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Two-fluid tearing instability in force-free magnetic configuration
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In general, the linear two-fluid tearing instabilities are driven by shear Alf@#), compressional
Alfvén (CA), and slow magnetoacoustitlA) modes modified on short scales by two-fluid effects.
Previous two-fluid theories were devoted to either the hot plasma case where coupling of the SA and
the MA waves dominates, or to the cold plasma limgit; 0, where the instability is driven by the SA

and the CA waves. Taking into account plasma compressibility and the Hall term, we derive general
tearing equations that cover the two limiting cases and the transition between them. In particular, in
the hot plasma case, equations are derived that depend on thegacter3) and span the validity

of resistive to electron MHD. The important effect of resistive diffusion of the “out-of-plane”
component of the magnetic field perturbatiBlﬁ) is also included. Two new solutions where this
effect dominates are obtained within the scope of the hot plasma model. Whistler sgaliid is

found for the collisionless tearing mode instead of the kinetic Alfvén scajing’ at smallA’.
Previous calculations for coupling with the MA waves at lafgedid not take the diffusion oBﬁl)

into account. The joint effect of these factors is presented in the worR0@ American Institute

of Physics[DOI: 10.1063/1.1773778

I. INTRODUCTION viously investigated regimes of electron—ion decoupling as

o - _ _ . well as the new ones in which two-fluid effects are impor-

Tearing instabilities play an important role in fusion ex- tant. Two-fluid physics enters the equations via the ion skin
periments and astrophysical applications. They are thought t&epthdi:c/wpi and ion-sound gyroradius,=c./ wg;, Where

be responsible for a variety of physical phenomena including:s is the ion-sound speed anal, is the ion cyclotron fre-

fast reconnection of magnetic fields, relaxation to the Taylorquency calculated with the guiding magnetic field that is

state, the dynamo gﬁect, the formanon of magnetic _'Slandspresent in high-temperature plasma experiments but absent
and anomalous radial transport in stochastic magnetic fieldg, many theoretical treatments of Hall-MHD and collision-
At higher plasma temperatures, the viability of standard r'€less reconnection

sistive MHD model$? for the plasma dynamics becomes

estionable. This is especially important for tearing modes In the context of two-fluid theory, the Hall term by itself
quest s pecially Imp N9 ¢annot provide reconnection because the magnetic field is

where the spatial structure of eigenfunctions near the resq- . ) -
. . : ) . rozen into the electron fluid. The collisionless effect of elec-
nant surface(in the linear tearing laygris determined by L L L .
tron inertiade=c/ w,e and finite resistivityn are taken into

electron skin depth which is normally much shorter than ion- .
sound gyroradius, or ion skin depthc/w.. The smallness account as a means to break the frozen flux theorem. Their

S pi- : . .
of the electron skin depth in comparison with the ion scalesc,omlbmed ecfj'fects' ?re cr;ar?cterlzl(gd é)yp"tﬂf%le §2u+m20f/;[1he coll
leads to a decoupling of electrons from ions in the vicinity of >'01'€SS and resistive electron skin depins dg+ ¢ »/ 4y

the reconnection layer, speeding up of the instability and 4/N€re is the growth rate of tearing instability. Thus, finite-
broadening of the tearing layer. The enhanced growth rate iglectron—!nema modification of the pgrallgl Sp|tz-er resistivity
caused by fast, vortex-like motion of the decoupled electron&S t2Ken into account but no other kinetic physics related to
in the plane perpendicular to the guiding magnetic fieé _the Dopler :sh|ftkHz_)Te and associated electron_ Landau d_ar_np-
connection plane This provides enhanced transport of the N9 feat_ures are_lncluded. In accordance with t_h(_a_defmmon
magnetic flux toward the diffusive layer. This transport isOf & this factor isy dependent and, therefore, initially un-
much faster than in the single-fluid MHD case where elecknown. Without specification of its exact value just by using
trons are coupled to ions due to their jolt< B drift. Only ~ the smallness ob in comparison with the ion scalgg and
small perpendicular currents are generated by polarizatiofl, One can obtain the dispersion relation in termsaf and
drifts. then solve it fory explicitly. This allows us to cover both
Large-amplitude perpendicular eddy currents appear igollisionless and semicollisional regimes with one universal
two-fluid regimes due to electron—ion decoupling on short@approach.
scales. They are driven by magnetic field perturbations par- An extreme limiting case of the ion—electron decoupling
allel to the guiding magnetic fieltbut-of-plane component is described by electron magnetohydrodynamiEMHD),
that are small in single-fluid MHD, but are of major impor- where ion motion is ignored. In many cases of practical in-
tance in two-fluid theory. In this work, we derive the basic terest, intermediate regimes are realized where both electrons
equation that conneclﬁﬁl) with the perpendiculafradial)  and ions contribute to the dynamics of instability. In a con-
component of the perturbed magnetic field. It describes pretrast to complicated kinetic treatmengsee, for example,
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Refs. 3-6, relatively simple and effective fluid-based ap- driven by the equilibrium diamagnetic flows are ignored.
proaches were developed for tearing instabilities in earlyThey are considered, for example, in Refs. 19 and 20.
1990s. The corresponding fluid-based treatments can be sub- The perturbations of ion and electron pressures are es-
divided into two groups. The first grougsee, for example, sentially nonuniform. They are driven by plasma compress-
Refs. 7-1} is devoted to the cold plasma mod@=0. In  ibility, V-v#0, and are treated to be either adiabatic or iso-
this limit, all temperature-dependent terms are dropped, anthermal. Plasma dynamics is described by the momentum
the dynamics of the instability is determined Byandd,. At equation(the sum of ion and electron equations of mojion
larged;>L, whereL is the scale of the equilibrium magnetic and generalized Ohm’s laelectron momentum equatipn
field, ion motion can be ignored, and the instability exhibitswithout viscous and gyroviscous effects. Using the small pa-
the properties of the pure electron whistler mode. We wiIIrameterG:B;O)/B(zok1, a vorticity equation is derived as
refer to this case as a whistler-mediated tearing instability. well as an induction equation for a parallel component of the
The second group is devoted to an opposite limit of hotyector potential. The induction equation has the same struc-
plasma, where thermal pressure and particle gyromotion deyre as in resistive MHD theory with the replacement
termine the dynamics of the instability. This case is referred_,ve, reflecting the fact that the magnetic field is frozen in
to later to as a kinetic Alfvén-driven tearing instability. Gen- the ~electron fluid. Making the decomposition,=v
erally speaking, the ion response to electric fields with trans= (1 /ng)j yields the Hall term in the induction equation. An
verse scales shorter than the ion-Larmor radius should bgmpere’s law is used to expregs as a function of the
described by the kinetic theory. However, single-fluid MHD q_of-plane perturbatior,= Bﬁl). In order to close the sys-
calculations with the Hall terfi as well as two-fluid equa-  em of equations, we derive the relationship betwBgand
tions of the Braginskii type with plasma compressibifity e perpendicular componeBt. This equation is the main
show that the joint effect of the Hall term and plasma com-g it of the paper. It is derived in Sec. Il by expressing the
pressibility yields the results similar to kinetic ion plasma compressibility¥ - v from the perpendicular compo-

17,18 S . .
models.”™ Some qualitative arguments in favor of this o4 of the induction equation and substituting into the equa-
agreement are given in Sec. Il. Various linear regimes of th%on for V-v which follows from the plasma momentum
“hot” tearing instability were analyzed in Ref. 1Bot elec- equation

trons and cold ionsin Ref. 13 within the scope of the four- In Sec. lll, the tearing equations are applied for the case

. 14 . . .
If;?)rryo'?ﬁgy ?/ri]eo:(;ntr?eefg.;r%)?/vtvﬁlﬂr]attke]eaféjetcr)::atv;ltorj::lﬂjdremgtiheOf waves propagating in a uniform magnetic field. The analy-
eigenfunctions in terms o, p,, ¢, and stability factorA”. sis shows that the two-fluid tearing instability is driven by

The stability factorA’ is a measure of free energy available shear Altven(SA), compressional AlfvenCA), and slow

for resistive reconnectiohlt is calculated from the solution magnetoacousti¢MA) waves modified on short scales by

of the marginal ideal MHD equations in the outer region Thetwo-ﬂuid effects. This classification of the modified waves is
) based on their behavior in the long wavelength MHD limit.

quantity A’ is an asymptotic matching parameter defined as . . .
the jump in the logarithmic derivative of the radial magnetic .. In Sec. IVA, the gene.rall set of tearm_g equations Is sim-
plified in the cold plasma limit, when the time of propagation

field across the reconnection layer. We will considéras . . ;

given and analyze the structure of the inner layer in the IimitﬁOf the ion-sound Wave across the regonne_c_tlon layer is much

of small and large\’. The two-fluid effects and ion—electron 'O"9€" than ,the, time scale of the mstat-)lhty..The reduced

decoupling are important at,d;> 8, otherwise the single- equations coincide vy|th the.equauons derived in Ref. 11, and
corresponds to the interaction of the SA and the CA modes

fluid MHD theory is valid. These basic inequalities are taken~"" )
to be satisfied in the following calculations. while the MA mode is decoupled. On short scalleg> 1,

Two different models of cold and hot plasma and the gaﬁhe CA branch cpnverts into the electron whistler mode.
between them raise a question about their interrelation and N the opposite case of hot plasma, the ion-sound wave
conditions of applicability. This motivated our interest in the Propagation time is much shorter than the time scale of the
construction of a more general theory that covers both casd8stability. It provides equilibration of totaimagnetic +
and describes the transition between them. We analyze sldBerma) Pressures across the layer and, correspondingly,
geometry for a force-free plasma equilibrium with uniform Yields B,/ B\ = 8. This situation is discussed in Sec. IV B,
density, temperature, and pressure profiles for electrons ar@nd is of the main interest for magnetically confined plas-
ions, assuming that the equilibrium magnetic field consists oMas. The two-fluid tearing instability is driven by the SA and
small shearing componerBE,o)(x) and large guiding field the MA modes while the CA mode is decoupled. lon—
B<ZO>. The perturbed quantities are taken to be functions of electron decoupling on short scales leads to the mode disper-
andy. Assuming no equilibrium pressure gradients, we treaion typical for kinetic Alfvén wavesw kjkps. A formal
the absolute value of the pressure as an arbitrary paramet@xpansion of the general equation 8y at y<cJ/L yields
and, correspondingly, varg in a range @< 3<. Such an tearing equations similar to those analyzed in Ref. 13. They
equilibrium may exist locallywithin a certain radial exten- are derived in a more general form with the dependencg on
sion) or can be supported by distant material walls. Thisin the form3/(1+p) that is universally applicable for wide
allows us to exclude the effects of diamagnetic flows assumrange 0<g <. This important property of the hot plasma
ing that y> w«;, Wherew.,; are electron and ion diamag- case was first treated in Ref. 21 in terms of the universal
netic frequencies. Thus, we study two-fluid effects caused bgcaleR=p.d;/\pZ+dZ.
the ion—electron decoupling, while the two-fluid effects Our equations also contain the important effect of diffu-
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sion of the perturbedB,. This effect was not properly ac- IPie

counted for in Ref. 13 where the process of coupling of the ~ — * (Vie' V)Pie* %iePieV  Vie=0, (6)
SA and the MA waves was investigated at fingewhen it

effectively reduces the out-of-plane componBptind, thus, where y,=7,=5/3 for anadiabatic equation of state of
suppresses two-fluid effects. This mechanism is reconsideredy,=1 if the plasma is isothermal.

in Sec. V, which is devoted to the solutions of the tearing  Under the condition of quasineutrality,=n;=n, electron
equations in the hot plasma case. We show that diffusion ofind ion continuity equations are identical to each other and
B, leads to an additional suppression of the two-fluid effectsexpressed by the plasma continuity equation

At large values of the stability factoh’, the contribution n

from this mechanism is equally important with the contribu- —+V.nv=0. (7)
tion from the MA wave and yields an additional reduction of Jat

the growth rate by the same factor as calculated in Ref. 13, oqer to close the equations we use Faraday’s induction
At small A’, it is shown that due to the narrow width of the

: e equation
tearing layer, the enhanced diffusion Bf leads to the con-
version of the kinetic Alfvén mode into the whistler- 10B

. . S - VXE=--——. (8
mediated regime of tearing instability. c It

In our scheme of calculations, the functionandj in (2) are
Il. THE GEOMETRY OF THE PROBLEM AND BASIC presented in terms d from (1) and (3) and the resulting
EQUATIONS expression foE is substituted in8), forming equations for
two components oB (the third component is calculated
The two-fluid approach is based on the fluid momentunfrom V-B=0). This procedure is equivalent to the approach

balance equation based on vector potential presentation for the electric field,
dv B2 ) 1 1A
—=-V|p+—|+—(B-V)B, 1 E=-V¢-—7, 9
pdt (p 8w 477( ) @ ¢ c Jt ©
and the generalized Ohm’s law where the perpendicular components of the magnetic field
1 1 Vp., medve . are expressed as a functionAf or, equivalently, in terms of
E+-vX B:—cj XB-—-——+1j, (2)  the flux functiong.
c ne ne e dt

We restrict our consideration to the simplest fluid equa-
which describes the balance of the electron momentum. Ifions by ignoring ion gyroviscosity ifil) and(6). Within the
this work, viscous effects are ignore¥,-7,=0, for both  scope of this approach, the ion-sound gyroragiyappears
electrons and ions. lon velocity is associated with the fluid in the final equations due to coupling of the Hall term and
velocity v (center of mass velocijyv;=v. To leading order the effect of plasma compressibility in a maner similar to that
in the ratio of electron to ion mass, the electron velocity,described in Ref. 15. However, we allow for arbitrarily large
Ve=V—j/ne is expressed in terms ofand current density B and take into account the effect Bf diffusion. In the hot

given by the Ampére’s law, plasmas limit, our equations are also similar to the linearized
c version of the four-field model investigated in Ref. 13 and
j=—V XB. (3 give the results that are in reasonable agreement with corre-
4m sponding kinetic treatmenfs.’ In these calculations, two
The derivativedv,/dt on the rhs of(2) is presented as a Igyer. sgales are accountgd for; an outer layer where ipn mo-
function ofv andj, tion is important and an inner region where electron inertia
) ) . . ] and/or resistivity is accounted for. Good agreement between
dve _dv _ WV )J_ _ (J—V>v A (J_V)J_ the two-fluid theory and kinetic calculations wheyis larger
dt dt ne \ne dtne \ne /ne’ than é is due to the fact that in the inner layer the electrons

(4) are decoupled from the ions and hence the slow ion motion
can be ignored. In the outer zone, the length scales of the
Although (4) is multiplied by electron mass, and, there-  solutions are larger than the ion-sound gyroradius; hence a
fore, makes a small contribution @), it plays an important  f|yid theory approach is applicable.
role in high-temperature plasma, providing the mechanism of  since the radial width of the tearing solutions is much
collisionless reconnection. As it is shown in Appendix A, the shorter than the p|asma radiUS, one can treat the |ayer prob_
partial time derivative is the dominant term(#) and, there-  |em in slab geometry. We introduce an orthogonal coordinate

fore, we take system withx=r —rg oriented in the direction in which equi-
dv g (] librium quantitatives vary ang, z oriented along sheared
e .y . .
dt == E(ne)' (5 and guiding components of the unperturbed magnetic field,

respectively. The origin of the reference frames0, is

Fluid motion is driven by the magnetic and plasma pres{placed at the resonant surfajthe equivalent ofj(rg)=m/n
sure gradients. Variations of ion and electron pressures afer a magnetically confined devige-or example, in the case
assumed to be of the form of the reversed-field pinc{RFP), them=0 mode is resonant
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on the resonant reversal surfagé&g)=m/n=0. Then, the kzvg(x) 5
poloidal magnetic fieldB, represents a guiding magnetic '® T2 B,- &°V°B,
field while toroidal fieldB+ corresponds to the sheared com-
ponent.

In the equilibrium state, the plasma is at regf)=0,
with uniform and constant density®, pressuresp, and
total pressurep®=p+p®. This force-free configuration,
jOxB©@=0, is described by the equilibrium magnetic field,

21 (0)
d’B ) 6

=BV .v- aH<B<y°>(x)V2|3x -0 B

where V2=d?/dx>-k?, the Hall constant is defined byy
=c/(4mer?), *=d’+ic?n/(4mw) describes the combined
collisionless and collisional skin deptlde;=c/wg;, “’;Z:ai
BO(x) = e89(x) + eyB(yo)(x), (10) :4Z6$2n(0)/ Me;i- Th_e_ term _propt()Or)ti_onaI to v2(x)
=B, %(x)/(4mp'?) originates fromikv,B,” in (A7), whereu,
WhereB(ZO)(x) is the guiding magnetic field ar@o)(x) isthe IS expressed interms &, from (B7). Following Ref. 22, we

sheared magnetic field. As an example of théependence Use€ EQ.(16) to accurately treat plasma compressibifity v
of B(O)(x) we will use the sheet pinch profile in order to derive the universal set of equations applicable
y 1

for arbitrary 8.
X Coupling between magnetic field and fluid motion re-
B(yo)(X) = B§,°°)tanh|:, (1) sults from the velocity-dependent terms(irb) and(16) pro-
portional tov, andV -v. We use Eq(16) to eliminate terms

however, the results obtained can be easily modified foProportional toV - v in subsequent equations. This allows us

other cases. The force-free equilibrium conditiB{ﬁ’)z(x) to form a closed set of equati?ns fog, B]go ;’:\nd B, These
+B;°)2(x):B§:const leads to the dependenceBé‘f) onx, equat!ons represent a genera |za_t|on of the resistive MH_D
equations for the case of two-fluid theory where magnetic

dBéO) B(O)(x)dBi,o) perturbations along the guiding fiel, are important. In-
=- y(o) , (12)  stead of using equations of motion fog andv, [see(B5)
dx B’ dx and(B6)], we find it convenient to solve equations ffv,
(the vorticity equatiopand plasma compressibili§y - v. Fol-
lowing calculations outlined in Appendix B, the desired

and, correspondingly, the equilibrium current is given by

tions are given by
B(O)(X)) cd (0) equal
O =|e+e g | 13
170 (ez % BY /4w dx (13 2<V2v —EV-V>
k X dx
We will characterize the value of the sheared component 1 4280
BS”(X) by the ratioe= B;w)/ B.”(0). In accordance with the = (0)<B(y°)(x)V2Bx— —LBX), (17
equilibrium condition, e encompasses the ranges@<1. 4mp dx?
The basic equations are derived in Appendices A and B for
the general case of arbitrary and dependence(yo)(x). —iw<1+&V2>V v
However, in the case of practical interest guiding flaﬁ is w
strong,e<1, and, correspondingly, the dependeBéoé(x) is in(0)
: L ) 1 o ooy 4 By (X)dB
weak so that we will neglect smallvananonsB)f and treat :—4 o VB, B+ K dx
it as a constant. For the same reasons one can ignore the P X
small sheared component of the equilibrium curréﬁ(x) ik d§(°)
assuming that the unperturbed current is oriented inzthe * 2mp©@  dx By, (18

direction. The corresponding simplifications are done in the

final equationg15) and(16) by ignoring the terms of order Wwhere the ion sound speed is given kf=(y.TY

O(e). +yiTi(°))/mi. We use(16) to substitute for the plasma com-
Using the above equilibrium profiles the equationspressibilityV-v into (17) and(18). The substitution oWV -v

(1)«7) are linearized with respect to small perturbations ofinto (17) yields the vorticity equation with the effect of

the form plasma compressibility taken into account. The substitution
into (18) leads to a basic differential equation that does not
B(x,y,t) = BO(x) + B(x)exp(— iwt + iky), depend orv and describes the relationship betwenand
V(X,y,t) =v(x)exp(— iot + iky). (14 By

c? 2 k22(x o
The vectork =ke, is oriented along to satisfy resonant con- (1 + w_szvz) L}?(B’z(l - ;z( )) - 52V25z) - U_2H<B§/0)
dition F(0)=0 atx=0, whereF(x)=k-B©(x), and all pertur- A A
bations are uniform in the direction (9/ 9z=0). After trans- X (X) VB, ~ dZBfIO)B )}
formations decribed in detail ifA3)«A7), one obtains ode X
equations for the perturbed quantitiBgandB,,

_ g, B0 dB,) | 2ikdB)
- 2 - 2n \RO) =-VA B+ "0 M) By, (19)
—iw(By— 8°V?B,) = (ikvy + ak?B,)B\” (15) kBY dx/ BY dx
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where va =B/ (4mp©@)2. Then, Eqs.(15~(17) and (19)  the compressional Alfvén wave. Since the CA mode exhibits

constitute a closed set of equations f&y;, B,, andv, that the properties of whistlers fok;#0 andkd>1, we will

describe the general case of two-fluid tearing instability.  refer to this regime as the cold plasma case, or whistler-
In Eq. (19), the effect of plasma compressibility is es- mediated tearing mode.

sential. This equation will be simplified in two limiting cases The terms with plasma compressibili¥y- v are present

of small and large values ¢€2/ »?) V2. Applying (19) to the in the induction and vorticity equatiori¢6) and(17). If the

case of slow growing tearing modes withw/c,<1 (hot  guiding magnetic field is strong, plasma flow can be treated

plasma limiy, yields 1+Hc?/w?)V2— (c2/0?)V2 We solve as incompressible in the vorticity equati@hi). This is mo-

the resulting equation using boundary conditiong-at+o,  tivated by noting from(16) that Vv« 1/B(ZO), and, corre-

and take into account the tearing parity of eigenfunctionsspondingly, the incompressible approximation is applicable

B,(x) is even inx and B,x) is an odd function ofx, at a strong enough guiding field. Making use®®) and(22)

dB,/dx(0)=0 andB,(0)=0. The last two terms on the rhs of allows us to preser¥ - v in two forms related to the hot and

(19) violate this symmetry, showing that the general solutioncold plasma approximations, respectively,

has no parity. Since these terms are ordetl, they can

2 2
create only small perturbations of the opposite parity so that Vv .v=- iwv—’é\%, V .v=-— iU—AVZ%_ (23)
the resulting contribution from these corrections(1®) is Cs B; o B

proportional toe? and, therefore, can be neglected. Solvingthe magnitude oB, in (23) depends on the approximation
the resulting equation is equivalent to solving an equation ofgnsidered. For example, in the cold plasma case with small
the form V2f=(d?/dx*~k?*f=0. Noting thatf is odd, the A’ the eigenfunctior, is determined by the balance of the
solution is f(x)=C(|x|/x)exp(~k|x|). Using continuity atx  ths of(22) and the term¥2B, on the Ihs of this equation. In
=0 requiresC=0, or, equivalentlyf=0. Thus, the leading- he hot plasma case with relatively small the terms pro-

order solution to(19) is portional toB, dominates on the lhs qR0). Requiring the
ﬁ ) kzvi(x) ) o im0 , smallness pfd/de "V in comparison with the r_hs of17) _
5B, +B|1-—7%— V2B, B, (x) VB, yields a universal condition for the incompressible approxi-
Cs @ @ mation in the vorticity equation
o8, d
— = wpj
0 BX> =0. (20) &<k(,3+ 1)%. (24)
The guiding fi?|dB(zo) enters(20) via the factor(1+879)B,,  Applying (24) for the hot plasma case shows that this ap-
whereg is defined as proximation is valid at the relatively weak restriction
2 <L/ (pd). In the cold plasma limit, this condition is more
B=—. (21 rigorous so that the effect of compressibility requires more a
2 . . . . .
UA detailed analysis, which will be presented in a separate paper.
This differs slightly from the usual definitiop=8mp/B? In the induction equation16), the small termv'-v is
by the factorye,/2. multiplied by the large factoB,”, so that the the applicabil-

Equation(20) describes quasistatic equilibration of mag- ity Of an incompressible approximation {16) requires an
netic and thermal pressureﬁzo)BZ/4Tr+p:O, wherep is ex- addltlona_l analysis. For this purpose, itis suitable to (1
pressed in terms oV -v, which, in turn, is calculated from frogn ;’Vh'Ch tf;ezunzknown termV-v is excluded. Atg
the induction equatiorf16). A small part of the magnetic =Cs/va>1>w’L"/vj, Eq.(19) is equivalent to(20), where
pressureB;O)ByMw, is proportional toe? and, therefore, ig- the fII‘SF te_rmBZ/,_B, on th.e lhs is |gno_red. The_ resulting equa-
nored due to the arguments mentioned above. As it is show§i°" coincides with the incompressible version(a) (with
in Sec. Ill, Eq.(20) describes two-fluid kinetic Alfvén and ¥ V=0). This leads to the well-known cqnclus_ﬁ%r? that
magneto-acoustic waves while the compressional Avaérjjhe incompressible approximation in the induction equation

wave is decoupled. We refer to this regime as the hot plasmi§ Valid at3>1. We will show in Sec. V that the area of
case, or kinetic Alfvén-driven tearing instability applicability of an incompressible approximation in the in-

In the opposite limit of cold plasma, one can neglect 1du<?Lion equation ,iS wider. .Indeed, at small enough A2’5
+(c2/w?)V2—1 on the Ihs of(19) and keep the ternv28, <\B<1, the tearing layer is so narrow that the tesfiv2B,

on the rhs of this equation, yielding another relationship, dominates on the Ihs afl6) making the effect of plasma
compressibility unimportant although<1 in this case. At

‘“_Z(B - £V?B) + V2B smaller, VB<A'S$, the term -B(ZO)V -V becomes important.
vi ° ‘ It compensates all other terms on the rhg16), and a re-
i B sidual effect determines a smé#lj« 8. A universal equation
= %(B(yo)(x)VZBx— E(zLBx)' (22)  valid at arbitraryg is given by(20).
A

lll. LOW-FREQUENCY WAVES IN UNIFORM

where a small contribution from coupling with the magneto—,vIAGNETIC FIELD

acoustic wavek?2(x)/w?, is ignored. Equation22) de-
scribes a nonvanishinB, as 8—0. In this case, magnetic Different regimes of two-fluid tearing instability de-
pressureB(Zo)BZMw is balanced by the ion inertia as it is for scribed by(15)—17) and (19) can be classified by applying
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these equations to the case of plane waves propagating in 3|
uniform magnetic field. Without loss of generality, we will

use the same geometky=(0,k,0) and B©=(0, B(°c 0>) (a) WHISTLER
Introducing an angled betweenk and B© ylelds B(O
=B© sin 9,B”=B©cos ¢. Sincek is oriented along, one
can dropx derivatives in(15—17) and(19). SubstitutingB,
andv, from (19), (17), and(15) gives a dispersion equation
that determinesw(k, §). Similar two-fluid dispersion rela- 2|
tions were analyzed in many publicatiofsee, for example, MA SA
Ref. 23. A suitable form(25) is found below by introducing 1|
an effective phase velocity(k) = w(1+k?d2)¥?/kv, and an
effective beta B=(1+k?d2)B, where va=B/(4mp©®)*2
Then, the variable¥ andk are separated so that the Ihs of 0
(25) depends orV while the rhs is a function of, \/W

cos §  sin’ 6 ) _ K’d’cog 0
V2o VE-B ) 1+

Rigorously speaking, the lhs @25) depends also ok via 0r (b)
the factorgy. For the rangéd,=< 1, this dependence is weak
and can be ignored by putting,= 8. This is assumed in the s}
ensuing discussion. However, this effect is important and
will be taken into account in Sec. V for tearing modes at
smallA’.

Plotting the lhs 0f(25) as a function ol and intersect- MA KINETIC
ing it with the horizontal line that corresponds to the Hall 4| ALFVEN
term on the rhs yields three branches of oscillations illus- MODE
trated in Fig. 1. At smalk— 0, solutionsV(k) tend to their al
limiting valuesV(0), which correspond to phase velocities of CA
single-fluid MHD waves; shear Alfvé(SA), compressional .

Alfvén (CA), and magneto-acoust{®1A). These values are 1 2 4

given by the zeros of the Ihs @25). At large k, the modes \/W

are coupled and modified due to the presence of the Hall

term. We will label the modified branches in accordance with NORMALIZED PHASE VELOCITY  V

the above classification in a single-fluid MHD limit & [, 1. pependence of the Ihs of the two-fluid dispersion relat&8) on

—0. the phase velocity. Intersections with the horizontal line corresponding to
The slopes of the curves in Fig. 1 depend on interrelatiorihe Hall term on the rhs of this equation yield three branches of oscillations

[the magnetoacousti@MA), shear(SA), and compressionglCA) Alfvén
between cds¢ and B Flgure 13) illustrates the case mode$ modified on short scales by the two-fluid effecta) The case of

Br<cog # when phase velocities of the MA and the SA B=B(L+Kd?) < cog 6. (b) The caseB,>cos .
waves decrease with the increaseoln this case, the maxi-
mum of V4 andVgy are achieved at smadlwhen two-fluid
effects are unimportant.

In contrast to this, aB,>cos 6 the SA curve changes
its slope and the SA phase velocity becomes a growing func-
tion of k [see Fig. 1b)]. Starting fromVga(0)=cos 6 at k
=0 the phase velocitysa(k) tends toB, whenk— ce. In the
intermediate range co¥<V?< g3,, an analytic solution for
the SA branch is obtained by simplifying’- 8,— -8 and
dropping the term cé9/V?<1,

(V2- c0§0)(1 - (25

6}

to the induction equation due to the ident®X V p/n©
=0.
At large B> 1, the second term i(26) does not depend
on By and represents a pure electron response with the whis-
tler dispersionw <k Adik. We will show in Sec. V that i\’
is large and the tearing mode is localized on a wide scale
=ps, then starting from some criticg@., the effect of cou-
, ki cog ¢ Kd? B, pling with the MA wave slows down the instability. At small
“SAT T LR * 1+K221+8,) (26)  A’, when the tearing mode is localized on a short scale, the
° ¢ effect of the MA wave is unimportant, and the whistler-
At small <1, Eq.(26) represents the two-fluid MHD ana- mediated reconnection can be achieved at the soft conditions
log of the kinetic Alfvén wave withw=kpapk. The ion-  g<1 andd,> é. This is possible due to the dependenc@pf
sound Larmor radiusps=d \,8 appears in26) due to the onk that can providg3,>1 at B<<1.
Hall term and plasma compressibility. The appearancg;of As itis seen in Fig. 1, the phase velociyk) of the MA
is often associated with the electron pressure gradient term wave decreases with the increasekofAn asymptotic solu-
generalized Ohm'’s lawR). In our case of force free equilib- tion for this low-frequency mode is obtained frqi25), sim-
rium, the electron pressure gradient term does not contributglified at V2< B,,co$ 6. This yields the standard MHD ex-
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pression for the frequency of the MA wave modified on shortthat is identical ta25), but with 8,=0. This corresponds to
scales due to two-fluid effects, the MA mode being decoupled. Hence, it does not play a role
12co2 0c2 in the reconnection layer. Within the scope(80)—31) the
ﬁAA = —252 (27) tearing instability is driven by the SA and the CA modes
1+28+Kkps modified on short scales by the the Hall term. A short-

The asymptotic solution for high-frequency CA wave is wavelength continuation of the CA mode represents a pure

obtained by neglecting c®% in the first brackets on the rhs €l€ctron whistler mode28), which can drive a fast whistler
of (25) and B, in the denominator in the second bracketsMediated tearing instability.

(V2>co2 6,,), _Electron MHD (EMHD) vv_histler tearing equati(_)ng_are
) 5 o derived from(29)—(31) by making use of the formal |Im|ti]g
W2 = KA ( k*d? cog 9) (2  lransitionm —ce. lon mass-dependent parameteks: Vm
CAT 1 +12d? 1 +k?d? and 7, \Vmy; determine the ordering of this transition, while

- . . the growth rate is independent of the ion mass. Considering
Similar to (26) at B,> 1, the second term i28) describes . - ; 1 )
the pure electron response with the typical whistler depengsl) at 7, — and keepingy=const, yields o« 7, 0. Put

. ting v=0 in (30) gives Eq.(33), while Eq. (32) for B, is
dencew = kupdik. In contrast to the SA mode, this response : . . 2
within the scope of the CA mode does not reqe>1 and ?hbﬁr: ?)flgg;j ropping the term proportional to(##¢)” on

can be achieved even @& =0. However, the frequency of

whistlers tends to zero on the resonant surfage0, causing 2 G [ 00 uwo2 ZB:(0>
this branch to exhibit the properties of the CA mode with non B,~ &°V’B,= VTa By (X)VBy dx@ By ). (32

zero frequencyw=kv, determined by the guiding field and

ion mass. This suppresses the out-of-plane perturb@jon 5 K2 ©

and slows down the instability. In order to realize the condi-  Bx~ &°V°B,= 7_7_By (X)B;. (33

tions of whistler-mediated reconnectiad), should be much é

greater than the scale of equilibrium magnetic fiejbther- ~ Equations(32) and (33) are written in the form similar to
wise the instability develops in the regime of single-fluid Ref. 10 and do not depend on ion mass. They represent the

MHD. whistler-driven tearing instability first considered in Ref. 7.
In accordance with Ref. 8, the growth rate scales at siall
IV. TWO-FLUID TEARING EQUATIONS as y,a/ ke di(5A")% The large terme1/(yr,€)? in (29) pre-

vents accessibility to the whistler regime of instability in
plasma with a strong guiding field and small This reflects
the effect mentioned in Sec. 11l when ion motion in the com-
The set of tearing equations related to the cold plasm@ressional Alfvén wave reduc&s in the vicinity of the reso-
case,yl/ >c; (I is the shortest spatial scaleonsists of Eq. nant surfacex=0 and turns the instability into the single-
(15), (17), and(22). Introducing the growth rate of the pure fluid MHD regime. To overcome this barrier, the tearing
growing tearing modey=—iw and dimensionless variables instability should be fast enouglyr,e> 51 Substitutingy,,

A. Instability driven by the SA and the CA modes
(cold plasma case, B=0)

U=ivy/vg, By, — Bx,z/B;m)= Ta=L/vg, X—=XIL, dgj—dg;/L,  in this inequality shows thad; has to be much greater than
8—8IL, k—kL, B”()—B’(x)/B}’=tanhx where v,  the external scalk, c/wy>(m/mg)*L/ €2 Generally this
:B;m)/(477p(0>)l/2, yields these equations in the form is not satisfied in magnetically confined plasmas. Note that
the tearing equations and, correspondingly, the growth rate
B,- (52+ L)Vszz i(B(O)(x)VZBX does not depend oain both limiting cases of single-fluid
7275162 YT\ MHD and a pure electron whistler mo@&2) and(33). How-
2B ever, this dependence is present289)—(31), and can, there-
- E(zLBX>' (29)  fore, be important in the transition between the regimes.
. B. Instability driven by the SA and the MA modes
%(BX - 8°V?B,) = (v + dikB)B (%), (30)  (hot plasma case )

The set of tearing equations in the hot plasma cese,
VTacs 28 o , > 9L, consists of Eqg.15), (17), and(20). We will deal with
TV v= (E@LBX -B,’(0V Bx), (31)  the dimensionless version of these equati@es Sec. IV A,
where Eqs(15) and(17) are represented h80), (31) while
where, in accordance witt24), the effect of plasma com- Eg. (20) takes the form
pressibility is ignored in the vorticity equatiqt7). The sys- 1 KBO(x)?
tem (29—«31) coincides with the equations derived with the BZ<1 +=+ —L) - 8VB,
use of a different approach in Ref. 11, where the transition 7272
from the single fluid to the Hall MHD was investigated d 20
within the scope of the constaritapproximation. = —'<B(y0)(X)VZBx— E(ZLB)()' (34)
Applying Eqg. (29)—(31) for the case of waves propagat- 7a
ing in a uniform magnetic field yields a dispersion relation Equation(34) corresponds to the quasistatic regime of tear-
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ing instability when the totalmagnetic + therma) pressure V. TWO-FLUID TEARING INSTABILITY IN HOT
is equilibrated across the layer. The teBw 8 originates PLASMA REGIME

from the term with plasma compressibility in the induction . . -
P b y The above analysis describes the transition from the

equation(16). As B grows, Eq.(34) describes the transition . o . o o
from compressible to incompressible versions of this equa\—’vhIStIer to the kme_tlc Alfven regime in tgrms of Fhe stability
tion. Dropping the term$®V?2B, responsible for the diffusion factor A. We now introduce threg .possmle regimes that re-
of B, and simplifying 1+1/8=1/8 at B<1, the system flects the dependence on the ggldlng magneUc field.

(30), (31), and(34) coincides with the equations obtained in . At small beta,,8<me/m'(reg|me A, ion-sound gyrora-
Ref. 13 from the four-field model. dius ps<< 8 and, correspondingly, the electron and ion flows

: led on the tearing layer scaleyielding the single-
Applying (30), (31), and(34) for plane waves propagat- are coup . 2 -
ing in a uniform magnetic field shows that in the hot plasmaﬂu'd MHD regime of tearing |_nstab|I|ty. _In ”;e case of small
case, the instability is driven by the coupling of the &%) A'o<l, _the width of th(_a_teanng I_ayer & .5 <4 and, cor-
and the MA(27) modes while the CA modé8) is decou- respondingly, the condition of single-fluid MHD becomes

- - . stronger.
pled and plays no role in the reconnection layer. The mair? - _ 12 1a
driving force of the instability is the SA mod@6), which is . At finite b?ta’me/m‘<'8<'3°'_(5/d‘) = (me/my) " (re- .
a two-fluid analog of the kinetic Alfvén wave. A& — x (at gime B), the |o_r1-sourjd gyrorad|us.exeeds the electron skin
kd,— ), the SA mode exhibits dispersion properties Ofdepth,ps> d (this particular expression fgs, corresponds to

, .
whistlers so that one may expect a whistler-like behavior f0|Ihe case of larga”). EIectrons_ and ions are decc_)upled on a
the tearing eigenmodes. spatial scale smaller than the ion-sound gyroradius, however,

Maﬂng limiting transitionsB—c and m,— o with 7, effgcts c;f tTg I\/3I,2 w_?%/e tcoupllngll ang, d|ﬁgst|on fatre st b
ocd; % Vm—o allows us to drop the-dependent term in unimportant in(34). The tearing layer consists of two sub-

(30) and the terms,/ 8 andk?B2/ 1272 in (34). After these layers: a narrow diffusive layer of the widtsI'5, where

. . y a electron diffusivity is important, and a layer specific to two-
transformations equation(80), (31), and(34) reduce to the fluid theoryT 8<|x| = p, with ideal flows of decoupled elec-
EMHD whistler equations(32) and (33). Using its ry =Ps P

. 115 .
solutiond® at smallA’ §<1 yields the conditions of validity O and ions:™® Here we use a normalized growth rate,
of the above transformations. According to Ref. 10, the VYTa
width of the tearing layer is$?A’, so that thesd?B,/dx? I'= ek’ (36)
term dominates on the |hs ¢84). Taking this into account, s
equating the rhs of34) and(31), and integrating twice over At small A’, the value ofB. is determined byB.=(A’d)%

x yields The two values fo, are well matched ah.6*3pt*=1, or,
equivalently, atA’6%4dM*=1. The factorA/ is a character-
B, = (di/5k)v. (35) istic value of A’ at which transition between the limiting

cases of small and largk’ takes place. The value df is
Comparing the terms and kdB, in (30) shows that the approximately equal té* at very smallg (in the resistive
=0 approximation is valid wheu,> §. This criterion also MHD limit), then gradually decreases asA;
allows us to drop the MA wave term relative B diffusion =& %(8/d;)*g7V¢ in the rangem,/m;< <. and reaches
in (34). The termB,/ 3 in (34) can also be dropped i&’6  its minimum value A, = &5 %(5/d,)"*= 5 (m,/m)*® at g
<\B. Therefore, at smalB<1, the whistler-mediated re- > B.. This is just slightly(approximately 2.6 timgssmaller
gime of instability can be achieved. Indeed, according tahan the value\ = 5 in the single-fluid MHD limit.
Sec. Il the effective betaB,=(1 +k2d§)ﬂ, determines the At B> 8. (regime G, the effects of the MA wave anf,
dispersion properties of the modes. If the instability is local-diffusion become important. The contribution from the MA
ized on short scalekd,> 1, then 8, can be large3,>1, wave was calculated in Ref. 13. However, the effect of dif-
even if the usual beta is smaf3<1. This is caused by the fusion of B, was ignored in this paper. We will show that it
diffusive term in (34), which dominates at\’6<VB<1. plays a significant role and is equally important with the
When A’ increases and exceeds this limit, the tearing modéffect of MA wave leading to an additional decrease of the
transitions from the whistler regime to the kinetic Alfvén growth rate. Mutual action of these two mechanisms is cal-

regime with the growth rate determined by, instead ofd;. ~ culated below giving an universal description that covers
Correspondingly, the first term dominates on the |hg34, both regimegB) and(C) and the transition between them.
yielding solution(46). In all cases of smalk’, the coupling Solving (30), (31), and(34), we appy a boundary layer
with the MA wave is small. technique based on asymptotic matching of the tearing inner,

At largerA’, the eigenfunctions are broadened in its spa{x|<1, and ideal outer|x|> p, solutions. The inner layer
tial width to the order ofps and, correspondingly, coupling consists of aforementioned sublayers based>qn, andd,
with the MA wave becomes significant. To illustrate this, wescales. This layer is extended up [i9<1 so that one can
will solve in Sec. V Eqs(30), (31), and(34) in a wide range  simplify (30), (31), and(34) in this region by Taylor expand-
of A’ and large enouglB ( but still 3<1) when coupling ing B(O)(x)—>x. This leads to the internal equations
with the MA wave effectd,. The range of3 considered and (37)<39):

the method of calculations are similar to those treated in Ref.

. ; . Bx? d’B, BY*xd’B
13. However, our equations contain the important terrB.,of 1+5—|B,~ BE— = X (37)
diffusion. This effect was not included in Ref. 13. psl’ dx? Kl dx
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d’B, @
pSF BX - 82 dX2 - X(U * dikBZ)’ (38) W
d%v d’B, T T T T X
P = " e (39 0o % Ao B %

On the scale> pq, referred below to as an outer zone, elec-
trons and ions are coupled within the scope of an ideal
single-fluid MHD. The ideal quasistatic solutions in the outer

zone follow from(30), (31), and (34) in the limit 6—0,vy
— 0. The leading term on the lhs @4) is B,/ y. This yields
B,=0, while the profile ofB, follows from (31),
2p(0)
B\ (X V2B, - E(ZLBX =0.
Equation(40) predicts a singularity ofiB,/dx atx=0 that is
characterized by the stability factor

N%i@){i@)
\Bedx /.o \Bydx/_g

(40)

(41)

with A’ >0 corresponds to the instability. Using the Harris

sheet pinch profile yields a eigenmode evernx iand decay-

ing at infinity with a discontinuity odB,/dx at x=0,
tanh|x|>

k 7

for which A’(k) =2/k-2k. The asymptotic expansion (42)

atx<lis

By(X) =C1+Cylx,

B,(X) = C; exp(— k|x|)(1 + (42

(43)

where the ratio ofC; and C, is determined byC,/C,;
=A’(k)/2. The asymptotic boundary conditions {87)—39)
at pg<|x| — o take the form

A"
BX(X)—>C]_ 1+T ) BZ—>O,

d
000 =0 =pl'C, U= =0, (44)
while the boundary conditions at=0 follow from the tear-
ing parity of the eigenfunctions,

dBy

—(0) =v(0) =B,(0)=0.
dx

(45)

VI. INNER LAYER SOLUTIONS

The finite beta regiméB), m./m < B<< 3, was analyzed
with the use of kinetit and two-fluid MHD"™ approaches.
DroppingB, diffusion and the MA wave terms i87), yields
two alternative expressions f&,,

_xBY2d’B,  Bd;du

K Ak dx

Substituting(46) in (38) with v=0 gives the profile 0B,(x)
that is described at larg&’ by the two-scale eigenfunction
with a narrow peak of the width § at smallx and the bulk of
distribution localized on the large, scale. Sincé, diffusion

(46)

(b)

onel zonell zonelll

T T T — X
0 % % R

FIG. 2. The three overlapped zones of the internal layer solutions at large
A’. The thick lines show the intervals where me matching is performed.
Case(a) corresponds to the reginiB) with a=I"/v8> 1 when the diffusion

of B, and the MA wave are unimportant; caé® is related to the regimeC)

with a<1 when the two above effects are significant. The matching scheme
described in Sec. VI covers the subcagas and (b) and the transition
between them.

and the MA wave terms are proportional 8 these two
effects are important at large enougb= B.. Indeed, the
term 8x?B,/ pI'? on the Ihs 0f(37) represents the effect of
coupling with the MA wave. It is important ak> X
=p'/ B2, when the characteristic frequency of the MA
wave is comparable with the growth rate. Since the bulk of
the B, distribution is on thepg scale, the MA wave coupling

is important atx;< p, or, equivalently, ap*/?>T.

The second term on the Ihs (87) describes diffusion of
B, caused by collisionless and collisional effects included in
6. Generally, the magnetic field diffusion plays a key role in
tearing instabilities by providing a mechanism to break the
frozen flux theorem and the mode growth on the resonant
surfacex=0. This is provided by thd&, component in38).
The diffusion ofB, is not important for the existence of the
instability but it effects the ion—electron decoupling and,
thus, on the growth rate of instability. Since the correspond-
ing term in(37) is proportional tos’8<1, it is significant at
smallx where the width of localization d8, is I' 6. The term
with the B, diffusion dominates if$?3d’B,/dx*>B,. Esti-
matingd?B,/dx?=B/(I'6)?, yields 8> I"2. Thus, the mecha-
nisms of the MA wave on large scale aig diffusion on
short scale become important wh@mexceeds a critical value
B.=T?<1. Using solutiond = (5/ py)*”® at largeA’ andT’
=A's at smallA’ from Ref. 6, givesB.=(5/d;)*? and g,
=(A'6)?, respectively.

Analytical calculations ag<1 are simplified due to the
fact that the effects of the MA wave arf8, diffusion are
localized on different spatial scales. This allows us to intro-
duce three matching zones: the diffusive zae X<xa
=T'pg zone(ll) I'd=xs<x<x=I'ps/ VB of two-fluid ideal
flow without the MA wave; and zon@ll) x,<x<1 of two-
fluid flow with the MA wave. These zones are overlapped
due to the inequalitiexs<x,<<xs following from the as-
sumption,§<< ps<<d;. The scheme of the zones is illustrated
in Figs. 2a) and 2b). Sincepszdi\s“f}, the last inequality is
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equivalent toB< 1. Internal equation§37)—«39) are simpli-
fied in these zones and the solutions are matched.

A. Diffusive zone (I) x<€x,

Since electron flow dominates in zoiiB®, we neglect

here thev-dependent term ii37). This decouples equation

(39 from (37) and (38). Solving (37) and (38), we notice
that due to theBs’d’B,/dx? term in (37) the functionB,
cannot be expressed fro@7) explicitly, as it is given by
(46) in the beta regiméB). The transition from(B) to (C)

Two-fluid tearing instability in force-free magnetic... 4477
U’(a/2,0 a\'2 1
V20 (a1 .
U(a/2,0) 2) G(a)

Function G(a) is expressed in terms of Gamma-functions
and has the following asymptotic expansidhs:

alI'(1/4 +ald)

2I'(3/4 +ald) '’

@ a'’?T1(1/4) a1
_— <
2 T'(3/4)’ ’

G(a) — 1,

G(a) =

a>1. (53

regimes is described by two coupled second-order differen-

tial equations forB, and B,. The problem is still solvable
analytically because in the two-fluid case the consByrap-
proximation is applicable in the narrow zoftlg at arbitrary
A’. Indeed, the spatial scale of the eigenfunctions in Zbne
is much smaller than the electron skin degthThis makes
the diffusive terms°dB,/dx? large in zone(l) and, corre-
spondingly, the eigenfunctioB, is almost constant on this
scale, B,(x)=B,(0)=const. In the single-fluid MHD the
width of the diffusive layer at largd’ is =6, so that the
constants approximation is not applicable.

According to the constari®; approximation, we intro-

duce a new functiorEX:BX(x)—BX(O) and rewrite(38) as
follows:

d%B, k2d;
=B,(0) - x—B,,
dx2 «0) X’}/Ta z

(47)

where the small termB, < 62d?B,/dx? is dropped. Substitut-

ing (47) to (37) yields a nonhomogeneous parabolic cylinder

equation forB,,

r 2)
(2\',8 ¢

whereg=x/(BY45\2T'). The odd solution of48) decaying at

1d°B, _
4d&

,31/4 T
\"2|(5

£B4(0), (48)

&— oo is obtained by applying the Fourier transform similar

to Ref. 24,

B 0 1/4 )
B.= U((a/)zﬂ 0V k252f dq U( )qug' 49

Wherea—l“/v’ﬁ The expression foﬁ (x) in zone(l) is ob-
tained by |ntegrat|nq47) twice overx with the boundary

condmonsBX(O) dBX/dx(O) 0,
UI(E )
2’q '

The asymptotic expansion @B0) at large x> BY45\T is
determined byJ’(a/2,q) atq—0,

~ _ 4B(0)BYT sinf(q&/2)

B V@20 J, M9 ¢ (50)

1/4 [o1 1 17
__mparu (a/2,0)] -

() —
B 'BX(O){l 256 U(a/2,0)

1. The case of small A'<A|

The above expressions f&, and B, describe universal
solutions in the diffusive zon@). At largeA’, the eigenfunc-
tions become wider and are extended to zagtigsand (lIl),
so that one should matds, with the similar solution in zone
(I1. In a contrast to this, at smal’, the eigenfunctions are
mainly localized in zongl). This allows us to derive the
dispersion relation in this case. Indeed, substitutis®) to
(50) and matching the resulting equation wig) yields the
dispersion relation fof™ at smallA’,

r A'S
== . (54)
GIINpg
Two asymptotic expressions for the growth rates are
—dA’S
ﬂl = \s’ﬁ—l , \'/,[_3 < A’ﬁ, (55)
k T
YTa I'(1/4) )2 —
=d(A")| ———=—| ., VB=A'S. 56
- aa’) ( 2araiay) P (56)

Both solutions(55) and (56) belong to the hot plasma case.
Expression(55) is the case discussed in Refs. 6 and 15. It
corresponds to the finite beta regirii) when the instability

is driven by the two-fluid kinetic Alfvén wave. Solutiqb6)
corresponds to the beta regif®) and describes the effect of
saturation of the growth rate whehincreases. It shows that
the applicability of Refs. 6 and 15 at'pl3s%3<1 is re-
stricted by small3< (A’ 8)? since the effect o8, diffusion
was ignored in these papers. The growth &® coincides
with the similar solutions for the whistler tearing mo

This shows that the whistler-mediated regime of tearlng in-
stability can, in principle, be achieved within the scope of the
hot plasma model g8<1. Mathematically, these two limit-
ing cases correspond to either soluti@®) or (35), respec-
tively. In both cases, the characteristic width of zgheis

A’ 6% and does not depend ¢&

2. The case of large A'>A[

Considering the larga’ case, we will solvé37)—«39) in
zones(ll) and(lll) of ideal two-fluid plasma flow. The basic

The ratioU’/U can be rewritten in terms of the function equation foru(x)=dv/dx in this area is obtained by omitting

G(a) introduced in Ref. 13,

diffusive terms in(37) and (38). Functionu(x) is propor-
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tional tov,(x) and, thus, represents the velocity componentl) and(ll) are overlapped. Inside the intervakx, B, can

parallel to the resonant surface. Equat{8i) yields the so-
lution for B,,

ps\B  du

= 57
© k(LX) dx ®7)

while integrating(39) with the use of identityx ®B,/dx?
=d/dxXx?d/dx(x 'B)] gives

(58)

Applying boundary conditiong44) for (58) yields the con-
stant of integrationC=-C,. The valueC,=0 corresponds to
the case of largaA’. Substituting(57) into (38), dividing the

resulting equation by and differentiating ovex gives the

second-order differential equation

i <1+X_2>_ld_u —(1+X_'%‘)£
dx x2) dx| \T 3/ p2

In these transformations, the temiB/x)/dx is substituted
from (58). Equation (59) will be further simplified and
solved in zonegll) and(lll).

(59

B. Zone (ll) of two-fluid ideal flow without the MA
wave (Xz;<xX<X,)

In zone(ll), one can omit the term2/x§ in (59) respon-

be found from(38) with tﬂe diffusive andkv terms dropped.
This yieldsB,=xkB,/(I'VB). ExpressingB, as a function of
du/dx from (57) (without thex?/ xg term) and calculating this
derivative by differentiating62), yields

2 1+12 2 X
B"(x) = bupd X1 = by =X = bypdl” ~ by,

(63

where (63) is simplified by the expansiong.™”— 1, x1*I”
— X due to the smallneds<1. We will see that aps> 6, the
growth ratel” turns out to be small; <1, and, therefore, can
be used as a small expansion parameter. Compa68p
with the asymptotic expansiofbl) in zone(l), yields rela-
tionships betweerb;, b,, and B,(0). Substituting them in
(62) and simplifying atl’ <1 similar to(63), gives an expres-
sion for u(x) in zone(ll),

B(0) al3x )
(I - —
= (1 26G(TIB))

(64)

C. Zone (Ill) of ideal two-fluid flow with the MA wave
Xa<€x<1

In this zone, one can drop the ted®/x? in (60). Inte-

sible for coupling with the MA wave. This yields an equation grating the resulting equation overyields
for the ideal two-fluid flow of decoupled electrons and ions

(1,0,
dé p2 x2)

S

d%

2
(1+2)(v—v(m)):p§d—xz, (65)

(60)

where the constant of integratiefi® is introduced to satisfy
the boundary conditiofd4). The solution 0{65) decaying at
Xx— o is described by the parabolic cylinder function,

1/4 2
-v®=C U<il Xp \/j)
v(X) —v M2 VT

wherea:_l“/\@. The Taylor expansion af66) at small atx
<pd'/NB)Y? yields an asymptotic behavior ofx) on the
whereQ=1+4I'>=1+2I'2. This solution exhibits exponen- left boundary of zonglll),

tial decay on they scale. This profile is a specific feature of
uM(x) = C i/4\/EU'<§‘ o>+5u<‘i1 o) (67)
S L DU\ 22

The lhs of(60) represents the Hall term, the first term on the
rhs corresponds to theXB term while the second term
originates from the time derivative of Faraday’s law. The
general solution of60) in zone(ll) is described by the su-
perposition of two modified Bessel functions,

12
2x ) | 61

TPs

(66)

uM(x) = (C1Kgr(Xpg) + ¢yl QIZ(X/ps))(

ideal flows of decoupled electrons and ions. It corresponds

formally to zero electron flow velocity in th& direction, s

u?:o. Due to this, matching of the magnetic perturbations ] ) ] ] .
on large scales with the reconnected magnetic fields on shoMatching (67) with the corresponding asymptoti¢g4) in
scales is straighforward. This is essentially a two-fluid effectZOn€(ll) yields a dispersion relation at large’ which de-
and it makes possible a broadening of the eigenfunctions upcibes the mutual effect d, diffusion and coupling with
to the scales much larger than the electron skin dépth he MA wave,

For matching with zonéglll), it is suitable to choose an 25 _
interval x, < x<< ps that belongs to both zong#) and (lll). 3= —G%I'/VP).
The Bessel functions are simplified in this area by making TPs
use of their asymptotic expansionsxa¢ ps, These two effects result in a quadratic dependence on the

I T2 142 functionG(a) <1 in (68). Equation(68) shows that the tran-

U000 = bux T+ by(xlpd T sition into the beta regiméC) leads to the reduction df in
whereb, , are arbitrary constants. comparison with its valud®=24/mp, in the finite beta re-

First, we will match(62) with the solution in zon€l).

gime (B). As to the unnormalized growth ratg in the re-
For this purpose, we use an interwgk x<<x,, where zones gime (B), Eq. (68) yields well-known “2/3” scaling orp,,

(68)

(62)
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YT, — 0.2
Ta - (2/77_)1/35Z|./3di2/3ﬁil./32 51/3p§/3, rne/mi < :8< BCi E
.

(69) g-(u 0.15

which predicts the increase af with 3 as y= g3, When =
beta exceed®., and, correspondingly, théC) regime be- é 0.1
gins, the ion—electron decoupling becomes less effective due T

to enhanced, diffusion and coupling with the MA wave. E 6. 05
This leads to the saturation gfon the level, 8 ’
]

VTa d,sT'(1/4)

L8, <p<1. 70

k 27 [(3/4) Pe<h (70
Although the dependence of on m; is weak, yom /4, it 3_0_014 ()
indicates that zone@l) and (lll) with intensive ion flows o
plays a significant role in the dynamics of the instability. 5‘_

Equation (70) shows that the previous calculation of py 0-01
tearing mode coupling with the MA waveis incomplete 5
since the important effect of diffusion &, was neglected.

This effect introduces an additional factor@fa). Although
these two effects have different natures and are localized or
the different scales, each of them add the same f&tay in

B=0.02

T 0.006

X o.002
the dispersion relatio68). Matching, for example, expres-
sion (64) without B, diffusion [G(a)=1] with (67), yields 0.05 0.1 0.15 0.2
the dispersion relation similar t¢68), but with the first STABILITY FACTOR A'S

power of G(a) that provides the scalingo 62°d/5p2"® cal-

culated in Ref. 13, which is different from the correct expres-FIG. 3. Dependence of the normalized growth ratg/dik on the stability
sion (70) factor A’ at 6/d;=0.02 and three value$=0.02, 0.15, 1.(a) The thick

Al disprsion laton tht s vald t abivay and S 5 TS 00 M 0ol e s
B<1 and covers all of the two above subcases can be deurves are plotted to compare these results with the previous calculations
rived with the use of a simple heuristic approach based ofRefs. 6 and 1pwithout the above two effectgb) The importance of the,

the above large\’ solution. Imposing boundary condition diffusion at smallA” and £=0.02,0.15 is illustrated.

v(0)=0 on (66), gives the relationship C,
=—p'C,/U(a/2,0). Dividing Eq.(58) by x* and integrating LN

P(A’ - - iffusi
from o 10 x, yields an expression fd,, ,B)<I''P(A’,B). This confirms that thd, diffusion

and the coupling with the MA wave lead to the reduction of
“u(x)dx’ the two-fluid effects and the growth rates. Figuréa) &nd
Bx(x) = Cy + Cox + Fpsxf 2z (7D 3(b) show that the difference between old and new results is
g large at largeB and decreases whegh— 0. Even for smal|g
Integrating(71) by parts and dropping the integral containing the curves are still essentially different at sm#lldue to the

du/dx, gives a good approximation f@, at smallx, difference in scalingglinear versus quadrajon A’.
szs
By(X) = C; + Cox + CZG(a) , (72 vIl. SUMMARY
. The tearing equation®9)—31) for the cold plasma re-
whereu(x) andG(a) are substituted fron67) and(52), and )
a small term of order of? is neglected. Introducing\’ gime and Eqs(30), (31), and(34) for the hot plasma case

=2C,/C, and matching72) and(51) yields the final disper- follow ffom_the general equ_ati_o(ig) by means of a formal
expansion in cold and hot limits, respectively. In the appro-

sion relation, . - . ; .
_ priate limits, they match the equations derived previously by
I"%p, 2 2G(I'NB)6 others. This justifies the validity of Eq$19) at arbitrary
G(I‘/\s’73) +p‘ e : (73) plasma parameters and, specifically, for the transition be-

tween cold and hot plasma regimes. This general equation
The effect of B, diffusion and the coupling with the MA predicts that the transition occurs when the time of equilibra-
wave are described by the functioBéa) on the rhs and the tion determined by the ion-sound speed is comparable with
lhs of (73), respectively. The previously calculated disper-the inverse growth rate of the instability’. In the transi-
sion relation&®® coincide with (73) at G(a)=1. In accor- tion, the intermediate situations can appear where, due to the
dance with the definition of5(a), this function satisfies a multiscale structure of the tearing layer, the regime equiva-
rigorous inequalityG(a) <1 [G(a) — 1 ata—c°]. Using this  lent to the cold plasma limit exists in a wide outer area while
property and comparing the growth ratE® °° with the  the guasistatic regime equivalent to the hot plasma case is
new oned ™ given by(73), yields that rigorous inequality, realized in a narrow inner area.
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The important effect of resistive diffusion of the “out-of- cations motivates our interest in the transition from the cold
plane” componenB,, which reduces the two-fluid effects, is to the hot plasma cases when both the CA and the SA modes
included into the equations. The contribution from this effectare involved in the dynamics of the instability. Strong mode
is analyzed within the scope of the hot plasma makigletic  localization at smalA" simplifies analysis of their interac-
Alfvén-driven instability. The corresponding growth rates tion in this case. The problem will be considered on the basis
are calculated at small and largé. In the smallA’ case, the of the general equatio(l9) in a different paper.
result is identical to the growth rate for the whistler-mediated
tearing instability derived from the cold plasma modgl, ACKNOWLEDGMENTS
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model is not adequate to fast whistler-mediated reconnection
in magnetically confined plasmas. APPENDIX A: LINEAR EQUATIONS FOR A AND ¢
In contrast to this, the tearing instability in the hot - _ . o _
plasma case is driven by the combination of the shear Alfvén  Substituting the linearized equati2) into (9) yields an
and magneto-acoustic modes. Due to two-fluid effects, th@quation for the perturbed vector and electrostatic potentials,

dispersion properties of the SA wave are modified on short D
scales and exhibit the characteristic features of the kinetibwA —cV (d)— n(eo))
Alfvén wave yieding the scalingy= 6*3p2” and yo SpA’ €
at large and smalA’, respectively. The effect of the suppres- _ ] ) ] )
sion of the growth rate by the magneto-acoustic wave was |\ en® ¥ X & |By7(x) + @ VY X &|B;
investigated at larga’ in Ref. 13. In these calculations, the © o
diffusion of the perturbed “out-of-plane” component of the c d_BL<[ By (X))
i . UL + e, X B] +[ey X B]
magnetic field was ignored. We show that it is significant and Ament® dx z B;°>
changes the scalings of the growth rates in both large and mec/ dv (lineap
smallA’ limits. The new scalings is an essential result of the +cnj — ?(d_te> , (A1)

paper. Specifically, the scaling at small 5<vVB<1 de-
scribes quadratic instead of linear dependenc@for the  \here the equilibrium magnetic fieB(© and plasma current
collisionless tearing mode. It coincides with the growth ratej© are given by(10) and(13). The termn®j©/er®2 which

of a pure electron whistler mediated tearing mode. This inyesults from linearization of/enin (2) and takes into ac-
dicates that the regime of whistlers can be achieved at smaflount the perturbation of plasma density does not contribute
A’ within the scope of hot plasma model without the condi-to (A1) because of the force-free equilibrium conditigh

tion B>1, which is often imposed in order to neglect the x g0 =g,

effect plasma compressibility in the induction equation. In" | jnearizing (4) with the use of linearized continuity
contrast to the cold plasma model, this regime does not reaquation(7), iwn=n®V -v, and Eq.(13) gives

quire largec/ w,;>L and is realized at the rather soft condi- (lineay ] 0)

tion d,;> 6. As to the inequalityV8>A’4, it is satisfied in (%) - {iw(]— —v) A Vj (o)}(l +_J>L<>

many cases of practical interest, for example, for the core dt erf® erf? e

resonant tearing modes in the reversed-field pinches. Indeed, c i

the magnetic configuration and plasma parameters in the +m<$—vx>

Madison Symmetric TorueMST) experiments are character- e €

ized by the dimensionless factors’ =3-5, §=1072 j d B@ d§<°)

=0.1, which are certainly within the scope of the above in- x| (&t Ebey dx |’ (A2)
z

equality. We also note that the effect®f diffusion on linear
tearing stability was included in Ref. 12. However, thatwhere the Doppler shiﬁ(yo)k/erfo)w is caused by the small,
analysis was limited to resistive reconnection and treated thee;j (ZO)/en(O), y component of equilibrium electron flow. Since
case of a field-reversed configuration that has no guidingA2) is multiplied in (A1) by a smallm,, the effect of finite
field and operates g=1. In this limit, the growth rate for electron mass results is a small correctiofAd). It is neg-
the smallA’ case is reproduced by our theory despite thdigible everywhere except the resonant surfaced, where
differences in the equilibria examined. (dve/dt)ne@ and the resistive termj are the only nonzero
The importance of the above results for practical appli-terms on the rhs of the component o{Al) at x=0,
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. ik Ix ) -
i wA, 1+en(°)w = or{0 ~ Ux B, (X) +c7j,

_ @(ﬂ) (nean

e \ dt (A3)

z

(0)
These terms serve as a mean to break the frozen flux theo- = (iwp, - yepgo) vV - v)(l + %) =0.
e w

rem. Since they are important only in the vicinity 0,
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iwp(¥) = yp0V v, (B1)

0
Vepse :
en??

Ye ..
en(%)(J(o) ) V)pe_

iwpe_')’ep(eO)V v+ (j(o)' Vn

(B2)

one should leave ifA2) only those terms that give nonzero ysing e<1 to neglect the Doppler shift i(B2) leads to the

contribution on the rhs ofA3) at x=0. SinceB, is odd inx,
we obtain from(23) and (B7); V- V|,-o=v,(0)=0. This indi-
cates that the terriwj/er(® on the rhs of(A2) is the most
important in the tearing layer,

i wj

dVe (linean
(E) T en?”

Substituting(A4) in (A3), usingd/ 9z=0, and dropping small
(proportional tOe:B;w)/B(ZO)< 1), the Doppler terms leads to
the equation foA,,

—iw(A, =~ 8PV?A) = (ay VA +v,)BY(X),

(A4)

(A5)

identical form of responses for iorgB1), electrongB2) and
total pressures,
2 (0)
C
p= £y .y,

lw

(B3)

where the ion sound speedds=(y, T +¥%T.”)/m,. Since in
the equilibrium statey@=0, the linearized equatiofl) is

BOB)\ 1
) +—[(B©.V)B+(B-V)BO].
T 47

—iwpOv=- V<p+

where the combined collisionless and resistive skin depthghe components ofB4) are as follows:

and the Hall factor are defined as follows?=c?/w?,
+ic?yl (Amw), ay=cl(4mer?). Here, the plasma resistivity
is assumed to be constant.

Taking the projection of(Al) on y with the gauge
V-A=0 gives the electrostatic potential

p i|wd
¢ B er](eo) = k_C[EE((Ax - 52V2Ax) + (a'HVZAX + U)JB(ZO)
d (0)
. aHBX%] | (A6)

Substituting(A6) into the x component of(Al) yields an
equation for the perpendicular compondytthat describes
the perturbation of the guiding magnetic field,

=(i/k)V2A,,

E(VZAX - VA = ikszi/O)(X) _ BgO) vV .v

&8,
+ aH(B<y°>(x)VZBX - BX&L)
+ vx%d—iﬁ) . (A7)
z

Equations(A5) and (A7) are rewritten in Sec. Il in terms of
B, and B, while the last term on the rhs ¢A7) is omitted.
Note that Eqs(A5) and (A7) [but not(A6)] can be alterna-
tively derived by taking, respectively, theand thez com-
ponents of the curl of Eq2).

APPENDIX B: MOMENTUM AND PRESSURE
EQUATIONS

Presenting small perturbatiorﬁ,e(x)<pf°)

.o Of fon and
electron pressures in the form pi,e(x,y,t):pi(voe)
+p; e(¥)expi(ky—wt) with uniform equilibrium pressures
pf%, V-j=0 and partial derivatives/ 9z=0, yields linearized

equationg6),

(B4)
d BYB,+ BB ) ikB(?
—iwpOp, = - —|p+ 22— Y|4+ Y B (B5
lwp*vy dx(p . 4 X (B5)
BB ) 1 dBY
w0y = —i z Bz) L

i =-ik|p+ + By, B6
@P Yy (p A7 47 dx (B6)

ikBl” 1 dBY

iy =Py o = U5z
[ = B,+ = B7
PV T T 4 dx B7)

Combining(B5) and (B6) to form V-v on the lhs and sub-
stituting p in terms ofV -v from (B3), yields an equation for
plasma compressibility18). Substituting perturbations gf

+B(Z°)BZ/477 from (B6) to (B5) leads to the vorticity equation
(17). The equation can be alternatively derived by taking the
x component of the curl of EqB4).
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