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Abstract 

 
We describe properties of the reduced quintic triangular finite element.  The expansion 
used in the element will represent a complete quartic polynomial in two dimensions, and 
thus the error will be of order h5 if the solution is sufficiently smooth.   The quintic terms 
are constrained to enforce C1 continuity across element boundaries, allowing their use 
with partial differential equations involving derivatives up to fourth order.  There are only 
three unknowns per node in the global problem, which leads to lower rank matrices when 
compared with other high-order methods with similar accuracy but lower order 
continuity.  The integrations to form the matrix elements are all done in closed form, 
even for the nonlinear terms. The element is shown to be well suited for elliptic 
problems, anisotropic diffusion, the Grad-Shafranov-Schlüter equation, and the time-
dependent MHD or extended MHD equations.  The element is also well suited for 3D 
calculations when the third (angular) dimension is represented as a Fourier series. 
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I. Introduction 
 
Two dimensional (2D) finite elements are being used in a wide variety of fusion 
applications.  Even in fully 3D calculations in toroidal geometry, it is common to use 2D 
elements in the poloidal plane, and to use either finite differences or a Fourier spectral 
representation in the toroidal angle. 
 
While early work used primarily linear elements[1,2], it is now recognized that higher 
order elements offer significant advantages, and are essential to adequately represent 
highly anisotropic heat transport and other anisotropic processes[3,4,6].  However, the 
application of high-order elements to fusion problems has so far been restricted to the 
class of elements known as C0 elements, which includes both the spectral and the 
Lagrange basis.   These are constructed so as to have the unknown function continuous 
between elements, but none of its derivatives are forced to be continuous.  The rational 
for this is that it is less complex to construct such elements and if the minimizing solution 
has high-order continuity, this solution will emerge from the Galerkin process without 
having to be specifically imposed. 
 
However, there are clearly some advantages in using elements with higher order intrinsic 
continuity.  We can expect that for a problem whose solution has continuous first-
derivatives everywhere, i.e. satisfies C1 continuity, fewer basis functions will be required 
per element to approximate the true solution if the C1 constraint is imposed in the 
construction of the basis functions, i.e. if the degrees of freedom that are not compatible 
with global C1 continuity have been discarded from the outset.  We can further expect 
that this will lead to smaller matrix sizes with similar sparseness patterns to the matrices 
that arise with the C0 elements, and thus a more efficient solution procedure should result. 
 
Also, many problems in extended MHD involve operators higher than second order in 
space.  Examples of these are the viscosity operator in the vorticity equation, and the 
hyper-resistivity operator in the magnetic flux equation.   The C1 elements allow the 
treatment of fourth order operators by using the standard Galerkin technique of shifting 
two of the derivatives to the trial function, whereas this is not possible with the C0 
elements, which need to introduce auxiliary variables and expand them in finite elements.  
Thus, the C1 elements can expect to have an additional efficiency and resultant smaller 
matrices since they do not need to introduce these auxiliary variables when third or fourth 
order derivatives are present.  Conversely, in some cases several low order equations can 
be combined to produce a smaller number of higher order equations that can be 
approximated directly with these elements that possess higher order continuity. 
 
We consider only triangular finite elements in this paper, in fact, only a particular 
triangular finite element known as the reduced quintic [6] (also called the Bell triangle 
[7,8] and the TUBA 3 element [9]).  This reflects a bias that triangular elements are more 
flexible for representing complex geometry, and can be easily refined as needed simply 
by dividing one triangle into three or more.  It is especially efficient and convenient when 
the different triangles connect only via the vertices, and that is where all the unknowns 
are defined.  With these constraints, and that of C1 continuity, the reduced quintic 
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element emerges.  While this element has been used in structural engineering studies 
since the late 1960s [10], it has apparently been overlooked by the extended MHD 
community.  Here we show that it has some real advantages, and should be seriously 
considered as a basis for contemporary computational models of extended MHD in 
magnetized plasmas. 
 
II. The Reduced Quintic Finite Element 
 
A. The Elements 
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Consider the reduced quintic 2D triangular finite element in the x-y plane as depicted in 
Fig. 1.  In each triangular element, the unknown function φ(x, y) is written as a general 

polynomial of 5th degree in the local Cartesian coordinates ξ andη:  
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(where the exponents mi, ni are given in Table 1) which would have 21 coefficients were 
there not additional constraints.  Eighteen of the coefficients are determined from 
specifying the valuesφ, φx, φy, φxx, φxy; φyy at each of the 3 vertices, thus guaranteeing that 
globally all first and second derivatives will be continuous at each vertex.  Since the one-
dimensional quintic polynomial along each edge is completely determined by these 
values specified at the endpoints, it is guaranteed that the expansion is continuous 
between elements. 

 
The remaining three 
constraints come from the 
requirement that the normal 
derivative of φ at each edge, 
φn, reduce to a one-
dimensional cubic 
polynomial along that edge. 
This implies that the two 
sets of nodal values 
completely determine φn 
everywhere on each edge, 
guaranteeing its continuity 
from one triangle to the 
next so that the element is 
C1. One of these three 
constrains is trivial and has 
been used to reduce the 
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Figure 1: Reduced quintic finite element is defined by the 4 
geometric parameters a, b, c,  θ.   A local (ξ ,η) Cartesian 
system is used.  The function and first 2 derivatives are 
constrained at the 3 points, and C1 continuity is imposed at 
the edges .  Exponents mi and ni are given in table 1. 
number of terms from 21 to 
 the sum. 

 that in imposing these continuity constraints, the expansion is no longer a complete 
tic, but it does contain a complete quartic with additional constrained quintic 
ficients to enforce C1 continuity between elements.  Thus the name, “reduced 
tic”. If the characteristic size of the element is h, then it follows from a local Taylor’s 
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series analysis that the approximation error in the unknown function, φ - φh, will be of 
order h5, which leads to global O (h5) accuracy after integrating over the element.  
 
 
k mk nk k mk nk k mk nk k mk nk 
1 0 0 6 0 2 11 4 0 16 5 0 
2 1 0 7 3 0 12 3 1 17 3 2 
3 0 1 8 2 1 13 2 2 18 2 3 
4 2 0 9 1 2 14 1 3 19 1 4 
5 1 1 10 0 3 15 0 4 20 0 5 

Table 1: Exponents of ξ and η for the reduced quintic expansion 
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Suppose that we are approximating a square domain by partitioning it into n2 squares or 
2n2 triangles.  The reduced quintic will asymptotically have N=6n2 unknowns, or three 
unknowns for each triangle.  This scaling can be verified by the fact that if we introduce a 
new point into any triangle and connect it to the 3 nearby points; we will have generated 
2 new triangles and introduced 6 new unknowns.  We contrast this with linear elements 
that require only φ at the nodes and thus have C0 continuity, ½ unknown per triangle, and 
an approximation error of order h2. 
 
Another popular class of higher order 2D finite elements, that has only C0 continuity 
enforced, is the Lagrangian elements.  These use as a basis within each element a set of 
basis functions that are unity at a particular node and that vanish at all other nodes.  
Continuity requires that there be M+1 nodes along each side for an Mth order polynomial 
element, with the remaining nodes being interior nodes (or “bubble nodes”).  Thus for the 
Lagrangian elements, a quadratic element (6 coefficients per triangle) will have 3 nodes 
along each edge (2 vertex nodes and 1 edge node), a cubic element (10 coefficients per 
triangle) will have 4 nodes along each edge (2 vertex nodes and 2 edge nodes) and 1 
interior node and a quartic element (15 coefficients per triangle) will have a total of 3 
vertex nodes, 9 edge nodes, and 3 interior nodes.  It is easily seen that these higher-order 
elements will asymptotically have 2, 4½, and 8 unknowns per triangle (UK/T), 
respectively, (or 2, 3½ and 5 if you discount the interior nodes that can be efficiently 
eliminated by static condensation).  We summarize these 2D triangular elements in Table 
2. 
 
 Vertex 

nodes 
Line 
nodes

Interior 
nodes 

accuracy 
order hp 

UK/T UK/T# 
 

continuity

linear element 3 0 0 2 ½ ½ C0 
Lagrange quadratic 3 3 0 3 2 2 C0 
Lagrange cubic 3 6 1 4 4½ 3 ½ C0 
Lagrange quartic 3 9 3 5 8 5 C0 
reduced quintic 18 0 0 5 3 3 C1 * 

Table 2:  Summary of properties of the reduced quintic and the low-order Lagrange elements.  UK/T 
is the number of unknowns per triangle.  * note C2 continuity at nodes.  UK/T#  is the number of 
unknowns per triangle, not  counting  interior nodes 
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B. Computations: 
It is shown in Appendix A that if we locally number the unknowns  φ, φx, φy, φxx, φxy, φyy  
at P1 as Φ1-Φ6, at P2 as Φ7-Φ12,  and at P3 as Φ13-Φ18, then the coefficients ai  for a given 
element are determined uniquely by the relation: 
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j

a g
=
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where the 20 ×18 matrix gi,j depends only on the shape and orientation of the individual 
triangle.  Thus, the general expression for the unknown function φ in a given triangle is: 
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We have defined the basis functions as 
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for j=1,18.  The 18 basis functions for each triangle, as defined in Eq. (1.4) have the 
property that they have a unit value for either the function or one of it’s first or second 
derivatives at one vertex and zero for the other quantities at this and the other nodes.  
They also have the C1 continuity property embedded.  We illustrate the first six of these, 
associated with a particular vertex P1, in Fig. 2.  It is seen that unlike the Lagrange basis 
functions, these individual basis functions do not change sign within a triangle which 
might be an advantage in preserving positivity for physical quantities such as the density 
or pressure. 
 
All of the integrals that need to be done to define the matrices that occur in the Galerkin 
method are of the form of 2D integrals of polynomials in ξ and η over the triangles.  It is 
possible to convert these to sums of integrals that can each be done analytically by 
making use of the formula: 
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Thus, all integrations are done in closed form to machine precision. 
 
Consider a common integral (traditionally called the mass matrix) over the triangle that 
occurs when we apply the Galerkin method to applications that will be discussed in the 
next section: 
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 (1.6) 
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Other integrals needed for the applications presented, all of whose calculation is 
straightforward, are given in Appendix B. 
 
 

 
Figure 2: The 6 trial functions associated with the point P1 in the lower left corner.   (a) φ=1, (b) φx=1,  
(c) φy=1, (d) φxx=1, (e) φxy=1, (f) φyy=1.  None of the functions alternate sign.   Red=1, Blue=0. 

 
Essential boundary conditions are readily implemented by replacing the rows of the 
matrix Mi,j in Eq. (1.6) corresponding to the function value or derivative for which a 
boundary condition is to be applied by a row with zeros everywhere except for the 
diagonal, in which there is placed a one.   Then the boundary value of the corresponding 
function or derivative is placed in the corresponding location in the RHS vector. 
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y(a) (b) Figure 3:  Region 
is divided into 
regular rectangles, 
each of which is 
divided into two 
right triangles.  
Mesh (a) has 6 
sides per vertex; 
Mesh (b) alternates 
4 and 8 sides per 
vertex. 
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III.  Applications 
We present several examples that illustrate the accuracy and simplicity of this method.  
These applications are typical of those encountered in fusion MHD applications. 
 
a.  A Simple Elliptic Problem 
Here we present a basic application of the method to a solution of Poisson’s equation in a 
rectangular domain.  Consider the equation: 

            
2 ( , )f x y∇ Φ =                                                           (1.7) 

We wish to solve Eq. (1.7) on the domain 0 ; 0x yx L y L< < < < with Dirichlet boundary 
conditions: Φ = .  Equation (1.7) is equivalent to 
finding the function Φ(x,y) that minimizes the functional: 

(0, ) ( , ) ( ,0) ( , ) 0xy L y x x LxΦ = Φ = Φ =

21
2

0
0

( )
x
y

x L
y L

I f dxdy
< <
< <

⎡Φ = ∇Φ + Φ⎣∫∫ ⎤
⎦                                                (1.8) 

For illustration, we choose the function 
f(x,y) obtained by differentiating the exact 
solution: Φ(x,y) =x(x-Lx)y(y-Ly) sinkx.   For 
Lx=Ly=4, a square mesh is divided into N2 
regular square subdivisions, each of which 
is divided into two right triangles as shown 
in Fig. 3(a), so that there are a total of 2N2 
triangular elements with the linear 
dimension of each scaling like 1/N.  
 
The integrals in Eq. (1.8) are evaluated in 
Appendix B. Minimization gives the matrix 
equation 
 

             K                          (1.9)                                     Φ = F
 
which is solved for the unknown vector Φ 
using the sparse matrix direct solver routine 
SuperLU [11]. 
 
In Fig. 4 we plot the L2 norm of the error in 
the solution for several values of N and k, 
verifying that we obtain the expected 1/N5 
scaling.    Note that there is approximately one 
wavelength per cell when k = π N / 4.  
 

b.     Anisotropic Thermal Conduction 
The second example is a demonstration of the accu
conduction.  Let B be a 2-dimensional magnetic fie
function ψ(x,y) , i.e., ẑ ψ= ×∇B  and suppose the s
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Figure 4:  Elliptic equation exhibits
1/N5 scaling
rate calculation of anisotropic thermal 
ld written in terms of a given flux 
ource function S(x,y) is given, as are 



the two constants denoting the isotropic thermal conductivity κ, and the parallel thermal 
conductivity κ|| .  Consider the functional 

 2 21 1
2 2 ( , )I Sκ κ⎡= ∇Φ + ∇Φ +⎣∫∫ Bi x y ⎤Φ⎦  (1.10) 

Minimizing this with respect to the unknown function Φ gives the steady state 
anisotropic heat conduction equation:   

( , )S x yκ κ∇ ∇Φ + ∇ ∇Φ =BBi i i                                         (1.11) 
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The details of the evaluation of the matrix 
elements are given in Appendix B.  For this 

application we let ( , ) sin sin
x y

x yx y
L L
π πψ =  , 

κ=1, and 
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( ) ( )22

sin sin
( , ) x y

x y

x L y
S x y

L L

π π

π π
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+

L
(1.11) 

 
Since the magnetic field flux function is 
proportional to the source function, it is 
readily verified that the solution should be 
independent of the value of the parallel 
conductivity κ||, thus simplifying the error 
comparison. 
 
The results are shown in Fig. 5.  Again, we 
verify that at least N-5 scaling is obtained, 

and that reasonable accuracy (10-5) can be 
obtained for values of κ||/κ as large as 108 for 
values of N as low as 60.   Note that the mesh 
shown in Fig. 3(a) was again used, so that there wa
element boundaries with the magnetic field directio

 

 
c.     Ideal Tilting of an Incompressible Column 
The incompressible MHD equations in 2D can be w
and a flux function ψ using the normal Poisson bra
differentiation), i.e., [ ], x y y xf g f g f g f gξ η≡ − = −

 
[ ]
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2
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,

t
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φ φ φ

ψ ψ φ η ψ

∂ ⎡ ⎤ ⎡∇ + ∇ − ∇⎣ ⎦ ⎣∂
∂

+ = ∇
∂

Here µ and η are constants denoting the plasma vis
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convergence for anisotropic diffusion
s absolutely no attempt to align the 
n for this demonstration.  

ritten in terms of a stream function φ 
cket notation (where subscripts denote 
f gη ξ   

2 , 4ψ ψ µ φ⎤ = ∇⎦
 (1.12) 

cosity and resistivity, respectively.   



Note that these equations obey an energy theorem: 

 
2 22 2 2 21

2
domain

dxdy
t

φ ψ η ψ µ∂ φ⎡ ⎤⎡ ⎤∇ + ∇ = − ∇ + ∇⎢ ⎥⎣ ⎦ ⎣ ⎦∂ ∫∫  (1.13) 

subject to the vanishing of ∂ψ/∂t,φ, and n⋅∇φ on the boundary. 
 
Applying Galerkin’s method to the set of equations (1.13), using the reduced quintic 
finite element, and applying θ-weighted implicit finite differencing yields the following 
set of matrix equations to advance the solution from time n to n+1: 
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  (1.14) 
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where , , , , , ,i j k i j k i k jG G .The quantities occurring in the matrix are defined in the text 
and in Appendix B.  Note that in the applications presented here, we set Φ*=Φn and 

Ψ*=Ψn, which necessitated inverting the matrix 
on the left in Eq. (1.15) each time step.  
However, it may be possible in many 
applications to obtain stable and accurate 
calculations by keeping Φ* and Ψ* fixed for a 
number of time steps, thus significantly 
reducing the solution time.  This is always the 
case in a linear calculation.  

G≡ +

0 1

1

[2 / ( )] ( ) c
( 1/ )cos ,

( ) 0.

kJ k J kr
r r

J k

 
 Following [1,12] we define an initial bipolar 
vortex equilibrium state: 
 

 
os , 1,

1,
r
r

θ
ψ

θ
⎧
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<

− >⎩
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 (1.16) 

 
When perturbed, an instability occurs, 
growing exponentially as exp γt.  The 

 

 

Figure 6:  Convergence study of linear
growth rate for tilt mode problem 
simulation box is again the square in Fig. 3(a) 
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with sides of length 4 that is divided into N×N rectangular regions, each with 2 triangles.  
Conducting, no slip boundary conditions are applied at the wall: φ=0, n⋅∇φ=0, ∂ψ/∂t=0.  
The first and second tangential derivatives of these quantities are also set to zero. 
 
We show in Fig. 6 the dependence of the linear growth rate γ on the size of the time step 
∆t for a sequence of runs with µ=0.005, η=0.001, θ = 0.5, and varying number of 
rectangular regions per dimension N.  For the smallest time step used, δt=0.01, the 
growth rate γ was 1.2876, changing only in the 6th decimal place when varying N from 30 
to 40, making a further convergence study in N unnecessary. 
 
In the nonlinear stages, near singular current sheets form and the resolution requirements 
become more demanding. We plot the maximum perturbed current density vs. time (as 
determined from taking the maximum value on a 400×400 evaluation grid) for a run with 
(µ, η) = (5.×10-3,10-4) in Fig. 7 for three different linear resolutions, N= 20, 30, 40.  We 
monitor energy conservation as to how accurately Eq. (1.14) is satisfied.  The calculation 
used an initial time step of δt=0.02, which 
was reduced when the energy conservation 
was violated by more than 1%.  When δt < 
0.0002, the calculation was stopped. 
 

We see from Fig. 7 that the calculations 
with N=20, 30, 40 give essentially the same 
results until the singularity begins its 
exponential growth, and that the N=40 
calculation can follow the singularity to 
about 4-times the height of the N=20 
calculation while still maintaining energy 
conservation to within 1%.   If we relax this 
stringent energy conservation requirement, the calculations would proceed much further 
without failing. 

Figure 7: Maximum perturbed current in the 
tilt-mode calculation as a function of time for 
three resolutions 

 
These calculations were repeated for N=40 using the second mesh system shown in Fig. 3 
as (b).   We find essentially the same results, with the growth rate of the linear mode 
changing only beyond the 6th decimal place, and the eigenfunctions appearing identical. 
 
Appendix C presents a form of the above equations that is especially convenient for 
looking at small deviations from an equilibrium configuration (linearized displacements). 
The linearized application is particularly efficient for a direct solver (SuperLU) as it 
requires only a single LU decomposition for a time dependent problem, and just a back 
substitution each time step.   
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Appendix D combines the two equations into a higher order equation for the stream 
function φ that does not require the solution of the ψ equation.  This leads to a very 
efficient implicit time advance that highlights the advantages of using C1 continuity 
elements. 

 
Figure 8:  Poloidal flux at times t=0 (a) and t=5 (b) and plasma current at times t=0 (c) and t=5 (d) 
for the tilt mode problem with N=40.  The singular currents can be seen developing in (d) 

 
Figure 9:  Stream function (a) and vorticity (b) for the tilt mode problem with N=40 at time t=5. 
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d. The Grad-Shafranov-Schlüter (GSS) Equation 
The equation that the poloidal magnetic flux function satisfies in force-balance for a 2D 
axisymmetric plasma equilibrium is well known to be: 

 1 1 1( ) ( )xp gg
x x x y x y x

ψ ψ ψ ψ∂ ∂ ∂ ∂ ⎛ ′ ′+ = − +⎜∂ ∂ ∂ ∂ ⎝ ⎠
⎞
⎟  (1.17) 

Here, p(ψ) is the plasma pressure, g(ψ) is the toroidal field function so that g(ψ)/x is the 
toroidal field strength, and prime denotes a derivative with respect toψ, the solution. To 
fully specify the problem, one must prescribe the two functions ( )p ψ′  and ( )gg ψ′  along 
with the boundary values forψ.   It is convenient to define the normalized flux function as 

0( ) /ψ ψ ψ ψ≡ − ∆  , where we denote by ψ0 the value of the poloidal flux at the magnetic 
axis, and by ψL the value at the plasma-vacuum boundary, which is defined by the value 
of ψ at a specified limiter location (xL, yL).  We further define the flux depth of the 
plasma as ∆ψ ≡ ψL -ψ0 so that values of 0 1ψ≤ <  reside in the plasma, and values 1 ψ≤  
are in the surrounding vacuum region.  For these studies, we define the pressure and 
toroidal field functions as functions of the normalized poloidal flux function, 

( )p p ψ= and 2 2 ( )g g ψ= , with the functional form specified as follows:  
 

 
2 3

0 1 2 1 2 1 2
5 6

1 2

( ) [1 (20 10 4 ) (45 20 6 )

(36 15 4 ) (10 4 1 2) ]

4p s p p s p s p p s p p s

p p s p p s

= + + − + + + + +

− + + + + +
 (1.18) 

 
and 

  (1.19) 2 2
0 1 1 2 2 3 3( ) ( ) ( ) ( ) ( )g s g s G s G s G sγ γ γ= + + +

where  

  (1.20) 

3 4 5
1

2 3 4 5 6
2

3 4 5
3

( ) 10 20 15 4

( ) 4 6 4

( ) 1 20 45 36 10

G s s s s s s

G s s s s s s

G s s s s

= − + − +

= − + − +

= − + − +

6

6s
 
These functional forms have been chosen so that the plasma current and pressure will go 
smoothly to zero at the plasma-vacuum boundary.  The pressure function is then specified 
in terms of the three constants, p0, p1, and p2.  The three constants appearing in the 
toroidal field function, γ1, γ2, and γ3, are used to prescribe the total plasma current Ip , the 
normalized reciprocal current density on axis q0, and the slope of the current density near 
the axis Jψ, respectively.  The constant g0 is the value of the toroidal field function due to 
the external fields.   Thus, the constants appearing in Eq. (1.19) are given by: 

 

( )
( )
( )

2
1 0 0 0 1 0 0

2 0 2

3 1 1 2 2 0

2 /

/ 2

/P

0

3

R R p p g R q

J p p

I I I I I
ψ

γ ψ

γ ψ

γ γ γ

= − + ∆

= − ∆ +

= − + + +

 (1.21) 

The required integrals are obtained by first expressing the x and y derivatives of the 
functions 1 1 1

1 2 32 2 2( ), ( ), ( ), ( )x x xxp G G Gψ ψ ψ′ ′ ′ ′ ψ at each node in terms of the unknown 
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vector  and then using the finite element expansion (1.3) to 
extend these over the triangles so that the integrals can be performed in closed form.  
Thus,  

, , , , ,x y xx xy yyψ ψ ψ ψ ψ ψ⎡≡ ⎣Ψ ⎤⎦

 
( )

( )

18

0
1 1

18
1 1

2 2
1 1

( )

( ) , 1,3

N

j j
l jplasma

N

k k j kx x j
l jplasma

I xp dxdy C xp

I G dxdy C G k

ψ

ψ

= =

= =

′ ′= =

′ ′= =

∑∑∫∫

∑∑∫∫ =
 (1.22) 

 
 
where the first sum is over the N triangular elements, and we have denoted by ( ) j

xp′ , etc, 

the value of the function in brackets and it’s derivatives through second order with 
respect to x and y at each of the three nodes defining each triangle.  The integrating factor 

appearing in Eq. (1.22) is given by .  These integrals and constants 

are recomputed each iteration as ψ changes. 

20

,
1

( ,j p j p
p

C g F m n
=

= ∑ )p

 
The Galerkin method, together with a Picard iteration for the nonlinear equation (1.17) 
consists of multiplying by each test function, performing an integration by parts, 
integrating over the domain, and applying the iteration scheme: 

  (1.23) n+1 nA Ψ = B(Ψ )i
where the matrix and vector elements are given in Appendix B.  The boundary values are 
given using an analytic formula for the vector potential due to a filament source plus a 
uniform dipole field, which is required for equilibrium.  Thus, at a boundary point of the 
domain (xb,yb), the unknown ψ and its tangential derivatives are calculated from the 
formula: 

 ( ) ( )2 2
0 0 0( , ) , ; , / 2b b P b b V bx y I G x y x y B x xψ ⎡ ⎤= + −⎣ ⎦  (1.24) 

where 

 

( ) ( )0 2 2 2
0 0

2 0
2 2

0 0

0

0

, ; , 2 ( ) 2 ( )
2

4
( ) ( )

81 3ln
4 2 2

b
b b

b

b b

i
V P

x x
G x y x y k K k E k

k
x xk

x x y y

xB
x a

π

β
π

⎡ ⎤= − −⎣ ⎦

=
+ + −

⎡ ⎤⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟+⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (1.25) 

with K(k2) and E(k2) being the complete elliptic integrals of the first and second kind, a is 
the plasma minor radius, defined by a2=(x0 – xL)2 + (z0 – zL)2 , and i and βP are the 
plasma internal inductance and poloidal beta.  These are enforced by zeroing out the 
corresponding row of A in Eq. (1.23), and inserting a one on the diagonal, and the 
boundary value in the appropriate location in B.  This is done for ψ and its first two 
tangential derivatives. 
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In the results presented here, we computed on the rectangular domain: 10 < x < 14, -2 < y 
< 2, that was divided into 2N2 equally spaced triangular elements.  Other parameters were 
(x0,y0) = (12.1,0.), (xL, yL) = (10.5, 0.), p0 = 0.01, p1 = -1., p2 = 0., IP = 1., g0 = 36.4, q0 = 
1., Jψ=0, and we set ( i/2 + βP)=1.2.   
 
This gives a value of ψ0 = -6.165228, changing only in the 7th decimal place for N ≥ 15. 
We plot in Fig. 10 the L2 error in Eq. (1.17) as a function of N.  This is defined by 
directly evaluating each side of Eq. (1.17) at each node point in the plasma region, 
squaring the difference, summing these, and taking the square root of the sum divided by 
the number of node points summed.  It is seen that the error converges approximately as 
N-3.5

.  We postulate that this behavior is due to the fact that the functions in Eq. (1.17) 
only have continuous derivatives through second order at the plasma-vacuum interface, 
and thus the higher order terms in the expansion are not completely effective in reducing 
the error further. 
 

IV. Summary and Discussion 
We have shown that the reduced quintic 2D 
triangular finite element is well-suited for many 
problems arising in fusion MHD applications. It is 
easy to work with, and has excellent convergence 
properties if the actual solution is smooth enough. 
 
We have demonstrated it’s applicability on a 2D 
elliptic problem, in the solution of the anisotropic 
heat conduction problem, in a time-dependent 
reduced-MHD problem and for the 2D 
axisymmetric toroidal equilibrium problem. 
 

The element requires only three unknowns per 
triangle, which is considerably less than other high-
order elements of comparable accuracy (Table 2).  
The fact that it forces C1 continuity, and is thus 
suitable for problems involving derivatives up to fourth o
efficient for systems of equations that can be combined i
order equations. 

 

 
This property to handle higher order equations was utiliz
reduced incompressible resistive MHD equations in a ful
two sequential sparse matrix linear solves, each of rank (
triangles.  We can contrast this to C0 methods of compara
to solve the combined system together (more variables), 
unknowns per triangle per variable, resulting in consider
 
It has been recognized since the 1970s that the reduced q
advantageous properties.  In [6] it is referred to as “one o
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Figure 10: RMS error in GSS 
equation as a function of elements
per side.  Convergence is ~ N-3.5 
rder in space makes it very 
nto a smaller number of higher 

ed in Appendix D to cast the 
ly implicit form that consisted of 
3N)2 for a problem with N 
ble accuracy, which would have 

and would also have more 
ably larger matrices. 

uintic finite element has many 
f the most interesting and 



ingenious of all finite elements” and it states that “a series of careful numerical 
experiments has given first prize to this remarkable element”, referring to the studies in 
reference [10].  The example problems presented in this paper support the notion that this 
element offers many advantages for extended MHD calculations.  Future studies will 
focus on a more complete system of equations, and on the application of the element to 
irregular domains. 
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Appendix A:  The transformation matrix 
 
To derive the transformation matrix gi,j , we first calculate the value of φ and it’s 
derivatives with respect to the local Cartesian coordinates ξ and η at the three vertex 
points, and combine this with the two constraint equations enforcing C1 continuity along 
the edges.  (Note that the third constraint was automatically satisfied in removing the 21st 

coefficient in the sum).  Using the expansion 
20

1

( , ) i im n
i

i

aφ ξ η ξ η
=

= ∑ , the two additional 

constraint equations become: 
5b4ca16 + (3b2c3 – 2b4c) a17 + (2bc4 – 3b3c2) a18 + (c5 – 4b2c3) a19 – 5bc4a20 = 0 
5a4ca16 + (3a2c3 – 2a4c) a17 + (-2ac4 – 3a3c2) a18 + (c5 – 4a2c3) a19 – 5ac4a20 = 0 
 
and thus the transformation matrix T in the local coordinates takes the form: 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
This satisfies , where ′Φ = T A ′Φ  denotes the vector produced by stringing together the 
function and derivatives with respect to ξ and η [Cartesian coordinates that are rotated 
with respect to (x,y).] at the three vertices, and with the final two elements zero: i.e. 

  This can be solved for the coefficient matrix 

by inverting T, thus .  A useful check is to verify that the numerically 
evaluated determinant of T has the value -64(a+b)17c20(a2+c2)(b2+c2).    Note that since 
the final two elements of   are zero, we can replace  by the 20×18 matrix  which 
consists of the first 18 columns of . 

1 1 1 1 1 1 2 3, , , , , , ,..., ,..., 0,0ξ η ξξ ξη ηηφ φ φ φ φ φ φ φ′ ⎡= ⎣Φ ⎤⎦

5

2 3

2 3

2 3

4

0 0 0 0 0 0
0 0 0 0 0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
0
0 0 0 2 0 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0
0 0 0 0 1 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0
0 0 0 0 0 2 0 0 0 6 0 0 0 0 12 0 0 0 0 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

a a a
c c c c c

c c c
c c c

c c c

a
2 3 4 5

4
4 3 2 2 3

2 3 4 5
4 4

4 3 2 2 3

3 2 52 3 4
3 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 52 3 4

a c ac cc aca c a c a c
b c bc cb c bcb c b c b c

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢
⎢

⎥
⎥
⎥
⎥
⎥

− − + − ⎥
⎥
⎥− − − − ⎥
⎦

′-1A = T Φ

′Φ -1T 2T
-1T

2 3 4 5

2 3 4

2 3

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 2 0 0 3 0 0 0 4 0 0 0 0 5 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0

b b b b b
b b b b

b b b

− − −
− −

− −

=

2 3

2

2 3

2 3 4 5

2 3 4

2 3

2 3

2

0 0 0
0 0 0 2 0 0 6 0 0 0 12 0 0 0 0 20 0 0 0 0
0 0 0 0 1 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 2 0 0 3 0 0 0 4 0 0 0 0 5 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 6 0 0 0 12 0 0 0 0 20 0 0 0 0
0 0 0 0 1 0 0 2 0 0 0 3 0 0

b b b
b b

b b b
a a a a a

a a a a
a a a

a a a
a a

− −
−

− −

2 3

2 3 4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

2 3 4

2 3 4
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 2 0 0 0 3 0 0 0 0 4 0 0 0 0 5

c c c c
c c c c

⎥
⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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To get the coefficient matrix A in terms of the vector containing the actual derivatives 
with respect to (x,y), we have to apply the rotation matrix R.    This is compactly defined 
in terms of the angle θ appearing in Fig. 1 by: 
 

 
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1

1

1

R
R R

R
 (1.26) 

where 

 2 2

2 2

2 2

1 0 0 0 0 0
0 cos sin 0 0 0
0 sin cos 0 0 0
0 0 0 cos 2sin cos sin
0 0 0 sin cos cos sin sin cos
0 0 0 sin 2sin cos cos

θ θ
θ θ

θ θ θ θ
θ θ θ θ θ

θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

1R

θ
θ

j

 (1.27) 

 
Thus, if we define the matrix , this relates the coefficient matrix directly to the 
unknown vector consisting of the function and derivatives with respect to (x,y), 

thus: , or in component notation: 

2G = T R

A = GΦ
18

,
1

i i j
j

a g
=

= Φ∑   for i=1,20. 
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Appendix B:  Matrix Elements 
 
The most basic matrix element was given in Eq. (1.6).  Here we give the remaining ones 
that occur in the example problems that have been presented.  In obtaining these results, 
we perform integration by parts as required to equalize the number of derivatives 
operating on the test and trial functions. 

 (1.28) 

18
2

,
1

20 20

, , ,
1 1

( , ) ( , )

( 2, ) ( , 2)

j j k k
k

j k p j q k p q p q p q p q p q p q
p q

v d d A

A g g m m F m m n n n n F m m n n

ξ η φ ξ η ξ η
=

= =

∇ = Φ

⎡ ⎤= + − + + +⎣ ⎦

∑∫∫

∑∑ + −

 

 

18
4

,
1

20 20

, , ,
1 1

( , ) ( , )

( 1) ( 1) ( 4, )

( 1) ( 1) ( , 4)

[ ( 1) ( 1) ( 1) ( 1)]

( 2, 2)

j j k k
k

p p q q p q p q

p p q q p q p q
j k p j q k

p q p p q q q q p p

p q p q

v d d B

m m m m F m m n n

n n n n F m m n n
B g g

m m n n m m n n

F m m n n

ξ η φ ξ η ξ η
=

= =

∇ = Φ

− − × + − +⎧ ⎫
⎪ ⎪

+ − − × + + −⎪ ⎪= − ⎨ ⎬+ − − + − −⎪ ⎪
⎪ ⎪× + − + −⎩ ⎭

∑∫∫

∑∑
(1.29) 

 
 

  
In 2D, if the magnetic field is written as ẑ ψ= ×∇B , and if ψ has the expansion as in Eq. 

(1.3), i.e., 
18

1
i i

i
ψ ν

=

= Ψ∑ , then we can compute the matrix element: 

[ ]
18

,
1

( , ) , ,j j

j k k
k

v d d v

R

d dξ η ξ η ψ φ ψ

=

⎡ ⎤∇ ∇Φ = ⎣ ⎦

= Φ

∫∫ ∫∫

∑

BBi i ξ η

2) l

m n− ×

 

 
( )( )

18 18 20 20 20 20

, , , , ,
1 1 1 1 1 1

( 2,

j k p j q i r k s l p q q p r s s r
i l p q r s

p q r s p q r s i

R g g g g m n m n m n

F m m m m n n n n
= = = = = =

≡ −

+ + + − + + + − Ψ Ψ

∑∑∑∑∑∑
 (1.30) 

 
  

 

( )
( )
( )

18 18
2

, ,
1 1

20 20 20

, , , , ,
1 1 1

( , ) ,

( 1) 3, 1

( 1) 1, 3

i i j k j k
j k

q q p q r p q r

i j k p i q j r k p r r p
p q r q q p q r p q r

v d d G

m m F m m m n n n
G g g g m n m n

n n F m m m n n n

ξ η ψ ψ ξ η
= =

= = =

⎡ ⎤∇ = Ψ Ψ⎣ ⎦

⎡ ⎤− + + − + + −
⎢ ⎥= −
⎢ ⎥+ − + + − + + −⎣ ⎦

∑∑∫∫

∑∑∑

 (1.31) 
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 (1.32) 
[ ]

( ) (

18 18

, ,
1 1

20 20 20

, , , , ,
1 1 1

( , ) ,

1, 1

i i j k j k
j k

i j k p i q j r k q r r q p q r p q r
p q r

v d d K

K g g g m n m n F m m m n n

ξ η ψ φ ξ η
= =

= = =

= Ψ Φ

= − + + −

∑∑∫∫

∑∑∑ )n+ + −

 
Suppose f(x,z) is a function with a known Taylor’s series expansion about the origin of 
each triangle: 

0 0

0 0

4

0 0
0 0 ,

4

0 0 0 0,

1( , ) ( ) ( )
!( )!

(cos ) ( sin ) (sin ) (cos )
!( )! !( )!

kk
l k l

l k l
k l x z

l p p k l q qkk l k l
k p q p q

l k l
k l p qx z

ff x z x x z z
l k l x z

f
x z p l p q k l q

θ θ θ θ ξ η

−
−

= =

− − −−
− − +

−
= = = =

⎡ ⎤∂
= − −⎢ ⎥− ∂ ∂⎣ ⎦

⎡ ⎤ −∂
= ⎢ ⎥∂ ∂ − − −⎣ ⎦

∑∑

∑∑ ∑ ∑
 

 
Then, we can compute: 
 

 

0 0

4

0 0 0 0

,

( , )

(cos ) ( sin ) (sin ) (cos )
!( )! !( )!

k l k l
i i
j klpq j

k l p q

l p p k l q qk
i i i i
klpq l k l

x z

f dxdz M F k p q m p q n

fM
x z p l p q k l q

ν j

iθ θ θ θ

−

= = = =

− − −

−

⎡ ⎤ = − − + + +⎣ ⎦

⎡ ⎤ −∂
= ⎢ ⎥∂ ∂ − − −⎣ ⎦

∑∑∑∑∫∫
 (1.33) 

 
where the index i refers to the number of the triangle. 
 
In order to evaluate the differential operator appearing in the GSS equation, we first 
expand the function (1/x) in terms of it’s derivatives as in Eq. (1.3), i.e. 

18

1
1/ (1/ )k

k
kx xν

=

= ∑ .  Using this, we can calculate the matrix element 

 

18

,
1

18 20 20 20

, , , ,
1 1 1 1

1 1

( 2, ) 1
( , 2)

j k j j
kelement

q r p q r p q r
k j p i q k r j

i p q r q r p q r p q r

dxdy I
x x x y x y

m m F m m m n n n
I g g g

n n F m m m n n n ix

ψ ψν
=

= = = =

⎛ ⎞∂ ∂ ∂ ∂
+ = Ψ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

+ + − + +⎡ ⎤ ⎛ ⎞= ⎢ ⎥ ⎜ ⎟+ + + + + − ⎝ ⎠⎢ ⎥⎣ ⎦

∑∫∫

∑∑∑∑
(1.34) 

 
The terms appearing on the right of Eq. (1.17) are readily calculated once terms like 

( )xp ψ′  are expanded in terms of their derivatives, i.e. ( )
18

1
j j

j

xp xν
=

p′ ′= ∑ , thus 

 ( )
18 20 20

, ,
1 1 1

( , )j p j q k p q p k
k p qtriangle

qxp dxdy g g F m m n n xpν
= = =

′ ′= +∑∑∑∫∫ +  (1.35) 
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Appendix C:  Alternate form for incompressible MHD matrices: 
 
The matrices in Eq. (1.15) can also be written in terms of the deviation of the solution 
from an initial equilibrium.  Thus, if we define the vector: 

 
0

0

nn
jj
nn
j jj

⎡ ⎤ j⎡ ⎤ ⎡ ⎤Φ ΦΦ
≡ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥Ψ ΨΨ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (1.36) 

The matrix equations can be written 

 
11 12 11 121

21 22 21 221

n n
j j j jj

n
j j j jj j

S S D D
S S D D

+

+

′ ′ ′ ′ j
n

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤ ⎤Φ Φ
=⎢ ⎥⎢ ⎥ ⎢ ⎥′ ′ ′ ′ ⎢ ⎥Ψ Ψ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎥⎣ ⎦ ⎣ ⎦

 (1.37) 

 
11 12 * 0 * 0

, , , , , ,
21 22 * 0 * 0

, , , , , ,

0111 12
, , , 2

21 22

[ ( ) ] ( )
( ) [ ( )

[

j j i j i j k k k i j i j k k k

j j i j k k k i j i k j k k i j

n
i j i j k k kj j

j j

S S A t G B tG
S S tK M t K A

A tGD D

D D

θδ µ θδ
θδ θδ η

δ

⎡ ⎤′ ′⎡ ⎤ + Φ + Φ + − Ψ + Ψ
= ⎢ ⎥⎢ ⎥′ ′ Ψ + Ψ + Φ + Φ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− Φ + Φ′ ′⎡ ⎤
⎢ ⎥

−⎢ ⎥ =⎢ ⎥′ ′⎢ ⎥
⎢ ⎥⎣ ⎦

]
01

, , 2

* 0 * 0
,

0 0 * 01 1
, , , , ,2 2

* 0
,

[

( ) (1 ) ] ( )]

[ { [

(1 ) }( )]

n
i j k k k

k k i j k k

n n
i j k k k i j i j k k k k k

i jk k

tG

B

tK M t K

A

δ

θ θ µ θ

δ δ

θ ηθ

⎡ ⎤Ψ + Ψ
⎢ ⎥

Φ + Φ + − − Ψ + Ψ⎢ ⎥
⎢ ⎥

− Ψ + Ψ − Φ + Φ − Φ + Φ⎢ ⎥
⎢ ⎥− −− Ψ + Ψ⎣ ⎦

( )]θ

 (1.38) 
This form allows the matrices to be evaluated only once per problem for a linear 
calculation.  In this case, the LU decomposition is performed only once at the outset, and 
Eq. (1.37) is solved every timestep with a matrix multiplication and the LU back-
substitution. 
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Appendix D:  A second alternative form for the reduced MHD equations matrices. 
 
We note that it is possible to eliminate ψ  from the time advancement equation for φ  in 
Eq. (1.13).  After applying the θ-centered time differencing, this yields the set of time 
advance equations: 
 

 
{ } { }2 2 1 2 2

1 2 1 2

2 0
2

( ) ( 1)n ntL t L tL t L

t L tR

θδ θδ θδ θ θ δ

θδ δ

+∇ + + Φ = ∇ + + − Φ

− Φ +
                   (1.39) 

 
  (1.40) 22 1 21 1 21 22n n nS S D D+ +′ ′ ′ ′Ψ = − Φ + Φ + Ψ n

 
The feature of this formulation is that Eq. (1.39) does not involve 1n+Ψ , and so these two 
equations can be solved in series, resulting in a much faster solution time compared to the 
formulation given in Eq. (1.15). 
 
We have defined the operators 
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⎤
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Evaluation of the terms in Eq. (1.39) requires computation of the new integrals that 
appear in the matrix elements.  For any functions , ,φ ψ ζ  with corresponding vectors 

: , ,Ψ Φ Ζ
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= = =

⎡ ⎤⎡ ⎤ ⎡ ⎤∇ = ∇ ⎣ ⎦⎣ ⎦⎣ ⎦

= Ψ Φ Ζ

∫∫ ∫∫

∑∑∑
 (1.41) 

where 
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 (1.42) 
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similarly,  

 
[ ] [ ]2 2
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, , ,
1 1 1

( , ) , , , ,
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i i
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 (1.43) 

Other needed relations follow from the permutation symmetry of the Poisson bracket, 
thus 

 , , , , , ,i j k l l j k iP P= −  (1.44) 
 
We further define 
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where  
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(1.46) 

 
Multiplying Eq. (1.39) by each test function, integrating over the triangles, and using 
these and previous definitions, we obtain: 
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and finally 
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