Adaptive Mesh Simulations of Pellet Injection in Tokamaks

Ravi Samtaney

Computational Plasma Physics Group Princeton Plasma Physics Laboratory Princeton University

SIAM Annual Conference July 10-14 2006, Boston, MA Acknowledgement: DOE SciDAC Program

Collaborators

- P. Colella and Applied Numerical Algorithms Group (LBNL)
- S. C. Jardin (PPPL)
- P. Parks (GA)
- D. Reynolds (UCSD)
- C. Woodward (LLNL)
- Funded through the TOPS, CEMM and APDEC SciDAC Centers. RS supported by US DOE Contract No. DE-AC020-76-CH03073

Outline

- Introduction and motivation
- Description of physical phenomenon
 - Spatial and temporal scales
- Equations and models
- Adaptive mesh refinement (AMR) for shaped plasma in flux-surface coordinates
- Results
 - HFS vs. LFS Pellet injection
- Newton-Krylov fully implicit method
- Future directions and conclusion

Pellet Injection & Edge Localized Modes

Motivation

- Injection of frozen hydrogen pellets is a viable method of fueling a tokamak
- Presently there is no satisfactory simulation or comprehensive predictive model for pellet injection (esp. for ITER)
- H-mode operation of ITER will be accompanied by edge localized modes (ELMS) (ITER Physics Experts Group,Nucl. Fusion 1999)
- Pellet injection related to ELMS (Gohill et al. PRL, 2001; Lang et al. Nucl. Fusion 2000)
- Objectives
 - Develop a comprehensive simulation capability for pellet injection and ELMs in tokamaks (esp. ITER) with modern technologies such as adaptive mesh refinement for spatial resolution and fully implicit Newton-Krylov approach for temporal stiffness

Physical Processes: Description

- <u>Non-local</u> electron transport along field lines rapidly heats the pellet cloud $(\underline{\tau}_e)$.
 - Frozen pellet encounters hot plasma and ablates rapidly
 - Neutral gas surrounding the solid pellet is ionized
 - Ionized, but cool plasma, continues to get heated by electrons
 - A high β "plasmoid" is created
- Ionized plasmoid expands
 - Fast magnetosonic time scale $\underline{\tau}_{f}$.
- Pellet mass moves across flux surfaces <u>τ</u>_a.
 - So-called "anomalous" transport across flux surfaces is accompanied by reconnection
- Pellet cloud expands along field lines <u>τ</u>_c.
 - Pellet mass distribution continues along field lines until pressure equilibration
- Pellet lifetime τ_{p}

Scales and Resolution Requirements

- Time Scales $\tau_e < \tau_f < \tau_a < \tau_c < \tau_p$
- Spatial scales: Pellet radius $r_p \ll Device size L \sim O(10^{-3})$
- Presence of magnetic reconnection further complicates things
 - Thickness of resistive layer scales with ~ $\eta^{1/2}$
 - Time scale for reconnection is ~ $\eta^{-1/2}$
- Pellet cloud density ~ O(10⁴) times ambient plasma density
- Electron heat flux is non-local
- Large pressure and density gradients in the vicinity of cloud
- Pellet lifetime ~ $O(10^{-3})$ s \rightarrow long time integrations

Resolution estimates

Tokamak	Major Radius	Ν	N _{steps}	Spacetime Points
CDXU (Small)	0.3	2 x 10 ⁷	2 x 10 ⁵	4 x 10 ¹²
DIIID (Medium)	1.75	3.3 x 10 ⁹	7 x 10 ⁶	2.3 x 10 ¹⁷
ITER (Large)	6.2	1.5 x 10 ¹¹	9 x 10 ⁷	1.4 x 10 ¹⁹

Related Work - Local vs. Global Simulations

- Earliest ablation model by Parks (Phys. Fluids 1978)
- Detailed multi-phase calculations in 2D of pellet ablation (MacAulay, PhD thesis, Princeton Univ 1993, Nuclear Fusion 1994)
- Detailed 2D Simulations of pellet ablation by Ishizaki, Parks et al. (Phys. Plasmas 2004)
 - Included atomic processes ablation, dissociation, ionization, pellet fluidization and distortion; semi-analytical model for electron heat flux from background plasma
- In above studies, the domain of investigation was restricted to only a few cm around the pellet
 - Furthermore, in these studies the magnetic field was static
- 3D Simulations by Strauss and Park (Phys. Plasmas, 1998)
 - Solve an initial value problem. Initial condition consisted of a density "blob" to mimic a <u>fully ablated</u> pellet cloud which, compared with device scales, was relatively large due to resolution restrictions
 - No motion of pellet modeled
- 3D Adaptive Mesh Simulation of pellet injection by Samtaney et al. (Comput. Phys. Comm, 2004)

Current Work

 Combine global MHD simulations in a tokamak geometry with detailed local physics including ablation, ionization and electron heating in the neighborhood of the pellet

- AMR techniques to mitigate the complexity of the multiple scales in the problem
- Newton-Krylov approach for wide range of temporal scales

Mathematical Model

Single fluid resistive MHD equations in conservation form

Ablation Model

 Mass source is given using the ablation model by Parks and Turnbull (Phy. Plasmas 1978) and Kuteev (Nuclear Fusion 1995)

$$\frac{dN}{dt} = -4\pi r_p^2 \frac{dr_p}{dt} 2n_m = 1.12 \times 10^{16} n_e^{0.333} T_e^{1.64} r_p^{1.33} M_i^{-0.333}$$

- Above equation uses cgs units

- Abalation occurs on the pellet surface $S_n = \dot{N}\delta(x x_p)$
 - Regularized as a truncated Gaussian of width 10 r_p
 - Pellet shape is spherical for all t
 - Pellet trajectory is specified as either HFS or LFS
 - Monte Carlo integration to determine average source in each finite volume

Electron Heat Flux Model

- Semi-analytical Model by Parks et al. (Phys. Plasmas 2000)
 - Assumes Maxwellian electrons and nealects pitch anale scattering

$$-\nabla \cdot q_e = \frac{q_{\infty}n}{\tau_{\infty}} \left[g(u_+) + g(u_-) \right]$$

$$q_{\infty} = \sqrt{\frac{2}{\pi m_e}} n_{e\infty} (k \ T_{e\infty})^{\frac{3}{2}} \quad \tau_{\infty} = \frac{T_{e\infty}^2}{8\pi e^4 \log \Omega} \quad g(u) = u^{\frac{1}{2}} K_1(u^{\frac{1}{2}})/4$$
$$u_{\pm} = \frac{\tau_{\pm}}{\tau_{\infty}} \qquad \tau_{\pm} = \pm \int_{\mp\infty}^{x} n(s) ds$$

- Solve for opacities as a "steady-state" solution to an advection-reaction equation $d\tau$
 - Solve by using an upwind method
 - Advection velocity is b

$$\frac{d\tau}{ds} = n(\boldsymbol{x}) \qquad \hat{b} \cdot \nabla \tau = n(\boldsymbol{x})$$
$$\frac{d\tau}{d\zeta} + \hat{\boldsymbol{b}} \cdot \nabla \tau = n(\boldsymbol{x})$$

Ansatz for energy conservation

flux surface

Sink term on

$$\nabla \cdot q_e = \frac{1}{V_{\psi} - V_{cloud,\psi}} \int_{cloud,\psi} \nabla . q_e$$

Curvilinear coordinates for shaped plasma

- Adopt a flux-tube coordinate system (flux surfaces ψ are determined from a separate equilibrium calculation)
 - $R \equiv R (\xi, \eta)$, and $Z \equiv Z (\xi, \eta)$
 - $\xi \equiv \xi$ (R,Z), and $\eta \equiv \eta$ (R,Z)
 - Flux surfaces: $\psi = \psi_0 \xi$
- Equations in transformed coordinates

$$\frac{\partial UJ}{\partial t} + \frac{1}{R} \frac{\partial R\tilde{F}}{\partial \xi} + \frac{1}{R} \frac{\partial R\tilde{H}}{\partial \eta} + \frac{1}{R} \frac{\partial \tilde{G}}{\partial \phi} = \tilde{S} \cdot \tilde{F} = J(\xi_R F + \xi_z H) = z_\eta F - R_\eta H,$$

$$\tilde{H} = J(\eta_R F + \eta_z H) = -z_\xi F + R_\xi H,$$

$$\tilde{F} = JG, \quad \tilde{S} = JS$$

Numerical method

- Finite volume approach
- Explicit second order or third order TVD Runge-Kutta time stepping
- The hyperbolic fluxes are evaluated using upwinding methods
 - seven-wave Riemann solver: $F \equiv F(U_L, U_R) = \frac{1}{2}(F(U_L) + F(U_R) \sum_k \alpha_k | \lambda_k | r_k)$ where $\alpha_k = I_k (U_R U_L)$
 - Harten-Lee-vanLeer (HLL) Method (SIAM Review 1983) $F \equiv F(U_L, U_R) = \lambda_{min} F(U_L) + \lambda_{max} F(U_R) + \lambda_{min} \lambda_{max} (U_R - U_L) / (\lambda_{max} - \lambda_{min})$
- Diffusive fluxes computed using standard second order central differences
- The solenoidal condition on B
 - *imposed using the* Central Difference version of <u>Constrained Transport</u> (Toth JCP 161, 2000)
 - Including the non-conservative source term in the equation to advect ∇ · B errors (Powell et al. , JCP 1999)
 - By projection at n+1/2 time step (Samtaney et al., SciDAC 2005)
 - $\nabla \cdot \mathbf{B} \neq 0$ on coarse mesh cells adjacent to coarse-fine interfaces
- Initial Conditions: Express $B=1/R(\phi \times \nabla \psi + g(\psi) \phi) \neq fnc(\phi)$. Initial state is an MHD equilibrium obtained from a Grad-Shafranov solver.
- **Boundary Conditions**: Perfectly conducting for $\xi = \xi_0$, zero flux (due to zero area) at $\xi = \xi_i$, and periodic in η and ϕ .

Adaptive Mesh Refinement with Chombo

- Chombo is a collection of C++ libraries for implementing block-structured adaptive mesh refinement (AMR) finite difference calculations (http://www.seesar.lbl.gov/ANAG/chombo)
 - (Chombo is an AMR developer's toolkit)
- Adaptivity in both space and time
- Mesh generation: necessary to ensure volume preservation and areas of faces upon refinement
- Flux-refluxing step at end of time step ensures conservation

Pellet Injection: AMR

- Meshes clustered around pellet
- Computational space mesh structure shown on right
- Mesh stats
 - 32³ base mesh with 5 levels, and refinement factor 2
 - Effective resolution: 1024³
 - Total number of finite volume cells:113408
 - Finest mesh covers 0.015 % of the total volume
 - Time adaptivity: 1 $(\Delta t)_{base}$ =32 $(\Delta t)_{finest}$

Pellet Injection: Zoom into Pellet Region

Pellet Injection: Zoom in

Pellet Injection: Pellet in Finest Mesh

Pellet Injection: Pellet Cloud Density

Results - HFS vs. LFS

 $\begin{array}{l} \mathsf{B}_{\mathsf{T}} = 0.375\mathsf{T} \\ \mathsf{n}_{0} = 1.5 \times \ 10^{19} / \mathsf{m}^{3} \\ \mathsf{T}_{e\infty} = 1.3 \mathsf{Kev} \\ \beta = 0.05 \\ \mathsf{R}_{0} = 1 \mathsf{m}, \ a = 0.3 \mathsf{m} \\ \mathsf{Pellet:} \ \mathsf{r}_{\mathsf{p}} = 1 \mathsf{mm}, \\ \mathsf{v}_{\mathsf{p}} = 1000 \mathsf{m/s} \end{array}$

HFS vs. LFS - Average Density Profiles

HFS Pellet injection shows better core fueling than LFS

Arrows indicate average pellet location

HFS vs. LFS: Instantaneous Density Profiles

Radially outward shift in both cases indicates higher fueling effectiveness for HFS $\phi = \pi/4$

δ=()

22

Pellet Injection: LFS/HFS Launch

PPPLInstantaneous temp equilibration on flux surfaces 23

JFNK Fully Implicit Approach for Resistive MHD

- Time step set using explicit CFL condition of fastest wave:
- Pellet Injection: pellet radius $r_p = 0.3$ mm, injection velocity $v_p = 450$ m/s, fast magnetoacoustic speed $c_f \approx 10^6$ m/s:
 - To resolve pellet <u>need O(10^Z) time steps</u>
- Longer time steps (implicit methods) are a practical necessity
- Fixed time step, two-level *θ*-scheme using a Jacobian-Free Newton-Krylov nonlinear solver [KINSOL]:

 $f(U^n) = U^n - U^{n-1} - \Delta t \left[\theta g(U^n) + (1 - \theta) g(U^{n-1}) \right], \quad g(U) = \nabla \cdot \left(F^p(U) - F^h(U) \right)$

- $\theta = 1 \Rightarrow \text{Backward Euler } [O(\Delta t)]; \ \theta = 0.5 \Rightarrow \text{Cranck-Nicholson } [O(\Delta t^2)]$
- Adaptive time step, adaptive order, BDF method for an up to 5th order accurate implicit scheme [CVODE]:

$$f(U^n) = U^n - \sum_{i=1:q} \alpha_{n,i} U^{n\cdot i} - \varDelta t_n \beta_{n,1} g(U^{n\cdot 1}) - \varDelta t_n \beta_0 g(U^n)$$

Time step size and order adaptively chosen based on heuristics balancing accuracy, nonlinear & linear convergence, stability

 $\Delta t_{\mathsf{Cfl}} \leq \frac{\Delta x}{||v+c_f||_1}$

Pellet Injection - Implicit Simulations

Implicit simulations in a toroidal geometry. $\Delta t = 100 \Delta t_{explicit}$

Summary and Future Plan

- Preliminary results presented from an AMR MHD code
 - Physics of non-local electron heat flux included
 - HFS vs. LFS pellet launches
 - HFS core fueling is more effective than LFS
 - Numerical method is upwind, conservative and preserves the solenoidal property of the magnetic field
- AMR provides the resolution to simulate pellet injection in a tokamak with detailed local physics
- Preliminary results from a fully implicit Newton-Krylov method for pellet injection in tokamaks
- Future work
 - Physics-based pre-conditoners for fully implicit JFNK method for mappedgrids and tokamak geometry.
 - <u>Proposed work under SciDAC-2</u>: Combine adaptive and fully implicit methods to manage the wide range of spatial and temporal scales

