component of ion momentum;

4. ve ≡ nvi · ê � ê-component of ion momentum;

5. ψ � helical magnetic �ux;
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6. Be ≡ 1
g
B · ê � modi�ed ê-component of magnetic �eld;

7. je ≡ ve · ê � ê-component of electron velocity;

8. pi � ion pressure;

9. pe � electron pressure.

Magnetic �eld is expressed as

B = g[ê×∇ψ + Beê] = r̂

(
−1

r

∂ψ

∂τ

)
+ τ̂

(
g
∂ψ

∂r

)
+ ê (gBe) ,

plasma current is

J = r̂

(
1

r

∂Be

∂τ

)
+ τ̂

(
−g

∂Be

∂r

)
+ ê

(
g∆∗ψ − 2εg3Be

)
,

and components of electron momentum are

nve · r̂ = vr − di

r

∂Be

∂τ

nve · τ̂ = vτ + dig
∂Be

∂r

nve · ê = nje = ve − dig
(
∆∗ψ − 2εg2Be

)
.

The following di�usion/dissipation parameters are taken to be non-negligible:

η⊥ = di/(nτeωce) � perpendicular resistivity, where τe(n, pe) is the electron collision

time and ωce is the electron cyclotron frequency assumed to be uniform and

evaluated at the value of the main axial �eld;

η‖ = η⊥/1.96 � parallel resistivity;

qie = 3/(diτeωce) � heat exchange coe�cient;
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µ0 = 0.96dipiτiωci � compressional ion viscosity, where τi(n, pi) is the ion collision

time, ωci = εmωce is the ion cyclotron frequency, and εm = (me/mi) is the

electron-to-ion mass ratio;

µi = 6dipi/(5τiωci) � collisional ion viscosity;

νe = 2εmdipe/(τeωce) � collisional electron viscosity;

κi
‖ = 3.9dipiτiωci � parallel ion heat conduction;

κi
∧ = 5dipi/2 � cross-�eld ion heat conduction;

κi
⊥ = 2dipi/(τiωci) � perpendicular ion heat conduction;

κe
‖ = 3.2dipeτeωce � parallel electron heat conduction;

κe
∧ = 5dipe/2 � cross-�eld electron heat conduction;

κe
⊥ = 4.7dipe/(τeωce) � perpendicular electron heat conduction;

under the assumption of large B-�eld, τeωce À τiωci À 1, and the ion skin depth

di ≡ 〈c/ωpi〉/r0 ¿ 1, yet non-negligible.

Using two-�uid MHD formulation by Braginskii[24], we solve the following set of

equations:
∂n

∂t
+∇ · (nvi) = 0 (C.1.1)

mi
∂(nvi)

∂t
+ ∇ · (minvivi + Πi

)
= −∇pi + e

(
nE +

nvi ×B

c

)

− n
[
η⊥J + (η‖ − η⊥)(J · b̂)b̂

]
(C.1.2)

enE +∇ · Πe = −∇pe − e
nve ×B

c
+ n

[
η⊥J + (η‖ − η⊥)(J · b̂)b̂

]
(C.1.3)
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3

2

∂pi

∂t
+ ∇ ·

{
3

2
pivi − (κi

‖ − κi
⊥)

[
∇

(pi

n

)
· b̂

]
b̂ + κi

∧b̂×∇
(pi

n

)
− κi

⊥∇
(pi

n

)}

= −pi∇ · vi − Πi : ∇vi + qie(pe − pi) (C.1.4)

3

2

∂pe

∂t
+ ∇ ·

{
3

2
peve − (κe

‖ − κe
⊥)

[
∇

(pe

n

)
· b̂

]
b̂− κe

∧b̂×∇
(pe

n

)
− κe

⊥∇
(pe

n

)}

= −pe∇ · ve − Πe : ∇ve + qie(pi − pe)

−
[
η⊥J + (η‖ − η⊥)(J · b̂)b̂

]
· (nve − nvi) (C.1.5)

J = en(vi − ve) (C.1.6)

Πi = −µ0 (∇ · vi) [I− 2êê]− µi

[
∇vi‖ +

(∇vi‖
)T

]

− µi

4

[
∇vi⊥ + (∇vi⊥)T − (∇ · vi⊥)(I− êê)

]

Πe = −νe

[
∇ve‖ +

(∇ve‖
)T

]
,

where, in accordance with the ordering introduced above, we neglect electron inertia,

cross-�eld thermal force and corresponding frictional heat �ux, perpendicular heat

conductivities for both species, and parts of the pressure tensors, as described below.

The system is normalized by setting B = B0B̂, n = n0n̂, vα = v0v̂α (v0 ≡
B0/

√
4πmin0), ∇ = (1/r0)∇̂, ∂/∂t = (1/t0)∂/∂t̂ (t0 ≡ r0/v0), E = (B0v0/c)Ê, and

pα = min0v
2
0 p̂α. It is clear that by specifying background B-�eld B0, background

density n0 and system scale r0, we uniquely determine normalizations of all other

physical quantities. We now use appropriate expressions[24] for ion and electron

collision times with reference tokamak-like plasma parameters of minor radius r0 =

100cm, B-�eld B0 = 103Gauss, and plasma density n0 = 1014cm−3 to estimate τeωce,
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τiωci, and di. We have

τeωce = 4.47 ∗ 1027 B4
0

n
5/2
0

(
p̂e

3/2

n̂5/2

)
= 4.47 ∗ 104 p̂e

3/2

n̂5/2

τiωci = 1.48 ∗ 1026 B4
0

n
5/2
0

(
p̂i

3/2

n̂5/2

)
= 1.48 ∗ 103 p̂i

3/2

n̂5/2

di = 2.28 ∗ 10−2,

which easily satis�es the ordering speci�ed above. We also note that T0 = p0/n0 =

4.97 ∗ 102eV follows from the normalization relations.

We combine ion momentum Equation (C.1.2) and electron momentum (Ohm's

Law) Equation (C.1.3) to form a vector equation on total plasma momentum and

drop hats over normalized quantities to arrive at the set of normalized equations

evolved by the SEL code:
∂n

∂t
+∇ · (nvi) = 0 (C.1.7)

∂(nvi)

∂t
+∇ ·

[
nvivi +

(
pi + pe +

B2

2

)
I−BB + Πi + Πe

]
= 0 (C.1.8)

E +
di

n
∇ · Πe = −di

n
∇pe − ve ×B

+
η⊥
di

(nvi − nve) + (η‖ − η⊥)J‖b̂ (C.1.9)

3

2

∂pi

∂t
+ ∇ ·

{
3

2
pivi − (κi

‖ − κi
⊥)∇‖

(pi

n

)
+ κi

∧b̂×∇
(pi

n

)
− κi

⊥∇
(pi

n

)}

= −pi∇ · vi − Πi : ∇vi + qie(pe − pi) (C.1.10)

3

2

∂pe

∂t
+ ∇ ·

{
3

2
peve − (κe

‖ − κe
⊥)∇‖

(pe

n

)
− κe

∧b̂×∇
(pe

n

)
− κe

⊥∇
(pe

n

)}

= −pe∇ · ve − Πe : ∇ve + qie(pi − pe) + η⊥
|nve − nvi|2

d2
i

+ (η‖ − η⊥)J2
‖ (C.1.11)
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di∇×B = (nvi − nve) (C.1.12)

Πi = −µ0 (∇ · vi) [I− 2êê]− µi

[
∇vi‖ +

(∇vi‖
)T

]

− µi

4

[
∇vi⊥ + (∇vi⊥)T − (∇ · vi⊥)(I− êê)

]

Πe = −νe

[
∇ve‖ +

(∇ve‖
)T

]
,

where ∇‖F ≡ (b̂ · ∇F )b̂ and J‖ ≡ (∇×B) · b̂.
The full Braginskii ion and electron pressure tensors[24] are approximated accord-

ing to the ordering of the characteristic ion/electron collision and cyclotron frequencies

discussed above and magnitude and direction of �ow gradients expected in the sys-

tem. The ion pressure tensor is approximated by including the full compressional and

collisional parts of the tensor and assuming the helical magnetic �eld to dominate the

total B-�eld:

Πi = −µ0(∇ · vi)(I− 2êê)− µi

{
∇

(ve

n
ê
)

+
[
∇

(ve

n
ê
)]T

}

− µi

4

{
∇

(
vrr̂ + vτ τ̂

n

)
+

[
∇

(
vrr̂ + vτ τ̂

n

)]T

− (∇ · vi)(I− êê)

}
,

Only parallel collisional component of the electron pressure tensor is included in our

model:

Πe = −νe

{
∇ (jeê) + [∇ (jeê)]

T
}

.

C.2 SEL implementation of the extended MHD equa-
tions in helical coordinates.

Below, we expand out each of the normalized two-�uid extended MHD equations

(Eqs. (C.1.7-C.1.12)) evolved by the SEL code in primary variables, helical coordi-

nates, and in the �ux-source form required by the code.
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There are following M = 9 equations written in the �ux-source form solved by

SEL:

Density equation:

r
∂n

∂t
+

∂(rvr)

∂r
+

∂

∂τ

(
vτ

g

)
= 0 (C.2.1)

r-momentum equation:

r2g
∂vr

∂t
+

∂

∂r

[
r2g

v2
r

n

]
+

∂

∂τ

[
r
vrvτ

n

]
+ r2gr̂ · [∇ · (Πi + Πe

)]

= −r2g3Be
∂Be

∂r
− (rg)2 (ve − nje)

di

∂ψ

∂r
− r2g

∂(pi + pe)

∂r

+ rg3

[
v2

r

n
+ (vτ − εrve)

(vτ

n
− εr

ve

n

)]
(C.2.2)

τ -momentum equation:

r2g
∂vτ

∂t
+

∂

∂r

[
r2g

vrvτ

n

]
+

∂

∂τ

[
r
v2

τ

n
+ r

(
pi + pe +

(gBe)
2

2

)]

+ r2gτ̂ · [∇ · (Πi + Πe
)]

= −rg
∂ψ

∂τ

(ve − nje)

di

+ 2εr2g3vr
ve

n

(C.2.3)

e-momentum equation:

r

g

∂ve

∂t
+

∂

∂r

[
r

g

vrve

n
+ Be

∂ψ

∂τ

]
+

∂

∂τ

[
1

g2

vτve

n
−Be

∂ψ

∂r

]

+
r

g
ê · [∇ · (Πi + Πe

)]
= 0 (C.2.4)

e-component of Ohm's Law:

r
∂ψ

∂t
+

r

g

di

n
ê · [∇ · Πe] =

1

n

∂ψ

∂r

(
di

∂Be

∂τ
− rvr

)
− 1

n

∂ψ

∂τ

(
di

∂Be

∂r
+

1

g
vτ

)

+
r

g

[
η⊥

(ve − nje)

di

+ (η‖ − η⊥)J‖be

]
, (C.2.5)
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−rgê · {∇ × [Ohm's Law] + 2εg2[Ohm's Law]}:

rg2∂(Be − 2εg2ψ)

∂t
− rgê ·

{
∇×

[
di

n
∇ · Πe

]
+ 2εg2

[
di

n
∇ · Πe

]}

+
∂

∂r

{
g2Be

n

(
rvr − di

∂Be

∂τ

)
+ gje

∂ψ

∂τ

− rg

[
η⊥g

∂Be

∂r
− (η‖ − η⊥)J‖bτ

]}

+
∂

∂τ

{
g
Be

n

(
vτ + dig

∂Be

∂r

)
− gje

∂ψ

∂r

−
[
η⊥

1

r

∂Be

∂τ
+ (η‖ − η⊥)J‖br

]}

=
di

n2

(
∂pe

∂r

∂n

∂τ
− ∂pe

∂τ

∂n

∂r

)
(C.2.6)

e-component of Ampere's Law:

∂

∂r

[
dirg

2∂ψ

∂r

]
+

∂

∂τ

[
di

r

∂ψ

∂τ

]
= 2diεrg

4Be + rg(ve − nje) (C.2.7)

ion pressure equation:

3

2
r
∂pi

∂t
+

∂

∂r

{
3

2
rvr

pi

n
− (κi

‖ − κ⊥)br

[
rbr

∂

∂r

(pi

n

)
+

bτ

g

∂

∂τ

(pi

n

)]

− κi
∧
be

g

∂

∂τ

(pi

n

)
− κi

⊥r
∂

∂r

(pi

n

)}

+
∂

∂τ

{
3

2

vτ

g

pi

n
− (κi

‖ − κ⊥)
bτ

g

[
br

∂

∂r

(pi

n

)
+

bτ

rg

∂

∂τ

(pi

n

)]

+ κi
∧
be

g

∂

∂r

(pi

n

)
− κi

⊥
1

rg2

∂

∂τ

(pi

n

)}

= −pi

[
∂

∂r

(rvr

n

)
+

1

g

∂

∂τ

(vτ

n

)]
− rΠi : ∇vi + rqie(pe − pi) (C.2.8)
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and electron pressure equation:

3

2
r
∂pe

∂t
+

∂

∂r

{
3

2
r
pe

n

(
vr − di

r

∂Be

∂τ

)
− (κe

‖ − κe
⊥)br

[
brr

∂

∂r

(pe

n

)
+ bτ

1

g

∂

∂τ

(pe

n

)]

+ κe
∧
be

g

∂

∂τ

(pe

n

)
− κe

⊥r
∂

∂r

(pe

n

)}

+
∂

∂τ

{
3

2

1

g

pe

n

(
vτ + dig

∂Be

∂r

)
− (κe

‖ − κe
⊥)

bτ

g

[
br

∂

∂r

(pe

n

)
+ bτ

1

rg

∂

∂τ

(pe

n

)]

− κe
∧
be

g

∂

∂r

(pe

n

)
− κe

⊥
1

rg2

∂

∂τ

(pe

n

)}

= −pe

[
∂

∂r

(rvr

n

)
+

1

g

∂

∂τ

(vτ

n

)
+

di

n2

(
∂Be

∂τ

∂n

∂r
− ∂Be

∂r

∂n

∂τ

)]
− rΠe : ∇ve

+ r

{
η⊥

[
1

r2

(
∂Be

∂τ

)2

+ g2

(
∂Be

∂r

)2

+
1

d2
i

(nje − ve)
2

]
+ (η‖ − η⊥)J2

‖

}

+ rqie(pi − pe). (C.2.9)

Components of the ion pressure tensor are as follows:

Πi
rr = −µ0∇ · vi − µi

4

[
∂

∂r

(vr

n

)
− 1

rg

∂

∂τ

(vτ

n

)
− 1

r

vr

n

]
,

Πi
rτ = Πi

τr = −µi

4

[
∂

∂r

(vτ

n

)
+

1

rg

∂

∂τ

(vr

n

)
− g2

r

vτ

n

]
,

Πi
re = Πi

er = −µi
1

g

∂

∂r

(
g
ve

n

)
− µi

2
εg2vτ

n
,

Πi
ττ = −µ0∇ · vi − µi

4

[
− ∂

∂r

(vr

n

)
+

1

rg

∂

∂τ

(vτ

n

)
+

g2

r
(1− ε2r2)

vr

n

]
,

Πi
τe = Πi

eτ = −µi
1

rg

∂

∂τ

(ve

n

)
+

µi

2
εg2vr

n

Πi
ee = µ0∇ · vi − µi

2
rε2g2vr

n
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and its divergence can be expressed as

∇ · Πi = r̂
1

r2g

{
∂

∂r

[
−µ0r

2g(∇ · vi)− µi

4

(
r2g

∂

∂r

(vr

n

)
− r

∂

∂τ

(vτ

n

)
− rg

vr

n

)]

+
∂

∂τ

[
−µi

4

(
r

∂

∂r

(vτ

n

)
+

1

g

∂

∂τ

(vr

n

)
− g2vτ

n

)]

+ µ0rg
3(2.− ε2r2)(∇ · vi)− µi2εrg

2 ∂

∂τ

(ve

n

)
+

µi

2
ε2r2g3vr

n

}

+ τ̂
1

r2g

{
∂

∂r

[
−µi

4

(
r2g

∂

∂r

(vτ

n

)
+ r

∂

∂τ

(vr

n

)
− rg3vτ

n

)]

+
∂

∂τ

[
−µ0r(∇ · vi)− µi

4

(
−r

∂

∂r

(vr

n

)
+

1

g

∂

∂τ

(vτ

n

)
+ g2(1− ε2r2)

vr

n

)]

+ µi2εr
2g2 ∂

∂r

(
g
ve

n

)
+ µiε

2r2g5vτ

n

}

+ ê
g

r

{
∂

∂r

[
−µi

r

g2

∂

∂r

(
g
ve

n

)
− µi

2
εrg

vτ

n

]
+

∂

∂τ

[
−µi

1

rg3

∂

∂τ

(ve

n

)
+

µi

2
ε
vr

n

]}
.

Accordingly, ion viscous heating can be written as:

Πi : ∇vi = −µ0(∇ · vi)
2 − µi

4

[
∂

∂r

(vτ

n

)
+

1

rg

∂

∂τ

(vr

n

)
− g2

r

vτ

n

]2

− µi

4

[
∂

∂r

(vr

n

)
− 1

rg

∂

∂τ

(vτ

n

)
− g2

r

vr

n

]2

+
µi

4
rε2g2vr

n

(
∇ · vi + rε2g2vr

n

)

− µi

[(
∂

∂r

(ve

n

)
+ εg2

(vτ

n
− εr

ve

n

))2

+

(
1

rg

∂

∂τ

(ve

n

)
− εg2vr

n

)2

+
εg2

2

(
vτ

n

∂

∂r

(ve

n

)
− 1

rg

vr

n

∂

∂τ

(ve

n

)
− rε2g2vτ

n

ve

n

)]
.
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Components of the electron pressure tensor, its divergence, and electron viscous heat-

ing are given by:

Πe
re = Πe

er = −νe
1

g

∂(gje)

∂r
, Πe

τe = Πe
eτ = −νe

1

rg

∂je

∂τ

∇ · Πe = r̂

[
−νe

2εg

r

∂je

∂τ

]
+ τ̂

[
νe2εg

∂(gje)

∂r

]

+ ê
g

r

[
− ∂

∂r

(
r

g2
νe

∂(gje)

∂r

)
− ∂

∂τ

(
νe

1

rg3

∂je

∂τ

)]

−rgê ·
[
∇×

(
di

n
∇ · Πe

)
+ 2εg2

(
di

n
∇ · Πe

)]
=

− ∂

∂r

[
di

n
νe2εrg

3

(
∂je

∂r
− rε2g2je

)]
− ∂

∂τ

[
di

n
νe

2εg

r

∂je

∂τ

]

Πe : ∇ve = −νe

(
∂je

∂r
− rε2g2je

)[
∂je

∂r
− rε2g2je + 2εg2

(
vτ

n
+ g

di

n

∂Be

∂r

)]

− νe
1

r2g2

∂je

∂τ

[
∂je

∂τ
− 2εg3

(
r
vr

n
− di

n

∂Be

∂τ

)]
.

Finally, for completeness, we specify parallel component of current J‖ as:

J‖ =
br

r

∂Be

∂τ
− gbτ

∂Be

∂r
+ be

vi − nje

di

.

C.3 Simulating internal kink mode with two-�uid
extended MHD.

We have conducted two-�uid extended MHD simulations of the internal kink from

two distinctly di�erent initial conditions:

1. Magnetic �eld con�guration given by Eq. (4.3.11) and Eq. (4.3.12), which is a

priori unstable to ideal kink, with all current carried by electrons and with no

regard to resistive equilibrium conditions outside of enforcing radial pressure

balance;
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2. Con�guration of B-�eld, derived below, which is initially stable to kinking and

takes account of anisotropic resistivity and two-�uid e�ects to initialize the

system with only ẑ-directed electric �elds.

The �rst of the two was conducted to compare the results of a compressible ex-

tended MHD simulation with anisotropic temperature-dependent coe�cients and

non-uniform density to previously described analogous simulations with incompress-

ible resistive and Hall MHD models. The second, to simulate self-generation of a

kink-unstable con�guration and following instability dynamics from an initially sta-

ble con�guration. Below, we describe each set of initial and boundary conditions.

C.3.1 Initial and boundary conditions for simulating ideally
unstable internal kink.

In a system with �nite compressibility, the most important initial condition (IC) to be

satis�ed is the pressure balance. In the absence of Alfv�enic �ows, that is accomplished

by balancing magnetic tension and pressure gradient forces. For an axisymmetric IC,

the following equation has to be satis�ed:

−g2Be0
∂Be0

∂r
− g2Je

∂ψ0

∂r
=

∂p0

∂r
, (C.3.1)

where p0 = pi0+pe0 is the total plasma pressure. With the magnetic �eld con�guration

given by Eq. (4.3.11) and Eq. (4.3.12), radial pro�le of total pressure with peak axial

pressure of β0 is:

p0(r) = β0 − r2

[
3

20
ε4r8 +

5

16
ε2r6(1− ε2r2

s) +
1

6
r4

(
(1− ε2r2

s)
2 − 2ε2(2 + r2

s)
)

− 3

8
r2(1− ε2r2

s)(2 + r2
s) +

1

4
(2 + r2

s)
2

]
.
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We assume a uniform electron-to-total pressure ratio βe ≡ pe0/p0, so that pe0 = βep0

and pi0 = (1−βe)p0. In order to be able to assign an initial value for electron tempera-

ture dependent plasma resistivity at the singular surface, initial electron temperature

pro�le is taken as Te0(r) = 1+Tc(r
2
s−r2), where Tc is a positive constant determining

the temperature drop between the center and edge of the simulation domain. Then,

plasma density pro�le is calculated as:

n0(r) = βe
p0(r)

Te0(r)
.

For given values of rs and β0, we have chosen Tc to be such that |∂n0/∂r|r=rw = 0. We

note that this condition results in non-zero gradient of plasma pressure (and therefore

temperature) at the outer wall radius r = rw. All axisymmetric ion �ows are zeroed

out and initial current is carried by electrons.

A small (δvi ≈ 10−3) m = 1 incompressible perturbation to the poloidal ion

velocity �eld is added to this axisymmetric IC to trigger the m = 1 mode. We

speci�cally choose the perturbation to be incompressible, as otherwise we observe

a fast compressional mode become excited, resulting in very high frequency slowly

decaying oscillations in the solution, which are in no way related to the dynamics of

interest. Stream function φ corresponding to such an incompressible perturbation is

taken to be:

φ = δvi
r2

2
exp

[
−

(
αr

rs

)2n
]

sin(τ),

where α ≈ 1.− 1.5 and n ≈ 2− 4.

The desired boundary conditions (BC) for simulations of a single ideally unstable

internal kink event with mixing radius rM < rw are those that would avoid creating

thin boundary layers at r = rw, while providing a bu�er zone rM < r < rw in between

the reconnecting plasma core and the boundary of the domain. Since reconnection
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time of a single ideally unstable kink is much smaller than the resistive di�usion time

of the plasma column, here, we assume the in�uence of BC on the evolution of a

single internal kink event to be negligible.

In order to enable comparisons with previously described incompressible simula-

tions, electric �eld at the wall Eb is again taken to be purely axial by enforcing the

following BC:

Eb · ẑ = Eb = g(Ee + εrEτ )

Eb · θ̂ = 0 = g(Eτ − εrEe).

These are combined to give

gEb = Ee ⇒ ∂ψ

∂t
= Eb

gεrEb = Eτ ⇒ (C.3.2)

⇒ εrEb =
di

n

[
1

rg2

∂pe

∂τ
+

1

r
Be

∂Be

∂τ
+ νe2εg

(
∂je

∂r
− rε2g2je

)]

− Be
vr

n
+ η⊥

∂Be

∂r
− 1

g
(η‖ − η⊥)J‖bτ ,

and evaluated at r = rw. The following BC on plasma density, pressures and �ow

components at r = rw are also enforced:

∂n

∂r
= 0,

∂

∂t

[
∂

∂r

(pi

n

)]
= 0,

∂

∂t

[
∂

∂r

(pe

n

)]
= 0

vr

n
= 0,

∂

∂r

(vτ

n

)
= 0,

∂

∂r

(ve

n

)
= 0.

Another boundary condition on electron �ow (or current) along the boundary is

necessary for the system's time evolution to be uniquely determined, but no such

physically meaningful BC is presently known to the authors. For these simulations,

we have set [∂je

∂t
]|rw = 0.
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C.3.2 Initial and boundary conditions for simulating inter-
nal kink dynamics resulting from a self-generated kink-
unstable equilibria.

Unlike initial and boundary conditions used to simulate a single ideally unstable

internal kink event, much greater care is taken in formulating IC and BC for producing

boundary-driven self-generated internal reconnection events on the longer resistive

time-scale.

We �rst construct an axisymmetric con�guration of helical B-�elds such that tan-

gential electric �eld generated by the �nite anisotropic conductivity of the plasma at

the domain boundary has only an axial ẑ-component. We recall that η⊥ = 1.96η‖ ≈
2η‖ and use this approximation in the derivation below.1 In order to enforce E · θ̂ = 0,

a solution to the following equation has to be found:

η⊥J · θ̂ + (η‖ − η⊥)J‖b̂ · θ̂ ≈ η‖(2J · θ̂ − J‖b̂ · θ̂) = 0. (C.3.3)

It is easy to see that one such solution is given by ψ = 0 and Be = 1/(εg), so that

B = ê(1/ε) = (g/ε)
[
−εrθ̂ + ẑ

]
and J = −g2 [εrτ̂ + 2ê] = g3

[
εrθ̂ − (2 + ε2r2)ẑ

]
. In a

periodic cylinder with aspect ratio of 1/ε, such con�guration corresponds to a uniform

q-pro�le of q(r) = 1. However, since it is an axisymmetric con�guration where all

quantities are purely r-dependent, a con�guration with αε substituted for ε, where α

is an arbitrary constant, is also a solution to Eq. (C.3.3) and has q(r) = 1/α. Thus,

we derive a family of B-�eld con�gurations with uniform q-pro�les and satisfying
1The small deviation of the resulting E-�eld from being purely axial is self-corrected in the �rst

few time-steps of the simulation by slightly adjusting the magnetic �elds and non-resistive terms of
the Ohm's Law at the domain boundary.
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Eq. (C.3.3), given by:

ψ0(r) =
1− α

α

√
1 + α2ε2r2 − 1

α2ε2
(C.3.4)

Be0(r) =
1 + αε2r2

αε
√

1 + α2ε2r2
. (C.3.5)

Since we are interested in modeling the core of a tokamak and would like the initial

condition to be stable to ideal MHD modes, α is generally taken to be slightly below

unity to provide q > 1 at the boundary of the domain, while suppressing any pressure-

driven modes observed to arise when q ≈ 1.

Using Eqs. (C.3.4-C.3.5) and assuming the system to be in pressure balance, radial

pro�le of total pressure is derived from Eq. (C.3.1) to be:

p0(r) = β0 − 1

2α2ε2
ln (1 + α2ε2r2), (C.3.6)

where β0 is again the plasma pressure at r = 0, pe0(r) = βep0(r), and pi0(r) =

(1−βe)p0(r). As in the previous section, initial electron temperature pro�le is taken as

Te0(r) = 1+Tc(r
2
s−r2), plasma density pro�le is calculated as n0(r) = βe[p0(r)/Te0(r)],

and Tc is chosen such that |∂n0/∂r|r=rw = 0.

We now observe that, as follows from Eq. (C.1.9), perpendicular electric �eld is

induced in a two-�uid system with non-uniform pressures unless each species is allowed

to drift perpendicular to the magnetic �eld with its own diamagnetic drift velocity.

As we prefer to avoid imposing a priory charge separation, for the case of pe0/p0 =

βe = const, this results in perpendicular plasma current J⊥ = (nvi⊥ − nve⊥)/di

being divided between the ion and electron �ows according to ve⊥/vi⊥ = βe/(βe− 1).

However, we also note that non-zero ion �ows may produce non-zero contribution

of the ion �ow stress tensor to the radial projection of the momentum equation

Eq. (C.1.8), which has been assumed to be zero in enforcing Eq. (C.3.1). Therefore,
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the condition diJ⊥ = nvi⊥/(1−βe) is supplemented with r̂·∇ [nvivi] = 0 to determine

the initial ion �ow pro�le. Due to assumed axisymmetry of the initial condition and

near-incompressibility of the plasma with large axial B-�eld, we take radial component

of the �ow to be zero, vr0 = 0, resulting in the following pro�les of the other two ion

�ow components:

vτ0 = −di(1− βe)
εrg√

1 + α2ε2r2
(C.3.7)

ve0 = −di(1− βe)
g√

1 + α2ε2r2
. (C.3.8)

This completely determines the axisymmetric initial conditions. An m = 1 incom-

pressible perturbation of the ion �ow �eld, as described in the previous section, can

also be added to introduce small degree of asymmetry to the simulation at t = 0.

Boundary conditions imposed for these long time integration simulations are also

modi�ed from those used in the previous section. Since we continue to apply axial

Ohmic drive at the boundary of the domain, we retain the electric �eld BC expressed

in Eqs. (C.3.2). However, we modify the radial in�ow/out�ow BC by allowing for

plasma to drift in and out of the domain and �xing the normal gradient of radial ion

velocity to zero. We also modify the pressure BC by assuming existence of an in�nite

heat bath at the initial temperature at the boundary of the domain. Finally, we

change the boundary condition on helical electron velocity to Neumann BC. Perfect

slip BC are retained on tangential components of ion velocity and Neumann BC is

again assumed for plasma density. These are summarized as follows:

∂n

∂r
= 0,

∂

∂t

(pi

n

)
= 0,

∂

∂t

(pe

n

)
= 0,

∂je

∂r
= 0,

∂

∂r

(vr

n

)
= 0,

∂

∂r

(vτ

n

)
= 0,

∂

∂r

(ve

n

)
= 0.

BC outlined above appear to allow for time-integration over multiple resistive times
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without formation of particularly problematic boundary layers and are generally con-

sistent with conditions in the plasma core.
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