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In general, the linear two-fluid tearing instabilities are driven by shear Alfvén(SA), compressional
Alfvén (CA), and slow magnetoacoustic(MA ) modes modified on short scales by two-fluid effects.
Previous two-fluid theories were devoted to either the hot plasma case where coupling of the SA and
the MA waves dominates, or to the cold plasma limit,b=0, where the instability is driven by the SA
and the CA waves. Taking into account plasma compressibility and the Hall term, we derive general
tearing equations that cover the two limiting cases and the transition between them. In particular, in
the hot plasma case, equations are derived that depend on the factorb / s1+bd and span the validity
of resistive to electron MHD. The important effect of resistive diffusion of the “out-of-plane”
component of the magnetic field perturbationBi

s1d is also included. Two new solutions where this
effect dominates are obtained within the scope of the hot plasma model. Whistler scalingg~D82 is
found for the collisionless tearing mode instead of the kinetic Alfvén scalingg~D8 at smallD8.
Previous calculations for coupling with the MA waves at largeD8 did not take the diffusion ofBi

s1d

into account. The joint effect of these factors is presented in the work. ©2004 American Institute
of Physics. [DOI: 10.1063/1.1773778]

I. INTRODUCTION

Tearing instabilities play an important role in fusion ex-
periments and astrophysical applications. They are thought to
be responsible for a variety of physical phenomena including
fast reconnection of magnetic fields, relaxation to the Taylor
state, the dynamo effect, the formation of magnetic islands,
and anomalous radial transport in stochastic magnetic fields.
At higher plasma temperatures, the viability of standard re-
sistive MHD models1,2 for the plasma dynamics becomes
questionable. This is especially important for tearing modes,
where the spatial structure of eigenfunctions near the reso-
nant surface(in the linear tearing layer) is determined by
electron skin depth which is normally much shorter than ion-
sound gyroradiusrs or ion skin depthc/vpi. The smallness
of the electron skin depth in comparison with the ion scales
leads to a decoupling of electrons from ions in the vicinity of
the reconnection layer, speeding up of the instability and a
broadening of the tearing layer. The enhanced growth rate is
caused by fast, vortex-like motion of the decoupled electrons
in the plane perpendicular to the guiding magnetic field(re-
connection plane). This provides enhanced transport of the
magnetic flux toward the diffusive layer. This transport is
much faster than in the single-fluid MHD case where elec-
trons are coupled to ions due to their jointE3B drift. Only
small perpendicular currents are generated by polarization
drifts.

Large-amplitude perpendicular eddy currents appear in
two-fluid regimes due to electron–ion decoupling on short
scales. They are driven by magnetic field perturbations par-
allel to the guiding magnetic field(out-of-plane component)
that are small in single-fluid MHD, but are of major impor-
tance in two-fluid theory. In this work, we derive the basic
equation that connectsBi

s1d with the perpendicular(radial)
component of the perturbed magnetic field. It describes pre-

viously investigated regimes of electron–ion decoupling as
well as the new ones in which two-fluid effects are impor-
tant. Two-fluid physics enters the equations via the ion skin
depthdi =c/vpi and ion-sound gyroradiusrs=cs/vBi, where
cs is the ion-sound speed andvBi is the ion cyclotron fre-
quency calculated with the guiding magnetic field that is
present in high-temperature plasma experiments but absent
in many theoretical treatments of Hall-MHD and collision-
less reconnection.

In the context of two-fluid theory, the Hall term by itself
cannot provide reconnection because the magnetic field is
frozen into the electron fluid. The collisionless effect of elec-
tron inertiade=c/vpe and finite resistivityh are taken into
account as a means to break the frozen flux theorem. Their
combined effects are characterized by the sum of the colli-
sionless and resistive electron skin depthsd2=de

2+c2h /4pg
whereg is the growth rate of tearing instability. Thus, finite-
electron-inertia modification of the parallel Spitzer resistivity
is taken into account but no other kinetic physics related to
the Dopler shiftkivTe and associated electron Landau damp-
ing features are included. In accordance with the definition
of d, this factor isg dependent and, therefore, initially un-
known. Without specification of its exact value just by using
the smallness ofd in comparison with the ion scalesrs and
di, one can obtain the dispersion relation in terms ofdsgd and
then solve it forg explicitly. This allows us to cover both
collisionless and semicollisional regimes with one universal
approach.

An extreme limiting case of the ion–electron decoupling
is described by electron magnetohydrodynamics(EMHD),
where ion motion is ignored. In many cases of practical in-
terest, intermediate regimes are realized where both electrons
and ions contribute to the dynamics of instability. In a con-
trast to complicated kinetic treatments(see, for example,
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Refs. 3–6), relatively simple and effective fluid-based ap-
proaches were developed for tearing instabilities in early
1990s. The corresponding fluid-based treatments can be sub-
divided into two groups. The first group(see, for example,
Refs. 7–11) is devoted to the cold plasma model,b=0. In
this limit, all temperature-dependent terms are dropped, and
the dynamics of the instability is determined byd anddi. At
largedi @L, whereL is the scale of the equilibrium magnetic
field, ion motion can be ignored, and the instability exhibits
the properties of the pure electron whistler mode. We will
refer to this case as a whistler-mediated tearing instability.

The second group is devoted to an opposite limit of hot
plasma, where thermal pressure and particle gyromotion de-
termine the dynamics of the instability. This case is referred
to later to as a kinetic Alfvén-driven tearing instability. Gen-
erally speaking, the ion response to electric fields with trans-
verse scales shorter than the ion-Larmor radius should be
described by the kinetic theory. However, single-fluid MHD
calculations with the Hall term16 as well as two-fluid equa-
tions of the Braginskii type with plasma compressibility15

show that the joint effect of the Hall term and plasma com-
pressibility yields the results similar to kinetic ion
models.17,18 Some qualitative arguments in favor of this
agreement are given in Sec. II. Various linear regimes of the
“hot” tearing instability were analyzed in Ref. 12(hot elec-
trons and cold ions), in Ref. 13 within the scope of the four-
field model,14 and in Ref. 15 with the use of two-fluid MHD
theory. They yield the growth rate and the structure of the
eigenfunctions in terms ofd, rs, di, and stability factorD8.
The stability factorD8 is a measure of free energy available
for resistive reconnection.1 It is calculated from the solution
of the marginal ideal MHD equations in the outer region. The
quantityD8 is an asymptotic matching parameter defined as
the jump in the logarithmic derivative of the radial magnetic
field across the reconnection layer. We will considerD8 as
given and analyze the structure of the inner layer in the limits
of small and largeD8. The two-fluid effects and ion–electron
decoupling are important atrs,di @d, otherwise the single-
fluid MHD theory is valid. These basic inequalities are taken
to be satisfied in the following calculations.

Two different models of cold and hot plasma and the gap
between them raise a question about their interrelation and
conditions of applicability. This motivated our interest in the
construction of a more general theory that covers both cases
and describes the transition between them. We analyze slab
geometry for a force-free plasma equilibrium with uniform
density, temperature, and pressure profiles for electrons and
ions, assuming that the equilibrium magnetic field consists of
small shearing componentBy

s0dsxd and large guiding field
Bz

s0d. The perturbed quantities are taken to be functions ofx
andy. Assuming no equilibrium pressure gradients, we treat
the absolute value of the pressure as an arbitrary parameter
and, correspondingly, varyb in a range 0øb,`. Such an
equilibrium may exist locally(within a certain radial exten-
sion) or can be supported by distant material walls. This
allows us to exclude the effects of diamagnetic flows assum-
ing that g@v*e,i, wherev*e,i are electron and ion diamag-
netic frequencies. Thus, we study two-fluid effects caused by
the ion–electron decoupling, while the two-fluid effects

driven by the equilibrium diamagnetic flows are ignored.
They are considered, for example, in Refs. 19 and 20.

The perturbations of ion and electron pressures are es-
sentially nonuniform. They are driven by plasma compress-
ibility, = ·vÞ0, and are treated to be either adiabatic or iso-
thermal. Plasma dynamics is described by the momentum
equation(the sum of ion and electron equations of motion)
and generalized Ohm’s law(electron momentum equation)
without viscous and gyroviscous effects. Using the small pa-
rametere=By

s0d /Bz
s0d!1, a vorticity equation is derived as

well as an induction equation for a parallel component of the
vector potential. The induction equation has the same struc-
ture as in resistive MHD theory with the replacementv
→ve, reflecting the fact that the magnetic field is frozen in
the electron fluid. Making the decompositionve=v
−s1/nedj yields the Hall term in the induction equation. An
Ampère’s law is used to expressj ' as a function of the
out-of-plane perturbationsBz.Bi

s1d. In order to close the sys-
tem of equations, we derive the relationship betweenBz and
the perpendicular componentBx. This equation is the main
result of the paper. It is derived in Sec. II by expressing the
plasma compressibility= ·v from the perpendicular compo-
nent of the induction equation and substituting into the equa-
tion for = ·v which follows from the plasma momentum
equation.

In Sec. III, the tearing equations are applied for the case
of waves propagating in a uniform magnetic field. The analy-
sis shows that the two-fluid tearing instability is driven by
shear Alfvén(SA), compressional Alfvén(CA), and slow
magnetoacoustic(MA ) waves modified on short scales by
two-fluid effects. This classification of the modified waves is
based on their behavior in the long wavelength MHD limit.

In Sec. IV A, the general set of tearing equations is sim-
plified in the cold plasma limit, when the time of propagation
of the ion-sound wave across the reconnection layer is much
longer than the time scale of the instability. The reduced
equations coincide with the equations derived in Ref. 11, and
corresponds to the interaction of the SA and the CA modes
while the MA mode is decoupled. On short scales,kdi @1,
the CA branch converts into the electron whistler mode.

In the opposite case of hot plasma, the ion-sound wave
propagation time is much shorter than the time scale of the
instability. It provides equilibration of total(magnetic 1
thermal) pressures across the layer and, correspondingly,
yields Bz/Bz

s0d~b. This situation is discussed in Sec. IV B,
and is of the main interest for magnetically confined plas-
mas. The two-fluid tearing instability is driven by the SA and
the MA modes while the CA mode is decoupled. Ion–
electron decoupling on short scales leads to the mode disper-
sion typical for kinetic Alfvén waves,v~kikrs

2. A formal
expansion of the general equation forBz at g!cs/L yields
tearing equations similar to those analyzed in Ref. 13. They
are derived in a more general form with the dependence onb
in the formb / s1+bd that is universally applicable for wide
range 0,b,`. This important property of the hot plasma
case was first treated in Ref. 21 in terms of the universal
scaleR=rsdi /Îrs

2+di
2.

Our equations also contain the important effect of diffu-
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sion of the perturbedBz. This effect was not properly ac-
counted for in Ref. 13 where the process of coupling of the
SA and the MA waves was investigated at finiteb when it
effectively reduces the out-of-plane componentBz and, thus,
suppresses two-fluid effects. This mechanism is reconsidered
in Sec. V, which is devoted to the solutions of the tearing
equations in the hot plasma case. We show that diffusion of
Bz leads to an additional suppression of the two-fluid effects.
At large values of the stability factorD8, the contribution
from this mechanism is equally important with the contribu-
tion from the MA wave and yields an additional reduction of
the growth rate by the same factor as calculated in Ref. 13.
At small D8, it is shown that due to the narrow width of the
tearing layer, the enhanced diffusion ofBz leads to the con-
version of the kinetic Alfvén mode into the whistler-
mediated regime of tearing instability.

II. THE GEOMETRY OF THE PROBLEM AND BASIC
EQUATIONS

The two-fluid approach is based on the fluid momentum
balance equation

r
dv

dt
= − = Sp +

B2

8p
D +

1

4p
sB · = dB, s1d

and the generalized Ohm’s law

E +
1

c
v Ã B =

1

nec
j Ã B −

=pe

ne
−

me

e

dve

dt
+ hj , s2d

which describes the balance of the electron momentum. In
this work, viscous effects are ignored,= ·ps=0, for both
electrons and ions. Ion velocityvi is associated with the fluid
velocity v (center of mass velocity), vi =v. To leading order
in the ratio of electron to ion mass, the electron velocity,
ve=v− j /ne, is expressed in terms ofv and current densityj
given by the Ampère’s law,

j =
c

4p
= Ã B. s3d

The derivativedve/dt on the rhs of(2) is presented as a
function of v and j ,

dve

dt
=

dv

dt
− sv = d

j

ne
− S j

ne
=Dv −

]

] t

j

ne
+ S j

ne
=D j

ne
.

s4d

Although (4) is multiplied by electron massme and, there-
fore, makes a small contribution to(2), it plays an important
role in high-temperature plasma, providing the mechanism of
collisionless reconnection. As it is shown in Appendix A, the
partial time derivative is the dominant term in(4) and, there-
fore, we take

dve

dt
. −

]

] t
S j

ne
D . s5d

Fluid motion is driven by the magnetic and plasma pres-
sure gradients. Variations of ion and electron pressures are
assumed to be of the form

] pi,e

] t
+ svi,e · = dpi,e + gi,epi,e = · vi,e = 0, s6d

where gi =ge=5/3 for anadiabatic equation of state orgi

=ge=1 if the plasma is isothermal.
Under the condition of quasineutralityne=ni =n, electron

and ion continuity equations are identical to each other and
expressed by the plasma continuity equation

] n

] t
+ = ·nv = 0. s7d

In order to close the equations we use Faraday’s induction
equation

= Ã E = −
1

c

] B

] t
. s8d

In our scheme of calculations, the functionsv andj in (2) are
presented in terms ofB from (1) and (3) and the resulting
expression forE is substituted in(8), forming equations for
two components ofB (the third component is calculated
from = ·B=0). This procedure is equivalent to the approach
based on vector potential presentation for the electric field,

E = − = f −
1

c

] A

] t
, s9d

where the perpendicular components of the magnetic field
are expressed as a function ofA i, or, equivalently, in terms of
the flux functionc.

We restrict our consideration to the simplest fluid equa-
tions by ignoring ion gyroviscosity in(1) and(6). Within the
scope of this approach, the ion-sound gyroradiusrs appears
in the final equations due to coupling of the Hall term and
the effect of plasma compressibility in a maner similar to that
described in Ref. 15. However, we allow for arbitrarily large
b and take into account the effect ofBz diffusion. In the hot
plasmas limit, our equations are also similar to the linearized
version of the four-field model investigated in Ref. 13 and
give the results that are in reasonable agreement with corre-
sponding kinetic treatments.6,17 In these calculations, two
layer scales are accounted for; an outer layer where ion mo-
tion is important and an inner region where electron inertia
and/or resistivity is accounted for. Good agreement between
the two-fluid theory and kinetic calculations whenrs is larger
thand is due to the fact that in the inner layer the electrons
are decoupled from the ions and hence the slow ion motion
can be ignored. In the outer zone, the length scales of the
solutions are larger than the ion-sound gyroradius; hence a
fluid theory approach is applicable.

Since the radial width of the tearing solutions is much
shorter than the plasma radius, one can treat the layer prob-
lem in slab geometry. We introduce an orthogonal coordinate
system withx=r −rs oriented in the direction in which equi-
librium quantitatives vary andy, z oriented along sheared
and guiding components of the unperturbed magnetic field,
respectively. The origin of the reference frame,x=0, is
placed at the resonant surface[the equivalent ofqsrsd=m/n
for a magnetically confined device]. For example, in the case
of the reversed-field pinch(RFP), them=0 mode is resonant
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on the resonant reversal surfaceqsrsd=m/n=0. Then, the
poloidal magnetic fieldBP represents a guiding magnetic
field while toroidal fieldBT corresponds to the sheared com-
ponent.

In the equilibrium state, the plasma is at rest,vs0d=0,
with uniform and constant densityns0d, pressurespe,i

s0d, and
total pressureps0d=pe

s0d+pi
s0d. This force-free configuration,

j s0dÃBs0d=0, is described by the equilibrium magnetic field,

Bs0dsxd = ezBz
s0dsxd + eyBy

s0dsxd, s10d

whereBz
s0dsxd is the guiding magnetic field andBy

s0dsxd is the
sheared magnetic field. As an example of thex dependence
of By

s0dsxd, we will use the sheet pinch profile

By
s0dsxd = By

s`dtanh
x

L
, s11d

however, the results obtained can be easily modified for
other cases. The force-free equilibrium conditionBy

s0d2sxd
+Bz

s0d2sxd=B0
2=const leads to the dependence ofBz

s0d on x,

dBz
s0d

dx
= −

By
s0dsxd
Bz

s0d
dBy

s0d

dx
, s12d

and, correspondingly, the equilibrium current is given by

j s0dsxd = Sez + ey

By
s0dsxd
Bz

s0d D c

4p

dBy
s0d

dx
. s13d

We will characterize the value of the sheared component
By

s0dsxd by the ratioe=By
s`d /Bz

s0ds0d. In accordance with the
equilibrium condition,e encompasses the range 0øeø1.
The basic equations are derived in Appendices A and B for
the general case of arbitrarye and dependencesBy

s0dsxd.
However, in the case of practical interest guiding fieldBz

s0d is
strong,e!1, and, correspondingly, the dependenceBz

s0dsxd is
weak so that we will neglect small variations ofBz

s0d and treat
it as a constant. For the same reasons one can ignore the
small sheared component of the equilibrium currentj y

s0dsxd
assuming that the unperturbed current is oriented in thez
direction. The corresponding simplifications are done in the
final equations(15) and (16) by ignoring the terms of order
Osed.

Using the above equilibrium profiles the equations
(1)–(7) are linearized with respect to small perturbations of
the form

Bsx,y,td = Bs0dsxd + Bsxdexps− ivt + ikyd,

vsx,y,td = vsxdexps− ivt + ikyd. s14d

The vectork =key is oriented alongy to satisfy resonant con-
dition Fs0d=0 atx=0, whereFsxd=k·Bs0dsxd, and all pertur-
bations are uniform in thez directions] /]z=0d. After trans-
formations decribed in detail in(A3)–(A7), one obtains
equations for the perturbed quantitiesBx andBz,

− ivsBx − d2¹2Bxd = sikvx + aHk2BzdBy
s0d, s15d

ivFS1 −
k2va

2sxd
v2 DBz − d2=2BzG

= Bz
s0d = ·v − aHSBy

s0dsxd=2Bx −
d2By

s0d

dx2 BxD , s16d

where =2=d2/dx2−k2, the Hall constant is defined byaH

=c/ s4pens0dd, d2=de
2+ ic2h / s4pvd describes the combined

collisionless and collisional skin depth,de,i =c/vpe,i, vpe,i
2

=4pe2ns0d /me,i. The term proportional to va
2sxd

=By
s0d2sxd / s4prs0dd originates fromikvzBy

s0d in (A7), wherevz

is expressed in terms ofBz from (B7). Following Ref. 22, we
use Eq.(16) to accurately treat plasma compressibility= ·v
in order to derive the universal set of equations applicable
for arbitraryb.

Coupling between magnetic field and fluid motion re-
sults from the velocity-dependent terms in(15) and(16) pro-
portional tovx and= ·v. We use Eq.(16) to eliminate terms
proportional to= ·v in subsequent equations. This allows us
to form a closed set of equations forvx, Bx, andBz. These
equations represent a generalization of the resistive MHD
equations for the case of two-fluid theory where magnetic
perturbations along the guiding fieldBz are important. In-
stead of using equations of motion forvx and vy [see(B5)
and (B6)], we find it convenient to solve equations for¹2vx

(the vorticity equation) and plasma compressibility= ·v. Fol-
lowing calculations outlined in Appendix B, the desired
equations are given by

− v

k
S¹2vx −

d

dx
= · vD

=
1

4prs0dSBy
s0dsxd=2Bx −

d2By
s0d

dx2 BxD , s17d

− ivS1 +
cs

2

v2¹2D = · v

= −
1

4prs0d¹
2SBz

s0dBz +
iBy

s0dsxd
k

dBx

dx
D

+
ik

2prs0d
dBy

s0d

dx
Bx, s18d

where the ion sound speed is given bycs
2=sgeTe

s0d

+giTi
s0dd /mi. We use(16) to substitute for the plasma com-

pressibility= ·v into (17) and (18). The substitution of= ·v
into (17) yields the vorticity equation with the effect of
plasma compressibility taken into account. The substitution
into (18) leads to a basic differential equation that does not
depend onv and describes the relationship betweenBz and
Bx,

S1 +
cs

2

v2=2DFv2

vA
2 SBzS1 −

k2va
2sxd

v2 D − d2=2BzD −
ivaH

vA
2 SBy

s0d

3sxd=2Bx −
d2By

s0d

dx2 BxDG
= − ¹2SBz +

iBy
s0dsxd

kBz
s0d

dBx

dx
D +

2ik

Bz
s0d

dBy
s0d

dx
Bx, s19d
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where vA =Bz
s0d / s4prs0dd1/2. Then, Eqs.(15)–(17) and (19)

constitute a closed set of equations forBx, Bz, and vx that
describe the general case of two-fluid tearing instability.

In Eq. (19), the effect of plasma compressibility is es-
sential. This equation will be simplified in two limiting cases
of small and large values ofscs

2/v2d=2. Applying (19) to the
case of slow growing tearing modes withLv /cs!1 (hot
plasma limit), yields 1+scs

2/v2d¹2→ scs
2/v2d¹2. We solve

the resulting equation using boundary conditions atx→ ±`,
and take into account the tearing parity of eigenfunctions;
Bxsxd is even in x and Bzsxd is an odd function ofx,
dBx/dxs0d=0 andBzs0d=0. The last two terms on the rhs of
(19) violate this symmetry, showing that the general solution
has no parity. Since these terms are ordere!1, they can
create only small perturbations of the opposite parity so that
the resulting contribution from these corrections to(19) is
proportional toe2 and, therefore, can be neglected. Solving
the resulting equation is equivalent to solving an equation of
the form ¹2f =sd2/dx2−k2df =0. Noting that f is odd, the
solution is fsxd=Csuxu /xdexps−kuxud. Using continuity atx
=0 requiresC=0, or, equivalently,f =0. Thus, the leading-
order solution to(19) is

vA
2

cs
2 Bz + BzS1 −

k2va
2sxd

v2 D − d2=2Bz −
iaH

v
SBy

s0dsxd=2Bx

−
d2By

s0d

dx2 BxD = 0. s20d

The guiding fieldBz
s0d enters(20) via the factors1+b−1dBz,

whereb is defined as

b =
cs

2

vA
2 . s21d

This differs slightly from the usual definitionb=8pp/Bz
s0d2

by the factorge,i /2.
Equation(20) describes quasistatic equilibration of mag-

netic and thermal pressures,Bz
s0dBz/4p+p=0, wherep is ex-

pressed in terms of= ·v, which, in turn, is calculated from
the induction equation(16). A small part of the magnetic
pressure,By

s0dBy/4p, is proportional toe2 and, therefore, ig-
nored due to the arguments mentioned above. As it is shown
in Sec. III, Eq.(20) describes two-fluid kinetic Alfvén and
magneto-acoustic waves while the compressional Alfvén
wave is decoupled. We refer to this regime as the hot plasma
case, or kinetic Alfvén-driven tearing instability

In the opposite limit of cold plasma, one can neglect 1
+scs

2/v2d=2→1 on the lhs of(19) and keep the term=2Bz

on the rhs of this equation, yielding another relationship,

v2

vA
2 sBz − d2=2Bzd + =2Bz

=
ivaH

vA
2 SBy

s0dsxd=2Bx −
d2By

s0d

dx2 BxD , s22d

where a small contribution from coupling with the magneto-
acoustic wave,k2va

2sxd /v2, is ignored. Equation(22) de-
scribes a nonvanishingBz as b→0. In this case, magnetic
pressureBz

s0dBz/4p is balanced by the ion inertia as it is for

the compressional Alfvén wave. Since the CA mode exhibits
the properties of whistlers forkiÞ0 and kdi @1, we will
refer to this regime as the cold plasma case, or whistler-
mediated tearing mode.

The terms with plasma compressibility= ·v are present
in the induction and vorticity equations(16) and (17). If the
guiding magnetic field is strong, plasma flow can be treated
as incompressible in the vorticity equation(17). This is mo-
tivated by noting from(16) that = ·v~1/Bz

s0d, and, corre-
spondingly, the incompressible approximation is applicable
at a strong enough guiding field. Making use of(20) and(22)
allows us to present= ·v in two forms related to the hot and
cold plasma approximations, respectively,

= · v= − iv
vA

2

cs
2

Bz

Bz
s0d , = · v= − i

vA
2

v
=2 Bz

Bz
s0d . s23d

The magnitude ofBz in (23) depends on the approximation
considered. For example, in the cold plasma case with small
D8, the eigenfunctionBz is determined by the balance of the
rhs of (22) and the term=2Bz on the lhs of this equation. In
the hot plasma case with relatively smallb, the terms pro-
portional toBz dominates on the lhs of(20). Requiring the
smallness ofd/dx= ·v in comparison with the rhs of(17)
yields a universal condition for the incompressible approxi-
mation in the vorticity equation

d

dx
! ksb + 1d

vBi

v
. s24d

Applying (24) for the hot plasma case shows that this ap-
proximation is valid at the relatively weak restrictione
!Ld / srsdid. In the cold plasma limit, this condition is more
rigorous so that the effect of compressibility requires more a
detailed analysis, which will be presented in a separate paper.

In the induction equation(16), the small term= ·v is
multiplied by the large factorBz

s0d, so that the the applicabil-
ity of an incompressible approximation in(16) requires an
additional analysis. For this purpose, it is suitable to use(19)
from which the unknown term= ·v is excluded. At b
=cs

2/vA
2 @1@v2L2/vA

2 , Eq. (19) is equivalent to(20), where
the first term,Bz/b, on the lhs is ignored. The resulting equa-
tion coincides with the incompressible version of(16) (with
= ·v=0). This leads to the well-known conclusion22,26 that
the incompressible approximation in the induction equation
is valid at b@1. We will show in Sec. V that the area of
applicability of an incompressible approximation in the in-
duction equation is wider. Indeed, at small enoughD8, D8d
!Îb!1, the tearing layer is so narrow that the termd2=2Bz

dominates on the lhs of(16) making the effect of plasma
compressibility unimportant althoughb!1 in this case. At
smallerb, Îb!D8d, the term −Bz

s0d= ·v becomes important.
It compensates all other terms on the rhs of(16), and a re-
sidual effect determines a smallBz~b. A universal equation
valid at arbitraryb is given by(20).

III. LOW-FREQUENCY WAVES IN UNIFORM
MAGNETIC FIELD

Different regimes of two-fluid tearing instability de-
scribed by(15)–(17) and (19) can be classified by applying
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these equations to the case of plane waves propagating in a
uniform magnetic field. Without loss of generality, we will
use the same geometryk =s0,k,0d and Bs0d=s0,By

s`d ,Bz
s0dd.

Introducing an angleu between k and Bs0d yields Bz
s0d

=Bs0d sin u ,By
s0d=Bs0dcosu. Sincek is oriented alongy, one

can dropx derivatives in(15)–(17) and(19). SubstitutingBz

andvx from (19), (17), and(15) gives a dispersion equation
that determinesvsk,ud. Similar two-fluid dispersion rela-
tions were analyzed in many publications(see, for example,
Ref. 23). A suitable form(25) is found below by introducing
an effective phase velocityVskd=vs1+k2de

2d1/2/kvA and an
effective betabk=s1+k2de

2db, where vA =Bs0d / s4prs0dd1/2.
Then, the variablesV andk are separated so that the lhs of
(25) depends onV while the rhs is a function ofk,

sV2 − cos2udS1 −
cos2 u

V2 −
sin2 u

V2 − bk
D =

k2di
2cos2 u

s1 + k2de
2d

. s25d

Rigorously speaking, the lhs of(25) depends also onk via
the factorbk. For the rangekde&1, this dependence is weak
and can be ignored by putting,bk.b. This is assumed in the
ensuing discussion. However, this effect is important and
will be taken into account in Sec. V for tearing modes at
small D8.

Plotting the lhs of(25) as a function ofV and intersect-
ing it with the horizontal line that corresponds to the Hall
term on the rhs yields three branches of oscillations illus-
trated in Fig. 1. At smallk→0, solutionsVskd tend to their
limiting valuesVs0d, which correspond to phase velocities of
single-fluid MHD waves; shear Alfvén(SA), compressional
Alfvén (CA), and magneto-acoustic(MA ). These values are
given by the zeros of the lhs of(25). At large k, the modes
are coupled and modified due to the presence of the Hall
term. We will label the modified branches in accordance with
the above classification in a single-fluid MHD limit atk
→0.

The slopes of the curves in Fig. 1 depend on interrelation
between cos2 u and bk. Figure 1(a) illustrates the case
bk,cos2 u when phase velocities of the MA and the SA
waves decrease with the increase ofk. In this case, the maxi-
mum ofVMA andVSA are achieved at smallk when two-fluid
effects are unimportant.

In contrast to this, atbk.cos2 u the SA curve changes
its slope and the SA phase velocity becomes a growing func-
tion of k [see Fig. 1(b)]. Starting fromVSAs0d=cosu at k
=0 the phase velocityVSAskd tends tobk whenk→`. In the
intermediate range cos2 u!V2!bk, an analytic solution for
the SA branch is obtained by simplifyingV2−bk→−bk and
dropping the term cos2u /V2!1,

vSA
2 =

k2vA
2 cos2 u

1 + k2de
2 S1 +

k2di
2

1 + k2de
2

bk

1 + bk
D . s26d

At small bk!1, Eq.(26) represents the two-fluid MHD ana-
log of the kinetic Alfvén wave withv.kivArsk. The ion-
sound Larmor radius,rs=di

Îb, appears in(26) due to the
Hall term and plasma compressibility. The appearance ofrs

is often associated with the electron pressure gradient term in
generalized Ohm’s law(2). In our case of force free equilib-
rium, the electron pressure gradient term does not contribute

to the induction equation due to the identity=Ã =pe/ns0d

;0.
At largebk@1, the second term in(26) does not depend

on bk and represents a pure electron response with the whis-
tler dispersionv~kivAdik. We will show in Sec. V that ifD8
is large and the tearing mode is localized on a wide scale
.rs, then starting from some criticalbc, the effect of cou-
pling with the MA wave slows down the instability. At small
D8, when the tearing mode is localized on a short scale, the
effect of the MA wave is unimportant, and the whistler-
mediated reconnection can be achieved at the soft conditions
b!1 anddi @d. This is possible due to the dependence ofbk

on k that can providebk@1 at b!1.
As it is seen in Fig. 1, the phase velocityVskd of the MA

wave decreases with the increase ofk. An asymptotic solu-
tion for this low-frequency mode is obtained from(25), sim-
plified at V2!bk,cos2 u. This yields the standard MHD ex-

FIG. 1. Dependence of the lhs of the two-fluid dispersion relation(25) on
the phase velocityV. Intersections with the horizontal line corresponding to
the Hall term on the rhs of this equation yield three branches of oscillations
[the magnetoacoustic(MA ), shear(SA), and compressional(CA) Alfvén
modes] modified on short scales by the two-fluid effects.(a) The case of
bk=bs1+k2de

2d,cos2 u. (b) The casebk.cos2 u.
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pression for the frequency of the MA wave modified on short
scales due to two-fluid effects,

vMA
2 =

k2cos2 ucs
2

1 + 2b + k2rs
2 . s27d

The asymptotic solution for high-frequency CA wave is
obtained by neglecting cos2 u in the first brackets on the rhs
of (25) and bk in the denominator in the second brackets
sV2@cos2 u ,bkd,

vCA
2 =

k2vA
2

1 + k2de
2S1 +

k2di
2 cos2 u

1 + k2de
2 D . s28d

Similar to (26) at bk@1, the second term in(28) describes
the pure electron response with the typical whistler depen-
dencev.kivAdik. In contrast to the SA mode, this response
within the scope of the CA mode does not requirebk@1 and
can be achieved even atbk=0. However, the frequency of
whistlers tends to zero on the resonant surface,ki=0, causing
this branch to exhibit the properties of the CA mode with non
zero frequencyv=kvA determined by the guiding field and
ion mass. This suppresses the out-of-plane perturbationBz

and slows down the instability. In order to realize the condi-
tions of whistler-mediated reconnection,di should be much
greater than the scale of equilibrium magnetic fieldL; other-
wise the instability develops in the regime of single-fluid
MHD.

IV. TWO-FLUID TEARING EQUATIONS

A. Instability driven by the SA and the CA modes
(cold plasma case, b=0)

The set of tearing equations related to the cold plasma
case,gl / @cs (l is the shortest spatial scale) consists of Eq.
(15), (17), and(22). Introducing the growth rate of the pure
growing tearing modeg=−iv and dimensionless variables
v= ivx/va, Bx,z→Bx,z/By

s`d, ta=L /va, x→x/L, de,i →de,i /L,
d→d /L, k→kL, By

s0dsxd→By
s0dsxd /By

s`d=tanhx where va

=By
s`d / s4prs0dd1/2, yields these equations in the form

Bz − Sd2 +
1

g2ta
2e2D=2Bz =

di

gta
SBy

s0dsxd=2Bx

−
d2By

s0d

dx2 BxD , s29d

gta

k
sBx − d2=2Bxd = sv + dikBzdBy

s0dsxd, s30d

gta

k
=2v = Sd2By

s0d

dx2 Bx − By
s0dsxd=2BxD , s31d

where, in accordance with(24), the effect of plasma com-
pressibility is ignored in the vorticity equation(17). The sys-
tem (29)–(31) coincides with the equations derived with the
use of a different approach in Ref. 11, where the transition
from the single fluid to the Hall MHD was investigated
within the scope of the constant-c approximation.

Applying Eq. (29)–(31) for the case of waves propagat-
ing in a uniform magnetic field yields a dispersion relation

that is identical to(25), but with bk=0. This corresponds to
the MA mode being decoupled. Hence, it does not play a role
in the reconnection layer. Within the scope of(29)–(31) the
tearing instability is driven by the SA and the CA modes
modified on short scales by the the Hall term. A short-
wavelength continuation of the CA mode represents a pure
electron whistler mode(28), which can drive a fast whistler
mediated tearing instability.

Electron MHD (EMHD) whistler tearing equations are
derived from(29)–(31) by making use of the formal limiting
transition mi →`. Ion mass-dependent parametersdi ~Îmi

andta~Îmi determine the ordering of this transition, while
the growth rate is independent of the ion mass. Considering
(31) at ta→` and keepingg=const, yieldsv~ta

−1→0. Put-
ting v=0 in (30) gives Eq.(33), while Eq. (32) for Bz is
obtained by dropping the term proportional to 1/sgtaed2 on
the lhs of(29),

Bz − d2=2Bz =
di

gta
SBy

s0dsxd=2Bx −
d2By

s0d

dx2 BxD , s32d

Bx − d2=2Bx =
dik

2

gta
By

s0dsxdBz. s33d

Equations(32) and (33) are written in the form similar to
Ref. 10 and do not depend on ion mass. They represent the
whistler-driven tearing instability first considered in Ref. 7.
In accordance with Ref. 8, the growth rate scales at smallD8
asgwta/k~disdD8d2. The large term~1/sgtaed2 in (29) pre-
vents accessibility to the whistler regime of instability in
plasma with a strong guiding field and smalldi. This reflects
the effect mentioned in Sec. III when ion motion in the com-
pressional Alfvén wave reducesBz in the vicinity of the reso-
nant surfacex=0 and turns the instability into the single-
fluid MHD regime. To overcome this barrier, the tearing
instability should be fast enough,gtae@d−1. Substitutinggw

in this inequality shows thatdi has to be much greater than
the external scaleL, c/vpi@ smi /med1/4L /e1/2. Generally this
is not satisfied in magnetically confined plasmas. Note that
the tearing equations and, correspondingly, the growth rate
does not depend one in both limiting cases of single-fluid
MHD and a pure electron whistler mode(32) and(33). How-
ever, this dependence is present in(29)–(31), and can, there-
fore, be important in the transition between the regimes.

B. Instability driven by the SA and the MA modes
(hot plasma case )

The set of tearing equations in the hot plasma case,cs

@gL, consists of Eqs.(15), (17), and(20). We will deal with
the dimensionless version of these equations(see Sec. IV A),
where Eqs.(15) and(17) are represented by(30), (31) while
Eq. (20) takes the form

BzS1 +
1

b
+

k2By
s0dsxd2

g2ta
2 D − d2=2Bz

=
di

gta
SBy

s0dsxd=2Bx −
d2By

s0d

dx2 BxD . s34d

Equation(34) corresponds to the quasistatic regime of tear-
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ing instability when the total(magnetic + thermal) pressure
is equilibrated across the layer. The termBz/b originates
from the term with plasma compressibility in the induction
equation(16). As b grows, Eq.(34) describes the transition
from compressible to incompressible versions of this equa-
tion. Dropping the termd2=2Bz responsible for the diffusion
of Bz and simplifying 1+1/b.1/b at b!1, the system
(30), (31), and(34) coincides with the equations obtained in
Ref. 13 from the four-field model.

Applying (30), (31), and(34) for plane waves propagat-
ing in a uniform magnetic field shows that in the hot plasma
case, the instability is driven by the coupling of the SA(26)
and the MA(27) modes while the CA mode(28) is decou-
pled and plays no role in the reconnection layer. The main
driving force of the instability is the SA mode(26), which is
a two-fluid analog of the kinetic Alfvén wave. Asbk→` (at
kde→`), the SA mode exhibits dispersion properties of
whistlers so that one may expect a whistler-like behavior for
the tearing eigenmodes.

Making limiting transitionsb→` and mi →` with ta

~di ~Îmi →` allows us to drop thev-dependent term in
(30) and the termsBz/b andk2By

s0d2/g2ta
2 in (34). After these

transformations equations(30), (31), and (34) reduce to the
EMHD whistler equations (32) and (33). Using its
solutions10 at smallD8d!1 yields the conditions of validity
of the above transformations. According to Ref. 10, the
width of the tearing layer isd2D8, so that thed2d2Bz/dx2

term dominates on the lhs of(34). Taking this into account,
equating the rhs of(34) and(31), and integrating twice over
x yields

Bz = sdi/d
2kdv. s35d

Comparing the termsv and kdiBz in (30) shows that thev
=0 approximation is valid whendi @d. This criterion also
allows us to drop the MA wave term relative toBz diffusion
in (34). The termBz/b in (34) can also be dropped ifD8d
!Îb. Therefore, at smallb!1, the whistler-mediated re-
gime of instability can be achieved. Indeed, according to
Sec. III the effective beta,bk=s1+k2de

2db, determines the
dispersion properties of the modes. If the instability is local-
ized on short scale,kde@1, then bk can be large,bk@1,
even if the usual beta is small,b!1. This is caused by the
diffusive term in (34), which dominates atD8d!Îb!1.
WhenD8 increases and exceeds this limit, the tearing mode
transitions from the whistler regime to the kinetic Alfvén
regime with the growth rateg determined byrs instead ofdi.
Correspondingly, the first term dominates on the lhs of(34),
yielding solution(46). In all cases of smallD8, the coupling
with the MA wave is small.

At largerD8, the eigenfunctions are broadened in its spa-
tial width to the order ofrs and, correspondingly, coupling
with the MA wave becomes significant. To illustrate this, we
will solve in Sec. V Eqs.(30), (31), and(34) in a wide range
of D8 and large enoughb ( but still b!1) when coupling
with the MA wave effectsBz. The range ofb considered and
the method of calculations are similar to those treated in Ref.
13. However, our equations contain the important term ofBz

diffusion. This effect was not included in Ref. 13.

V. TWO-FLUID TEARING INSTABILITY IN HOT
PLASMA REGIME

The above analysis describes the transition from the
whistler to the kinetic Alfvén regime in terms of the stability
factor D8. We now introduce three possible regimes that re-
flects the dependence on the guiding magnetic field.

At small beta,b!me/mi (regime A), ion-sound gyrora-
dius rs!d and, correspondingly, the electron and ion flows
are coupled on the tearing layer scaled, yielding the single-
fluid MHD regime of tearing instability. In the case of small
D8d!1, the width of the tearing layer isD8d2!d and, cor-
respondingly, the condition of single-fluid MHD becomes
stronger.

At finite beta,me/mi !b!bc=sd /did1/2* sme/mid1/4 (re-
gime B), the ion-sound gyroradius exeeds the electron skin
depth,rs@d (this particular expression forbc corresponds to
the case of largeD8). Electrons and ions are decoupled on a
spatial scale smaller than the ion-sound gyroradius, however,
effects of the MA wave coupling andBz diffusion are still
unimportant in(34). The tearing layer consists of two sub-
layers: a narrow diffusive layer of the width.Gd, where
electron diffusivity is important, and a layer specific to two-
fluid theoryGd! uxu&rs with ideal flows of decoupled elec-
tron and ions.6,15 Here we use a normalized growth rate,

G =
gta

rsk
. s36d

At small D8, the value ofbc is determined bybc.sD8dd2.
The two values forbc are well matched atDc8d

2/3rs
1/3.1, or,

equivalently, atDc8d
3/4di

1/4.1. The factorDc8 is a character-
istic value of D8 at which transition between the limiting
cases of small and largeD8 takes place. The value ofDc8 is
approximately equal tod−1 at very smallb (in the resistive
MHD limit ), then gradually decreases asDc8
.d−1sd /did1/3b−1/6 in the rangeme/mi !b!bc and reaches
its minimum value Dc8.d−1sd /did1/4.d−1sme/mid1/8 at b
@bc. This is just slightly(approximately 2.6 times) smaller
than the valueDc8.d−1 in the single-fluid MHD limit.

At b@bc (regime C), the effects of the MA wave andBz

diffusion become important. The contribution from the MA
wave was calculated in Ref. 13. However, the effect of dif-
fusion of Bz was ignored in this paper. We will show that it
plays a significant role and is equally important with the
effect of MA wave leading to an additional decrease of the
growth rate. Mutual action of these two mechanisms is cal-
culated below giving an universal description that covers
both regimes(B) and (C) and the transition between them.

Solving (30), (31), and (34), we appy a boundary layer
technique based on asymptotic matching of the tearing inner,
uxu!1, and ideal outer,uxu@rs, solutions. The inner layer
consists of aforementioned sublayers based ond ,rs, anddi

scales. This layer is extended up touxu!1 so that one can
simplify (30), (31), and(34) in this region by Taylor expand-
ing By

s0dsxd→x. This leads to the internal equations
(37)–(39):

S1 +
bx2

rs
2G2DBz − bd2d2Bz

dx2 =
b1/2x

kG

d2Bx

dx2 , s37d
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rsGSBx − d2d2Bx

dx2 D = xsv + dikBzd, s38d

rsG
d2v
dx2 = − x

d2Bx

dx2 . s39d

On the scalex@rs, referred below to as an outer zone, elec-
trons and ions are coupled within the scope of an ideal
single-fluid MHD. The ideal quasistatic solutions in the outer
zone follow from (30), (31), and (34) in the limit d→0,g
→0. The leading term on the lhs of(34) is Bz/g. This yields
Bz=0, while the profile ofBx follows from (31),

By
s0dsxd=2Bx −

d2By
s0d

dx2 Bx = 0. s40d

Equation(40) predicts a singularity ofdBx/dx at x=0 that is
characterized by the stability factor

D8 = S 1

Bx

dBx

dx
D

+0
− S 1

Bx

dBx

dx
D

−0
, s41d

with D8.0 corresponds to the instability. Using the Harris
sheet pinch profile yields a eigenmode even inx and decay-
ing at infinity with a discontinuity ofdBx/dx at x=0,

Bxsxd = C1 exps− kuxudS1 +
tanh uxu

k
D , s42d

for which D8skd=2/k−2k. The asymptotic expansion of(42)
at x!1 is

Bxsxd = C1 + C2uxu, s43d

where the ratio ofC1 and C2 is determined byC2/C1

=D8skd /2. The asymptotic boundary conditions for(37)–(39)
at rs! uxu→` take the form

Bxsxd → C1S1 +
D8uxu

2
D, Bz → 0,

vsxd → vs`d = rsGC2, usxd =
dv
dx

→ 0, s44d

while the boundary conditions atx=0 follow from the tear-
ing parity of the eigenfunctions,

dBx

dx
s0d = vs0d = Bzs0d = 0. s45d

VI. INNER LAYER SOLUTIONS

The finite beta regime(B), me/mi !b!bc, was analyzed
with the use of kinetic6 and two-fluid MHD15 approaches.
DroppingBz diffusion and the MA wave terms in(37), yields
two alternative expressions forBz,

Bz =
xb1/2

kG

d2Bx

dx2 = −
bdi

k

du

dx
. s46d

Substituting(46) in (38) with v=0 gives the profile ofBzsxd
that is described at largeD8 by the two-scale eigenfunction
with a narrow peak of the widthGd at smallx and the bulk of
distribution localized on the largers scale. SinceBz diffusion

and the MA wave terms are proportional tob, these two
effects are important at large enough,b*bc. Indeed, the
term bx2Bz/rs

2G2 on the lhs of(37) represents the effect of
coupling with the MA wave. It is important atx.xs

=rsG /b1/2, when the characteristic frequency of the MA
wave is comparable with the growth rate. Since the bulk of
the Bz distribution is on thers scale, the MA wave coupling
is important atxs,rs, or, equivalently, atb1/2@G.

The second term on the lhs of(37) describes diffusion of
Bz caused by collisionless and collisional effects included in
d. Generally, the magnetic field diffusion plays a key role in
tearing instabilities by providing a mechanism to break the
frozen flux theorem and the mode growth on the resonant
surfacex=0. This is provided by theBx component in(38).
The diffusion ofBz is not important for the existence of the
instability but it effects the ion–electron decoupling and,
thus, on the growth rate of instability. Since the correspond-
ing term in(37) is proportional tod2b!1, it is significant at
smallx where the width of localization ofBz is Gd. The term
with the Bz diffusion dominates ifd2bd2Bz/dx2@Bz. Esti-
matingd2Bz/dx2.Bs/ sGdd2, yieldsb@G2. Thus, the mecha-
nisms of the MA wave on large scale andBz diffusion on
short scale become important whenb exceeds a critical value
bc.G2!1. Using solutionsG.sd /rsd1/3 at largeD8 andG
.D8d at smallD8 from Ref. 6, givesbc=sd /did1/2 and bc

=sD8dd2, respectively.
Analytical calculations atb!1 are simplified due to the

fact that the effects of the MA wave andBz diffusion are
localized on different spatial scales. This allows us to intro-
duce three matching zones: the diffusive zone(I) x!xA

=Grs; zone (II ) Gd=xd!x!xs=Grs/Îb of two-fluid ideal
flow without the MA wave; and zone(III ) xA!x!1 of two-
fluid flow with the MA wave. These zones are overlapped
due to the inequalitiesxd!xA!xs following from the as-
sumption,d!rs!di. The scheme of the zones is illustrated
in Figs. 2(a) and 2(b). Sincers=di

Îb, the last inequality is

FIG. 2. The three overlapped zones of the internal layer solutions at large
D8. The thick lines show the intervals where the matching is performed.
Case(a) corresponds to the regime(B) with a=G /Îb@1 when the diffusion
of Bz and the MA wave are unimportant; case(b) is related to the regime(C)
with a!1 when the two above effects are significant. The matching scheme
described in Sec. VI covers the subcases(a) and (b) and the transition
between them.
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equivalent tob!1. Internal equations(37)–(39) are simpli-
fied in these zones and the solutions are matched.

A. Diffusive zone (I) x™xA

Since electron flow dominates in zone(I), we neglect
here thev-dependent term in(37). This decouples equation
(39) from (37) and (38). Solving (37) and (38), we notice
that due to thebd2d2Bz/dx2 term in (37) the function Bz

cannot be expressed from(37) explicitly, as it is given by
(46) in the beta regime(B). The transition from(B) to (C)
regimes is described by two coupled second-order differen-
tial equations forBx and Bz. The problem is still solvable
analytically because in the two-fluid case the constant-Bx ap-
proximation is applicable in the narrow zone(I) at arbitrary
D8. Indeed, the spatial scale of the eigenfunctions in zone(I)
is much smaller than the electron skin depthd. This makes
the diffusive termd2d2Bx/dx2 large in zone(I) and, corre-
spondingly, the eigenfunctionBx is almost constant on this
scale, Bxsxd=Bxs0d=const. In the single-fluid MHD the
width of the diffusive layer at largeD8 is .d, so that the
constant-c approximation is not applicable.

According to the constant-Bx approximation, we intro-

duce a new functionB̃x=Bxsxd−Bxs0d and rewrite(38) as
follows:

d2d2B̃x

dx2 = Bxs0d − x
k2di

gta
Bz, s47d

where the small termB̃x!d2d2B̃x/dx2 is dropped. Substitut-
ing (47) to (37) yields a nonhomogeneous parabolic cylinder
equation forBz,

BzS G

2Îb
+ j2D −

1

4

d2Bz

dj2 =
b1/4ÎG

Î2kd
jBxs0d, s48d

wherej=x/ sb1/4dÎ2Gd. The odd solution of(48) decaying at
j→` is obtained by applying the Fourier transform similar
to Ref. 24,

Bz =
Bxs0db1/4

Usa/2,0d
Î G

2k2d2E
0

`

dq USa

2
,qDsin qj, s49d

wherea=G /Îb. The expression forB̃xsxd in zone(I) is ob-
tained by integrating(47) twice over x with the boundary

conditionsB̃xs0d=dB̃x/dxs0d=0,

B̃x = −
4Bxs0db1/2G

Usa/2,0d E
0

`

dq
sin2sqj/2d

q2 U8Sa

2
,qD . s50d

The asymptotic expansion of(50) at large x@b1/4dÎG is
determined byU8sa/2 ,qd at q→0,

Bx
sId = Bxs0dF1 − x

pb1/4Î2G

2d

U8sa/2,0d
Usa/2,0d

G . s51d

The ratio U8 /U can be rewritten in terms of the function
Gsad introduced in Ref. 13,

U8sa/2,0d
Usa/2,0d

= − Sa

2
D1/2 1

Gsad
. s52d

Function Gsad is expressed in terms of Gamma-functions
and has the following asymptotic expansions:25

Gsad =
a1/2Gs1/4 +a/4d
2Gs3/4 +a/4d

;

Gsad → a1/2

2

Gs1/4d
Gs3/4d

, a ! 1,

Gsad → 1, a @ 1. s53d

1. The case of small D8™Dc8

The above expressions forBz andBx describe universal
solutions in the diffusive zone(I). At largeD8, the eigenfunc-
tions become wider and are extended to zones(II ) and (III ),
so that one should matchBx with the similar solution in zone
(II ). In a contrast to this, at smallD8, the eigenfunctions are
mainly localized in zone(I). This allows us to derive the
dispersion relation in this case. Indeed, substituting(52) to
(50) and matching the resulting equation with(44) yields the
dispersion relation forG at smallD8,

G

GsG/Îbd
=

D8d

p
. s54d

Two asymptotic expressions for the growth rates are

gta

k
= Îb

diD8d

p
, Îb ! D8d, s55d

gta

k
= disD8dd2S Gs1/4d

2pGs3/4dD
2

, Îb @ D8d. s56d

Both solutions(55) and (56) belong to the hot plasma case.
Expression(55) is the case discussed in Refs. 6 and 15. It
corresponds to the finite beta regime(B) when the instability
is driven by the two-fluid kinetic Alfvén wave. Solution(56)
corresponds to the beta regime(C) and describes the effect of
saturation of the growth rate whenb increases. It shows that
the applicability of Refs. 6 and 15 atD8rs

1/3d2/3!1 is re-
stricted by smallb! sD8dd2 since the effect ofBz diffusion
was ignored in these papers. The growth rate(56) coincides
with the similar solutions for the whistler tearing mode.8,10

This shows that the whistler-mediated regime of tearing in-
stability can, in principle, be achieved within the scope of the
hot plasma model atb!1. Mathematically, these two limit-
ing cases correspond to either solution(46) or (35), respec-
tively. In both cases, the characteristic width of zone(I) is
D8d2 and does not depend onb.

2. The case of large D8šDc8

Considering the largeD8 case, we will solve(37)–(39) in
zones(II ) and(III ) of ideal two-fluid plasma flow. The basic
equation forusxd=dv /dx in this area is obtained by omitting
diffusive terms in(37) and (38). Function usxd is propor-
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tional to vysxd and, thus, represents the velocity component
parallel to the resonant surface. Equation(37) yields the so-
lution for Bz,

Bz = −
rs

Îb

ks1 + x2/xs
2d

du

dx
, s57d

while integrating(39) with the use of identityx d2Bx/dx2

;d/dxfx2d/dxsx−1Bdg gives

gta

k
usxd = − x2 d

dx

Bx

x
+ C. s58d

Applying boundary conditions(44) for (58) yields the con-
stant of integration,C=−C1. The valueC1=0 corresponds to
the case of largeD8. Substituting(57) into (38), dividing the
resulting equation byx and differentiating overx gives the
second-order differential equation

d

dx
FS1 +

x2

xs
2D−1du

dx
G = S1 +

xA
2

x2D u

rs
2 . s59d

In these transformations, the termdsB/xd /dx is substituted
from (58). Equation (59) will be further simplified and
solved in zones(II ) and (III ).

B. Zone (II) of two-fluid ideal flow without the MA
wave „xd™x™xs…

In zone(II ), one can omit the termx2/xs
2 in (59) respon-

sible for coupling with the MA wave. This yields an equation
for the ideal two-fluid flow of decoupled electrons and ions

d2u

dx2 = S 1

rs
2 +

G2

x2Du. s60d

The lhs of(60) represents the Hall term, the first term on the
rhs corresponds to thevÃB term while the second term
originates from the time derivative of Faraday’s law. The
general solution of(60) in zone(II ) is described by the su-
perposition of two modified Bessel functions,

usII dsxd = „c1KQ/2sx/rsd + c2IQ/2sx/rsd…S 2x

prs
D1/2

, s61d

whereQ=Î1+4G2.1+2G2. This solution exhibits exponen-
tial decay on thers scale. This profile is a specific feature of
ideal flows of decoupled electrons and ions. It corresponds
formally to zero electron flow velocity in thex direction,
vx

sed=0. Due to this, matching of the magnetic perturbations
on large scales with the reconnected magnetic fields on short
scales is straighforward. This is essentially a two-fluid effect,
and it makes possible a broadening of the eigenfunctions up
to the scales much larger than the electron skin depthd.

For matching with zone(III ), it is suitable to choose an
interval xA!x!rs that belongs to both zones(II ) and (III ).
The Bessel functions are simplified in this area by making
use of their asymptotic expansions atx!rs,

usII dsxd = b1x
−G2

+ b2sx/rsd1+G2
, s62d

whereb1,2 are arbitrary constants.
First, we will match(62) with the solution in zone(I).

For this purpose, we use an intervalxd!x!xA, where zones

(I) and (II ) are overlapped. Inside the intervalx!xA Bx can
be found from(38) with the diffusive andxv terms dropped.
This yieldsBx=xkBz/ sGÎbd. ExpressingBz as a function of
du/dx from (57) (without thex2/xs

2 term) and calculating this
derivative by differentiating(62), yields

Bx
sII dsxd = b1rsGx−G2

− b2
1 + G2

G
x1+G2

. b1rsG − b2
x

G
,

s63d

where (63) is simplified by the expansions,x−G2→1, x1+G2

→x due to the smallnessG!1. We will see that atrs@d, the
growth rateG turns out to be small,G!1, and, therefore, can
be used as a small expansion parameter. Comparing(63)
with the asymptotic expansion(51) in zone(I), yields rela-
tionships betweenb1, b2, and Bxs0d. Substituting them in
(62) and simplifying atG!1 similar to(63), gives an expres-
sion for usxd in zone(II ),

usII dsxd =
Bs0d
rsG

S1 −
pG3x

2dGsG/Îbd
D . s64d

C. Zone (III) of ideal two-fluid flow with the MA wave
xA™x™1

In this zone, one can drop the termG2/x2 in (60). Inte-
grating the resulting equation overx yields

S1 +
x2

xs
2Dsv − vs`dd = rs

2d2v
dx2 , s65d

where the constant of integrationvs`d is introduced to satisfy
the boundary condition(44). The solution of(65) decaying at
x→` is described by the parabolic cylinder function,

vsxd − vs`d = CvUSa

2
,
xb1/4

rs

Î2

G
D , s66d

wherea=G /Îb. The Taylor expansion of(66) at small atx
!rssG /Îbd1/2 yields an asymptotic behavior ofusxd on the
left boundary of zone(III ),

usIII dsxd = CvFb1/4

rs

Î2

G
U8Sa

2
,0D +

x

rs
2USa

2
,0DG . s67d

Matching (67) with the corresponding asymptotics(64) in
zone (II ) yields a dispersion relation at largeD8 which de-
scribes the mutual effect ofBz diffusion and coupling with
the MA wave,

G3 =
2d

prs
G2sG/Îbd. s68d

These two effects result in a quadratic dependence on the
functionGsad,1 in (68). Equation(68) shows that the tran-
sition into the beta regime(C) leads to the reduction ofG in
comparison with its valueG3=2d /prs in the finite beta re-
gime (B). As to the unnormalized growth rateg, in the re-
gime (B), Eq. (68) yields well-known “2/3” scaling onrs,
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gta

k
= s2/pd1/3d1/3di

2/3b1/3 . d1/3rs
2/3, me/mi ! b ! bc,

s69d

which predicts the increase ofg with b as g~b1/3. When
beta exceedsbc, and, correspondingly, the(C) regime be-
gins, the ion–electron decoupling becomes less effective due
to enhancedBz diffusion and coupling with the MA wave.
This leads to the saturation ofg on the level,

gta

k
=Îdid

2p

Gs1/4d
Gs3/4d

, bc ! b ! 1. s70d

Although the dependence ofg on mi is weak,g~mi
−1/4, it

indicates that zones(II ) and (III ) with intensive ion flows
plays a significant role in the dynamics of the instability.

Equation (70) shows that the previous calculation of
tearing mode coupling with the MA wave13 is incomplete
since the important effect of diffusion ofBz was neglected.
This effect introduces an additional factor ofGsad. Although
these two effects have different natures and are localized on
the different scales, each of them add the same factorGsad in
the dispersion relation(68). Matching, for example, expres-
sion (64) without Bz diffusion fGsad;1g with (67), yields
the dispersion relation similar to(68), but with the first
power of Gsad that provides the scalingg~d2/5di

1/5rs
2/5 cal-

culated in Ref. 13, which is different from the correct expres-
sion (70).

A full dispersion relation that is valid at arbitraryD8 and
b!1 and covers all of the two above subcases can be de-
rived with the use of a simple heuristic approach based on
the above largeD8 solution. Imposing boundary condition
vs0d=0 on (66), gives the relationship Cv
=−rsGC2/Usa/2 ,0d. Dividing Eq. (58) by x2 and integrating
from ` to x, yields an expression forBx,

Bxsxd = C1 + C2x + GrsxE
x

` usx8ddx8

x82 . s71d

Integrating(71) by parts and dropping the integral containing
du/dx, gives a good approximation forBx at smallx,

Bxsxd = C1 + C2x + C2
G2rs

Gsad
, s72d

whereusxd andGsad are substituted from(67) and(52), and
a small term of order ofG2 is neglected. IntroducingD8
=2C2/C1 and matching(72) and(51) yields the final disper-
sion relation,

G2rs

GsG/Îbd
+

2

D8
=

2GsG/Îbdd
pG

. s73d

The effect ofBz diffusion and the coupling with the MA
wave are described by the functionsGsad on the rhs and the
lhs of (73), respectively. The previously calculated disper-
sion relations6,15 coincide with (73) at Gsad;1. In accor-
dance with the definition ofGsad, this function satisfies a
rigorous inequalityGsad,1 [Gsad→1 at a→`]. Using this
property and comparing the growth ratesGspd,6,15 with the
new onesGsnd given by (73), yields that rigorous inequality,

GsndsD8 ,bd,GspdsD8 ,bd. This confirms that theBz diffusion
and the coupling with the MA wave lead to the reduction of
the two-fluid effects and the growth rates. Figures 3(a) and
3(b) show that the difference between old and new results is
large at largeb and decreases whenb→0. Even for smallb
the curves are still essentially different at smallD8 due to the
difference in scalings(linear versus quadratic) on D8.

VII. SUMMARY

The tearing equations(29)–(31) for the cold plasma re-
gime and Eqs.(30), (31), and (34) for the hot plasma case
follow from the general equation(19) by means of a formal
expansion in cold and hot limits, respectively. In the appro-
priate limits, they match the equations derived previously by
others. This justifies the validity of Eqs.(19) at arbitrary
plasma parameters and, specifically, for the transition be-
tween cold and hot plasma regimes. This general equation
predicts that the transition occurs when the time of equilibra-
tion determined by the ion-sound speed is comparable with
the inverse growth rate of the instabilityg−1. In the transi-
tion, the intermediate situations can appear where, due to the
multiscale structure of the tearing layer, the regime equiva-
lent to the cold plasma limit exists in a wide outer area while
the quasistatic regime equivalent to the hot plasma case is
realized in a narrow inner area.

FIG. 3. Dependence of the normalized growth rategta/dik on the stability
factor D8 at d /di =0.02 and three valuesb=0.02, 0.15, 1.(a) The thick
curves are the solutions to the full dispersion relation(73) that describes the
effects of theBz diffusion and the coupling with the MA wave. The thin
curves are plotted to compare these results with the previous calculations
(Refs. 6 and 15) without the above two effects.(b) The importance of theBz

diffusion at smallD8 andb=0.02,0.15 is illustrated.

Phys. Plasmas, Vol. 11, No. 9, September 2004 Two-fluid tearing instability in force-free magnetic... 4479

Downloaded 02 Jan 2006 to 192.188.106.30. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



The important effect of resistive diffusion of the “out-of-
plane” componentBz, which reduces the two-fluid effects, is
included into the equations. The contribution from this effect
is analyzed within the scope of the hot plasma model(kinetic
Alfvén-driven instability). The corresponding growth rates
are calculated at small and largeD8. In the smallD8 case, the
result is identical to the growth rate for the whistler-mediated
tearing instability derived from the cold plasma model,b
=0. Within the scope of the cold model, the tearing instabil-
ity is driven by the combination of the compressional and
shear Alfvén waves, where the CA wave is modified on short
scales into whistlers. Due to the guiding magnetic field, the
whistlers are strongly coupled atki=0 to the ion motion in
the compressional Alfvén wave, so that for the realization of
a pure whistler regime, the ion skin depthc/vpi should be
much greater than the characteristic scale of the equilibrium
magnetic field(which is of the order of the plasma radius).
Taking into account this condition and the typical values,
c/vpi.5–10 cm, one can conclude that the cold plasma
model is not adequate to fast whistler-mediated reconnection
in magnetically confined plasmas.

In contrast to this, the tearing instability in the hot
plasma case is driven by the combination of the shear Alfvén
and magneto-acoustic modes. Due to two-fluid effects, the
dispersion properties of the SA wave are modified on short
scales and exhibit the characteristic features of the kinetic
Alfvén wave yieding the scalingsg~d1/3rs

2/3 and g~drsD8
at large and smallD8, respectively. The effect of the suppres-
sion of the growth rate by the magneto-acoustic wave was
investigated at largeD8 in Ref. 13. In these calculations, the
diffusion of the perturbed “out-of-plane” component of the
magnetic field was ignored. We show that it is significant and
changes the scalings of the growth rates in both large and
smallD8 limits. The new scalings is an essential result of the
paper. Specifically, the scaling at smallD8d!Îb!1 de-
scribes quadratic instead of linear dependence onD8 for the
collisionless tearing mode. It coincides with the growth rate
of a pure electron whistler mediated tearing mode. This in-
dicates that the regime of whistlers can be achieved at small
D8 within the scope of hot plasma model without the condi-
tion b@1, which is often imposed in order to neglect the
effect plasma compressibility in the induction equation. In
contrast to the cold plasma model, this regime does not re-
quire largec/vpi@L and is realized at the rather soft condi-
tion di @d. As to the inequalityÎb@D8d, it is satisfied in
many cases of practical interest, for example, for the core
resonant tearing modes in the reversed-field pinches. Indeed,
the magnetic configuration and plasma parameters in the
Madison Symmetric Torus(MST) experiments are character-
ized by the dimensionless factorsD8.3–5, d.10−2, b
.0.1, which are certainly within the scope of the above in-
equality. We also note that the effect ofBz diffusion on linear
tearing stability was included in Ref. 12. However, that
analysis was limited to resistive reconnection and treated the
case of a field-reversed configuration that has no guiding
field and operates atb=1. In this limit, the growth rate for
the smallD8 case is reproduced by our theory despite the
differences in the equilibria examined.

The importance of the above results for practical appli-

cations motivates our interest in the transition from the cold
to the hot plasma cases when both the CA and the SA modes
are involved in the dynamics of the instability. Strong mode
localization at smallD8 simplifies analysis of their interac-
tion in this case. The problem will be considered on the basis
of the general equation(19) in a different paper.
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APPENDIX A: LINEAR EQUATIONS FOR A AND f

Substituting the linearized equation(2) into (9) yields an
equation for the perturbed vector and electrostatic potentials,

ivA − c = Sf −
pe

ens0dD
= FS j

ens0d − vD 3 eyGBy
s0dsxd + FS j

ens0d − vD 3 ezGBz
s0d

+
c

4pens0d
dBy

s0d

dx
Sfez 3 Bg + fey 3 Bg

By
s0dsxd
Bz

s0d D
+ chj −

mec

e
Sdve

dt
Dslineard

, sA1d

where the equilibrium magnetic fieldBs0d and plasma current
j s0d are given by(10) and(13). The termns1dj s0d /ens0d2 which
results from linearization ofj /en in (2) and takes into ac-
count the perturbation of plasma density does not contribute
to (A1) because of the force-free equilibrium conditionj s0d

3Bs0d=0.
Linearizing (4) with the use of linearized continuity

equation(7), ivn=ns0d= ·v, and Eq.(13) gives

Sdve

dt
Dslineard

= FivS j

ens0d − vD +
= · v

ens0d j s0dGS1 +
j y
s0dk

ens0dv
D

+
c

4pens0dS jx
ens0d − vxD

3
d

dx
FSez +

By
s0d

Bz
s0deyDdBy

s0d

dx
G , sA2d

where the Doppler shiftj y
s0dk/ens0dv is caused by the small,

~e jz
s0d /ens0d, y component of equilibrium electron flow. Since

(A2) is multiplied in (A1) by a smallme, the effect of finite
electron mass results is a small correction in(A1). It is neg-
ligible everywhere except the resonant surfacex=0, where
sdve/dtdslineard and the resistive termhj are the only nonzero
terms on the rhs of thez component of(A1) at x=0,
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ivAzS1 +
j y
s0dk

ens0dv
D = S jx

ens0d − vxDBy
s0dsxd + ch jz

−
mec

e
Sdve

dt
D

z

slineard
. sA3d

These terms serve as a mean to break the frozen flux theo-
rem. Since they are important only in the vicinity ofx=0,
one should leave in(A2) only those terms that give nonzero
contribution on the rhs of(A3) at x=0. SinceBz is odd inx,
we obtain from(23) and (B7); = ·vux=0=vzs0d=0. This indi-
cates that the termivj /ens0d on the rhs of(A2) is the most
important in the tearing layer,

Sdve

dt
Dslineard

=
ivj

ens0d . sA4d

Substituting(A4) in (A3), using] /]z=0, and dropping small
(proportional toe=By

s`d /Bz
s0d!1), the Doppler terms leads to

the equation forAz,

− ivsAz − d2=2Azd = saH=2Ax + vxdBy
s0dsxd, sA5d

where the combined collisionless and resistive skin depths
and the Hall factor are defined as follows:d2=c2/vpe

2

+ ic2h / s4pvd, aH=c/ s4pens0dd. Here, the plasma resistivity
is assumed to be constant.

Taking the projection of(A1) on y with the gauge
= ·A=0 gives the electrostatic potential

f −
pe

ens0d =
i

kc
Fv

k

d

dx
sAx − d2=2Axd + saH=2Ax + vxdBz

s0d

+ aHBx

dBy
s0d

dx
G . sA6d

Substituting(A6) into the x component of(A1) yields an
equation for the perpendicular componentAx that describes
the perturbation of the guiding magnetic fieldBz

=si /kd=2Ax,

v

k
s=2Ax − d2=4Axd = ikvzBy

s0dsxd − Bz
s0d = ·v

+ aHSBy
s0dsxd=2Bx − Bx

d2By
s0d

dx2 D
+ vx

By
s0dsxd
Bz

s0d
dBy

s0d

dx
. sA7d

Equations(A5) and (A7) are rewritten in Sec. II in terms of
Bx andBz while the last term on the rhs of(A7) is omitted.
Note that Eqs.(A5) and (A7) [but not (A6)] can be alterna-
tively derived by taking, respectively, thex and thez com-
ponents of the curl of Eq.(2).

APPENDIX B: MOMENTUM AND PRESSURE
EQUATIONS

Presenting small perturbationspi,esxd!pi,e
s0d of ion and

electron pressures in the form pi,esx,y,td=pi,e
s0d

+pi,esxdexp isky−vtd with uniform equilibrium pressures
pi,e

s0d, = ·j =0 and partial derivatives] /]z=0, yields linearized
equations(6),

ivpisxd = gipi
s0d = · v, sB1d

ivpe − gepe
s0d = · v+

ge

ens0d sj
s0d · = dpe −

gepe
s0d

ens0d2 sj s0d · = dn

= sivpe − gepe
s0d = · vdS1 +

j y
s0dk

ens0dv
D = 0. sB2d

Using e!1 to neglect the Doppler shift in(B2) leads to the
identical form of responses for ions(B1), electrons(B2) and
total pressures,

p =
cs

2rs0d

iv
= · v, sB3d

where the ion sound speed iscs
2=sgeTe

s0d+giTi
s0dd /mi. Since in

the equilibrium state,vs0d=0, the linearized equation(1) is

− ivrs0dv = − = Sp +
Bs0dB

4p
D +

1

4p
fsBs0d· = dB+sB· = dBs0dg.

sB4d

The components of(B4) are as follows:

− ivrs0dvx = −
d

dx
Sp +

Bz
s0dBz + By

s0dBy

4p
D +

ikBy
s0d

4p
Bx, sB5d

− ivrs0dvy = − ikSp +
Bz

s0dBz

4p
D +

1

4p

dBy
s0d

dx
Bx, sB6d

− ivrs0dvz =
ikBy

s0d

4p
Bz +

1

4p

dBz
s0d

dx
Bx. sB7d

Combining(B5) and (B6) to form = ·v on the lhs and sub-
stituting p in terms of= ·v from (B3), yields an equation for
plasma compressibility(18). Substituting perturbations ofp
+Bz

s0dBz/4p from (B6) to (B5) leads to the vorticity equation
(17). The equation can be alternatively derived by taking the
x component of the curl of Eq.(B4).
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