# Progress on M3D-C1

an implicit 2-fluid code for high-order equations

#### S. C. Jardin In collaboration with the M3D group

Princeton University Plasma Physics Laboratory

April 25, 2004

# Extended MHD Models

| Model                                        | Momentum Equation                                                                                                                                                                                                                                     | Ohm's law                                                                                                                                                               | Whist-<br>lers <sup>1</sup> | KAW <sup>2</sup> | GV <sup>3</sup> | Slow<br>dynamics <sup>4</sup> |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|-----------------|-------------------------------|
| General                                      | $mn\frac{d\mathbf{V}}{dt} = -\nabla(p_e + p_i)$ $+\mathbf{J} \times \mathbf{B} - \nabla \cdot (\Pi_{\parallel e} + \Pi_{\parallel i}) - \nabla \cdot \Pi_i^{gv}$                                                                                      | $\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J} + \frac{1}{ne} \left( \mathbf{J} \times \mathbf{B} - \nabla p_e - \nabla \cdot \Pi_{\parallel e} \right)$ | Yes                         | Yes              | Yes             | Either                        |
| Generalized<br>Hall MHD <sup>5</sup>         | $mn\frac{d\mathbf{V}}{dt} = -\nabla(p_e + p_i) + \mathbf{J} \times \mathbf{B} - \nabla \cdot (\Pi_{\parallel e} + \Pi_{\parallel i})$                                                                                                                 | $\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J} + \frac{1}{ne} \left( \mathbf{J} \times \mathbf{B} - \nabla p_e - \nabla \cdot \Pi_{\parallel e} \right)$ | Yes                         | Yes              | No              | No                            |
| Neoclassical-<br>MHD                         | $mn \frac{d\mathbf{V}}{dt} = -\nabla(p_e + p_i) + \mathbf{J} \times \mathbf{B} - \nabla \cdot (\Pi_{\parallel e} + \Pi_{\parallel i}) - \nabla \cdot \Pi_i^{gv}$                                                                                      | $\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J} - \frac{1}{ne} \nabla \cdot \Pi_{\parallel e}$                                                            | No                          | No               | Yes             | Yes                           |
| Generalized<br>resistive<br>MHD <sup>5</sup> | $mn\frac{d\mathbf{V}}{dt} = -\nabla p + \mathbf{J} \times \mathbf{B} - \nabla \cdot \Pi_{\parallel}$                                                                                                                                                  | $\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J}$                                                                                                          | No                          | No               | No              | No                            |
| Generalized<br>drift <sup>6</sup>            | $mn\frac{d\mathbf{V}}{dt} = -mn\mathbf{V}_{di} \cdot \nabla \mathbf{V}_{\perp} + \upsilon_{gv}$ $+ nm\mu\nabla_{\perp}^{2}\mathbf{V} - \nabla \cdot (\Pi_{\parallel e} + \Pi_{\parallel i})$ $-\nabla (p_{e} + p_{i}) + \mathbf{J} \times \mathbf{B}$ | $\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J}^* \\ -\frac{1}{ne} \Big[ \nabla_{\parallel} p_e + \nabla \cdot \Pi_{\parallel e} \Big]$                   | No                          | Yes              | Yes             | Yes                           |

# Higher order modes present in Extended MHD models present new numerical challenges

| Mode               | Origin                                     | Wave Equation                                                                                                                                                                                                    | Dispersion                                                                                                                                  | Comments                                                       |
|--------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|                    |                                            |                                                                                                                                                                                                                  |                                                                                                                                             |                                                                |
| Whistler           | in Ohm $\mathbf{J} \times \mathbf{B}$      | $\frac{\partial^2 \mathbf{B}}{\partial t^2} = -\left(\frac{V_A^2}{\Omega}\right)^2 \left(\mathbf{b} \cdot \nabla\right)^2 \nabla^2 \mathbf{B}$                                                                   | $\omega^2 = V_A^2 k^2 \left[ 1 + \frac{1}{\beta} \left( \rho_i k_{  } \right)^2 \right]$                                                    | ●electron response<br>●finite <sup>k</sup> ∥                   |
| KAW                | in Ohm $ abla_{\parallel} p_e$             | $\frac{\partial^2 \mathbf{B}}{\partial t^2} = \left(\frac{V_A V_{th^*}}{\Omega}\right)^2 \left(\mathbf{b} \cdot \nabla\right)^2 \nabla \times \left[\mathbf{b} \mathbf{b} \cdot \nabla \times \mathbf{B}\right]$ | $\omega^2 = V_A^2 k_{\parallel}^2 \left[ 1 + \left( \rho_s k_{\perp} \right)^2 \right]$                                                     | •ion and e <sup>-</sup> response<br>•finite $k_{  } k_{\perp}$ |
| Parallel<br>ion GV | $\eta_4$ term in<br>$ abla \cdot \Pi^{GV}$ | $\rho \frac{\partial^2 \mathbf{V}_{\perp}}{\partial t^2} = -\eta_4^2 \nabla_{\parallel}^4 \mathbf{V}_{\perp}$                                                                                                    | $\omega_{\frac{L\pm}{R\pm}} = V_A k_{\parallel} \left[ \pm 1 \pm \frac{1+\beta}{2\sqrt{\beta}} \left( \rho_i k_{\parallel} \right) \right]$ | •ion response<br>•finite $k_{\parallel}$                       |
| Perp. ion<br>GV    | $\eta_3$ term in<br>$ abla \cdot \Pi^{GV}$ | $\rho \frac{\partial^2 \mathbf{V}_{\perp}}{\partial t^2} = -\eta_3^2 \nabla_{\perp}^4 \mathbf{V}_{\perp}$                                                                                                        | $\omega^{2} = V_{A}^{2} k_{\perp}^{2} \left[ 1 + \frac{\gamma \beta}{2} + \frac{\beta}{16} \left( \rho_{i} k_{\perp} \right)^{2} \right]$   | •ion response<br>• finite $k_{\perp}$                          |



### **M3D-C**<sup>1</sup>

A parallel, implicit, extended MHD code using  $C^1$  finite elements

Advantages of  $C^1$  elements:

- more compact (fewer unknowns per variable)
- higher order continuity (fewer variables)
- block matrix patterns (more efficient solution)

#### **Developmental Stages**

| 2D | Reduced (2-variable)  | NL     | cylinder | done-published                  |
|----|-----------------------|--------|----------|---------------------------------|
| 2D | Reduced (4-variable)  | NL     | cylinder | done-periodic bc<br>being added |
| 2D | Extended (6-variable) | NL     | cylinder | In progress                     |
| 3D | Extended (6-variable) | linear | cylinder |                                 |
| 3D | Extended (6-variable) | linear | torus    |                                 |
| 3D | Extended (6-variable) | NL     | torus    |                                 |

Coding principles:

- Extension of M3D
  - •...same variables

#### •Fortran 90

- isolate communication routines (MPI/Shmem, OpenMP)
- CVS
- CCA-friendly
- X1-friendly



# Element Order

If an element with typical size h contains a complete polynomial of order M, then the error will be at most of order  $h^{M+1}$ 

This follows directly from a local Taylor series expansion:

$$\phi(x, y) = \sum_{k=0}^{M} \sum_{l=0}^{k} \frac{1}{l!(k-l)!} \left[ \frac{\partial^{k} \phi}{\partial x^{l} \partial z^{k-l}} \right]_{x_{0}, z_{0}} (x - x_{0})^{l} (z - z_{0})^{k-l} + O(h^{M+1})$$

Thus, linear elements will be O(h<sup>2</sup>) quadratic elements will be O(h<sup>3</sup>) cubic elements will be O(h<sup>4</sup>) quartic elements will be O(h<sup>5</sup>) complete quintic elements will be O(h<sup>6</sup>)



# **Element Continuity**

**Theorem:** A finite element with continuity  $C^{k-1}$  belongs to Hilbert space  $H^k$ , and hence can be used for differential operators with order up to 2k

| <u>Continuity</u> | Hilbert Space | <u>Applicability</u>   | derivatives exist<br>up to order <i>k</i> |
|-------------------|---------------|------------------------|-------------------------------------------|
| $C^0$             | $H^{l}$       | second order equations |                                           |
| $C^{l}$           | $H^2$         | fourth order equations |                                           |

This applicability is made possible by performing integration by parts in the Galerkin method, shifting derivatives from the unknown to the trial function

The vast majority of the literature concerns *C*<sup>0</sup> elements, (including Spectral Elements, NIMROD, Glasser's SEL.

Here we concentrate on  $C^1$  elements

recall:

$$\iint_{domain} v_i \Big[ \nabla \cdot f(x, y) \nabla \phi \Big] dx dy = - \iint_{domain} f(x, y) \nabla v_i \cdot \nabla \phi dx dy$$
$$\iint_{domain} v_i \Big[ \nabla^2 f(x, y) \nabla^2 \phi \Big] dx dy = \iint_{domain} f(x, y) \nabla^2 v_i \nabla^2 \phi dx dy$$

NOTE: requires the trial function have appropriate boundary conditions

*H*<sup>k</sup> means that



### **Reduced Quintic 2D Triangular Finite Element**



For  $C^{1}$ , require that the normal slope along the edges  $\phi_{n}$  have only cubic variation:  $5b^{4}ca_{16} + (3b^{2}c^{3} - 2b^{4}c)a_{17} + (2bc^{4} - 3b^{3}c^{2})a_{18} + (c^{5} - 4b^{2}c^{3})a_{19} - 5bc^{4}a_{20} = 0$   $5a^{4}ca_{16} + (3a^{2}c^{3} - 2a^{4}c)a_{17} + (-2ac^{4} - 3a^{3}c^{2})a_{18} + (c^{5} - 4a^{2}c^{3})a_{19} - 5ac^{4}a_{20} = 0$ 20 - 2 = 18 unknowns:

These are determined in terms of [ $\phi$ ,  $\phi_{x}$ ,  $\phi_{y}$ ,  $\phi_{xx}$ ,  $\phi_{xy}$ ,  $\phi_{yy}$ ] at P<sub>1</sub>,P<sub>2</sub>,P<sub>3</sub>

Implies  $C^1$  continuity at edges and  $C^2$  at nodes !



 $a_i = g_{ij} \Phi_j$ 

### The Trial Functions:







 $v_j = \sum_{i=1}^{\infty} \xi^{m_i} \eta^{n_i} g_{ij}$ 

The 6 shown here correspond to one node, and vanish at the other nodes, along with their derivatives

Each of the six has value 1 for the function or one of it's derivatives at the node, zero for the others.



Note that the function and it's derivatives (through 2<sup>nd</sup>) play the role of the amplitudes

## Comparison with a popular $C^0$ Element





Lagrange Cubic: C<sup>0</sup>, h<sup>4</sup>

9 new unknowns: 2 new triangles

 $9/2 = 4^{1/2}$  unknowns/ triangle



Reduced Quintic: C<sup>1</sup>, h<sup>5</sup>

6 new unknowns: 2 new triangles

6/2 = 3 unknowns/ triangle



# Comparison of reduced quintic to other popular triangular elements

|                    | Vertex<br>nodes | Line<br>nodes | Interior<br>nodes | accuracy<br>order h <sup>p</sup> | UK/T | continuity              |
|--------------------|-----------------|---------------|-------------------|----------------------------------|------|-------------------------|
| linear element     | 3               | 0             | 0                 | 2                                | 1/2  | <b>C</b> <sup>0</sup>   |
| Lagrange quadratic | 3               | 3             | 0                 | 3                                | 2    | <b>C</b> <sup>0</sup>   |
| Lagrange cubic     | 3               | 6             | 1                 | 4                                | 41/2 | <b>C</b> <sup>0</sup>   |
| Lagrange quartic   | 3               | 9             | 3                 | 5                                | 8    | <b>C</b> <sup>0</sup>   |
| reduced quintic    | 18              | 0             | 0                 | 5                                | 3    | <b>C</b> <sup>1</sup> * |







#### **Results for Simple Problem**



Reduced Quintic Triangular Element  $\phi = x(x-L_x)z(x-L_z)sinkx$ : Elliptic solve





number of elements per side N



### **Anisotropic Diffusion**



N..number of points per side

N<sup>-5</sup>

60

40



### 2D Incompressible MHD

$$\frac{\partial}{\partial t} \nabla^2 \phi + \left[ \nabla^2 \phi, \phi \right] - \left[ \nabla^2 \psi, \psi \right] = \mu \nabla^4 \phi$$
$$\frac{\partial \psi}{\partial t} + \left[ \psi, \phi \right] = \eta \nabla^2 \psi$$
 note:

"reduced MHD"φ is stream functionψ is poloidal flux

 $\theta$ -centering....time centered about n+1/2 for  $\theta$ =0.5

$$\nabla^{2}\dot{\phi} + \left[\nabla^{2}\phi^{n} + \theta\delta t\nabla^{2}\dot{\phi}, \phi^{n} + \theta\delta t\dot{\phi}\right] - \left[\nabla^{2}\psi^{n} + \theta\delta t\nabla^{2}\dot{\psi}, \psi + \theta\delta t\dot{\psi}\right]$$
$$= \mu \left[\nabla^{4}\phi + \theta\delta t\nabla^{4}\dot{\phi}\right]$$
$$\dot{\psi} + \left[\psi^{n} + \theta\delta t\dot{\psi}, \phi + \theta\delta t\dot{\phi}\right] = \eta \left[\nabla^{2}\psi^{n} + \theta\delta t\nabla^{2}\dot{\psi}\right]$$

$$\dot{\phi} = \frac{\phi^{n+1} - \phi^n}{\delta t}, \qquad \dot{\psi} = \frac{\psi^{n+1} - \psi^n}{\delta t} \qquad \phi^n = \sum_{j=1}^{18} v_j \Phi_j^n \qquad \psi^n = \sum_{j=1}^{18} v_j \Psi_j^n$$

Multiply equations by each trial function and integrate over space

$$v_j = \sum_{i=1}^{20} \xi^{m_i} \eta^{n_i} g_{ij}$$



#### Leads to the Matrix Implicit System

$$\begin{bmatrix} S_{j}^{11} & S_{j}^{12} \\ S_{j}^{21} & S_{j}^{22} \end{bmatrix} \begin{bmatrix} \Phi_{j}^{n+1} \\ \Psi_{j}^{n+1} \end{bmatrix} = \begin{bmatrix} D_{j}^{11} & D_{j}^{12} \\ D_{j}^{21} & D_{j}^{22} \end{bmatrix} \begin{bmatrix} \Phi_{j}^{n} \\ \Psi_{j}^{n} \end{bmatrix}$$

$$\begin{bmatrix} S_j^{11} & S_j^{12} \\ S_j^{21} & S_j^{22} \end{bmatrix} = \begin{bmatrix} A_{i,j} + \theta \delta t[\overline{G}_{i,j,k} \Phi_k^* + \mu B_{i,j}] & -\theta \delta t \overline{G}_{i,j,k} \Psi_k^* \\ \theta \delta t K_{i,j,k} \Psi_k^* & M_{i,j} + \theta \delta t[K_{i,k,j} \Phi_k^* - \eta A_{i,j}] \end{bmatrix}$$

$$\begin{bmatrix} D_{j}^{11} & D_{j}^{12} \\ D_{j}^{21} & D_{j}^{22} \end{bmatrix} = \begin{bmatrix} \left\{ A_{i,j} - \delta t[G_{i,j,k} \Phi_{k}^{n} - \theta \overline{G}_{i,j,k} \Phi_{k}^{n}] + (1 - \theta) \mu B_{i,j}] \right\} & \delta t(G_{i,j,k} \Psi_{k}^{n} - \theta \overline{G}_{i,j,k} \Psi_{k}^{n}) \\ \delta t K_{i,j,k} (-\frac{1}{2} \Psi_{k}^{n} + \theta \Psi_{k}^{n}) & \begin{cases} M_{i,j} - \delta t[K_{i,k,j} (\frac{1}{2} \Phi_{k}^{n} - \theta \Phi_{k}^{n})] \\ -(1 - \theta) \eta A_{i,j}] \end{cases} \end{bmatrix}$$

$$\iint v_i(\xi,\eta) [\psi,\phi] d\xi d\eta = \sum_{j=1}^{18} \sum_{k=1}^{18} K_{i,j,k} \Psi_j \Phi_k$$
$$K_{i,j,k} = \sum_{p=1}^{20} \sum_{q=1}^{20} \sum_{r=1}^{20} g_{p,i} g_{q,j} g_{r,k} (m_q n_r - m_r n_q) F(m_p + m_q + m_r - 1, n_p + n_q + n_r - 1)$$

$$\iint v_i(\xi,\eta) \Big[ \nabla^2 \psi, \psi \Big] d\xi d\eta = \sum_{j=1}^{18} \sum_{k=1}^{18} G_{i,j,k} \Psi_j \Psi_k$$

$$G_{i,j,k} = \sum_{p=1}^{20} \sum_{q=1}^{20} \sum_{r=1}^{20} g_{p,i} g_{q,j} g_{r,k} \Big( m_p n_r - m_r n_p \Big) \Bigg[ \frac{m_q (m_q - 1) F \Big( m_p + m_q + m_r - 3, n_p + n_q + n_r - 1 \Big)}{+ n_q (n_q - 1) F \Big( m_p + m_q + m_r - 1, n_p + n_q + n_r - 3 \Big)} \Big]$$

Solve each time step using SuperLU

For linear problem, only need to form LU decomposition once and do a back-substitution each time step.

> Note that stream function and vorticity are solved together



# Tilting of a Plasma Column

#### Initial Condition:

$$\psi = \begin{cases} [2/kJ_0(k)]J_1(kr)\cos\theta, & r < 1\\ (r-1/r)\cos\theta, & r > 1 \end{cases}$$
$$J_1(k) = 0$$

# Give small perturbation and evolve in time





Stream function and vorticity at final time



Flux (top) and current (bottom) at initial and final times

#### Tilting of a Plasma Column-cont



Converged (in time) growth rate the same for N=30,40 out to 6 decimal places



# Higher order formulation

By further manipulation, it is possible to get a 4<sup>th</sup> order PDE for  $\Phi^{n+1}$  that is independent of  $\Psi^{n+1}$ ...cuts matrix sizes down by 2

Note:  $L_2$  is 4<sup>th</sup> order

$$\begin{split} \left\{ \nabla^2 + \theta \delta t L_1 + (\theta \delta t)^2 L_2 \right\} \tilde{\Phi}^{n+1} &= \left\{ \nabla^2 + \theta \delta t L_1 + \theta (\theta - 1) \delta t^2 L_2 \right\} \tilde{\Phi}^n \\ &- \theta \delta t^2 L_2 \Phi^0 + \delta t R \\ S'^{22} \tilde{\Psi}^{n+1} &= D'^{22} \tilde{\Psi}^n - S'^{21} \tilde{\Phi}^{n+1} + D'^{21} \tilde{\Phi}^n + \end{split}$$

$$\begin{split} L_{1}\tilde{\Phi}^{n+1} &= \left[\nabla^{2}\tilde{\Phi}^{n+1},\tilde{\Phi}\right] + \left[\nabla^{2}\tilde{\Phi}^{n+1},\Phi^{0}\right] + \left[\nabla^{2}\tilde{\Phi},\tilde{\Phi}^{n+1}\right] + \left[\nabla^{2}\Phi^{0},\tilde{\Phi}^{n+1}\right] - \mu\nabla^{4}\tilde{\Phi}^{n+1} \\ L_{2}\tilde{\Phi}^{n+1} &= \left[\nabla^{2}\tilde{\Psi} + \nabla^{2}\Psi^{0}\left[\tilde{\Psi} + \Psi^{0},\tilde{\Phi}^{n+1}\right]\right] - \left[\left[\tilde{\Phi}^{n+1},\nabla^{2}\tilde{\Psi} + \nabla^{2}\Psi^{0}\right],\tilde{\Psi} + \Psi^{0}\right] \\ &- \left[\left[\nabla^{2}\tilde{\Phi}^{n+1},\tilde{\Psi} + \Psi^{0}\right],\tilde{\Psi} + \Psi^{0}\right] - 2\left[\left[\tilde{\Phi}^{n+1}_{x},\tilde{\Psi}_{x} + \Psi^{0}_{x}\right],\tilde{\Psi} + \Psi^{0}\right] \\ &- 2\left[\left[\tilde{\Phi}^{n+1}_{y},\tilde{\Psi}_{y} + \Psi^{0}_{y}\right],\tilde{\Psi} + \Psi^{0}\right] \\ &R &= -\left[\nabla^{2}\tilde{\Phi}^{n},\tilde{\Phi}\right] - \left[\nabla^{2}\Phi^{0},\tilde{\Phi}^{n}\right] - \left[\nabla^{2}\tilde{\Phi}^{n},\Phi^{0}\right] \\ &+ \left[\nabla^{2}\tilde{\Psi}^{n},\tilde{\Psi}^{n}\right] + \left[\nabla^{2}\Psi^{0},\tilde{\Psi}^{n}\right] + \left[\nabla^{2}\tilde{\Psi}^{n},\Psi^{0}\right] + \mu\nabla^{4}\tilde{\Phi} \end{split}$$
Gives same results in 1/8<sup>th</sup> - 1/4<sup>th</sup> the time

M3D-C1 code has been set up in a general form, to allow non-trivial subsets of lower rank equations:

$$\begin{bmatrix} S_{11}^{\nu} & S_{12}^{\nu} & S_{13}^{\nu} \\ S_{21}^{\nu} & S_{22}^{\nu} & S_{23}^{\nu} \\ S_{31}^{\nu} & S_{32}^{\nu} & S_{33}^{\nu} \end{bmatrix} \bullet \begin{bmatrix} \phi \\ V_z \\ \chi \end{bmatrix}^{n+1} = \begin{bmatrix} D_{11}^{\nu} & D_{12}^{\nu} & D_{13}^{\nu} \\ D_{21}^{\nu} & D_{22}^{\nu} & D_{23}^{\nu} \\ D_{31}^{\nu} & D_{32}^{\nu} & D_{33}^{\nu} \end{bmatrix} \bullet \begin{bmatrix} \phi \\ V_z \\ \chi \end{bmatrix}^n + \begin{bmatrix} R_{11}^{\nu} & R_{12}^{\nu} & R_{13}^{\nu} \\ R_{21}^{\nu} & R_{22}^{\nu} & R_{23}^{\nu} \\ R_{31}^{\nu} & R_{32}^{\nu} & R_{33}^{\nu} \end{bmatrix} \bullet \begin{bmatrix} \psi \\ I \\ T_e \end{bmatrix}^n$$

$$\begin{bmatrix} \mathbf{S}_{11}^{p} & \mathbf{S}_{12}^{p} & \mathbf{S}_{13}^{p} \\ \mathbf{S}_{21}^{p} & \mathbf{S}_{22}^{p} & \mathbf{S}_{23}^{p} \\ \mathbf{S}_{31}^{p} & \mathbf{S}_{32}^{p} & \mathbf{S}_{33}^{p} \end{bmatrix} \bullet \begin{bmatrix} \boldsymbol{\psi} \\ \mathbf{I} \\ T_{e} \end{bmatrix}^{n+1} = \begin{bmatrix} \mathbf{D}_{11}^{p} & \mathbf{D}_{12}^{p} & \mathbf{D}_{13}^{p} \\ \mathbf{D}_{21}^{p} & \mathbf{D}_{22}^{p} & \mathbf{D}_{23}^{p} \\ \mathbf{D}_{31}^{p} & \mathbf{D}_{32}^{p} & \mathbf{D}_{33}^{p} \end{bmatrix} \bullet \begin{bmatrix} \boldsymbol{\psi} \\ \mathbf{I} \\ T_{e} \end{bmatrix}^{n} + \begin{bmatrix} \mathbf{R}_{11}^{p} & \mathbf{R}_{12}^{p} & \mathbf{R}_{13}^{p} \\ \mathbf{R}_{21}^{p} & \mathbf{R}_{22}^{p} & \mathbf{R}_{23}^{p} \\ \mathbf{R}_{31}^{p} & \mathbf{R}_{32}^{p} & \mathbf{R}_{33}^{p} \end{bmatrix} \bullet \begin{bmatrix} \boldsymbol{\psi} \\ \mathbf{V} \\ \mathbf{V} \\ \mathbf{\chi} \end{bmatrix}^{n+1} + \begin{bmatrix} \mathbf{Q}_{11}^{p} & \mathbf{Q}_{12}^{p} & \mathbf{Q}_{13}^{p} \\ \mathbf{Q}_{21}^{p} & \mathbf{Q}_{22}^{p} & \mathbf{Q}_{23}^{p} \\ \mathbf{Q}_{21}^{p} & \mathbf{Q}_{22}^{p} & \mathbf{Q}_{23}^{p} \\ \mathbf{Q}_{31}^{p} & \mathbf{Q}_{32}^{p} & \mathbf{Q}_{33}^{p} \end{bmatrix} \bullet \begin{bmatrix} \boldsymbol{\psi} \\ \mathbf{V} \\ \mathbf{V} \\ \mathbf{\chi} \end{bmatrix}^{n}$$

Phase-I: Resistive MHD: done

$$\frac{\partial}{\partial t} \nabla^2 \phi + \left[ \nabla^2 \phi, \phi \right] - \left[ \nabla^2 \psi, \psi \right] = \mu \nabla^4 \phi$$
$$\frac{\partial \psi}{\partial t} + \left[ \psi, \phi \right] = \eta \nabla^2 \psi$$

Phase-II: Fitzpatrick-Porcelli model: now implemented- periodic bc being added

$$\frac{\partial}{\partial t} \nabla^2 \phi = \left[\phi, \nabla^2 \phi\right] + \left[\nabla^2 \psi, \psi\right] + \mu \nabla^4 \phi$$
$$\frac{\partial V_z}{\partial t} = \left[\phi, V_z\right] + c_\beta \left[I, \psi\right] + \mu \nabla^2 V_z$$
$$\frac{\partial \psi}{\partial t} = \left[\phi, \psi\right] + d_\beta \left[\psi, I\right] + \eta \nabla^2 \psi$$
$$\frac{\partial I}{\partial t} = \left[\phi, I\right] + d_\beta \left[\nabla^2 \psi, \psi\right] + c_\beta \left[V_z, \psi\right] + c_\beta^2 \eta \nabla^2 I$$



The 2D cylindrical two-fluid MHD equations and definition of the variables.

$$\begin{split} \frac{\partial \vec{B}}{\partial t} &= -\nabla \times \vec{E} \\ \vec{E} + \vec{V} \times \vec{B} &= \eta \vec{J} + \frac{1}{ne} \left( \vec{J} \times \vec{B} - \nabla p_e \right) \\ \mu_0 \vec{J} &= \nabla \times \vec{B} \\ nM_i \left( \frac{\partial \vec{V}}{\partial t} + \vec{V} \bullet \nabla \vec{V} \right) + \nabla p &= \vec{J} \times \vec{B} - \nabla \cdot \vec{\Pi}_i^{gv} + \mu n \nabla \cdot \left[ \nabla \vec{V} + \nabla \vec{V}^\dagger \right] \\ \frac{\partial n}{\partial t} + \nabla \bullet (n \vec{V}) &= 0 \\ \frac{3}{2} \frac{\partial p_e}{\partial t} + \nabla \cdot \left( \frac{3}{2} p_e \vec{V}_i \right) &= -p_e \nabla \cdot \vec{V}_i + \frac{\vec{J}}{ne} \cdot \left[ \frac{3}{2} \nabla p_e - \frac{5}{2} \frac{p_e}{n} \nabla n + \vec{R} \right] - \nabla \cdot \vec{q}_e - Q_\Delta \\ \frac{3}{2} \frac{\partial p_i}{\partial t} + \nabla \cdot \left( \frac{3}{2} p_i \vec{V}_i \right) &= -p_i \nabla \cdot \vec{V}_i - \Pi_i : \nabla V_i + \nabla (\mu n \vec{V}) : \left[ \nabla \vec{V} + \nabla \vec{V}^\dagger \right] - \nabla \cdot \vec{q}_i + Q_\Delta \\ \frac{3}{2} \frac{\partial p}{\partial t} + \nabla \cdot \left( \frac{3}{2} p \vec{V} \right) &= -p \nabla \cdot V - \Pi_i : \nabla V_i + \nabla (\mu n \vec{V}) : \left[ \nabla \vec{V} + \nabla \vec{V}^\dagger \right] - \nabla \cdot (\vec{q}_i + \vec{q}_e) \\ &+ \frac{\vec{J}}{ne} \cdot \left[ \frac{3}{2} \nabla p_e - \frac{5}{2} \frac{p_e}{n} \nabla n + \vec{R} \right] \end{split}$$



#### Numerical stability analysis for 2-fluid equations

$$\begin{bmatrix} 1 - (\theta \delta t)^2 \nabla^2 \end{bmatrix} (V^{n+1} - V^n) = \delta t \left\{ \theta \delta t \left[ \nabla^2 V^n - \nabla^2 J^n \right] \right\} - \delta t \hat{z} \times J^n$$

$$\begin{bmatrix} 1 + \theta \delta t \hat{z} \times \nabla^2 \end{bmatrix} (J^{n+1} - J^n) = \delta t \hat{z} \times \nabla^2 [\theta V^{n+1} + (1 - \theta) V^n] - \delta t \hat{z} \times \nabla^2 J^n$$
Solve

Note: these can be solved sequentially!

$$\begin{bmatrix} 1 - (\theta \delta t)^2 \nabla^2 & 0 & 0 & 0 \\ 0 & 1 - (\theta \delta t)^2 \nabla^2 & 0 & 0 & 0 \\ 0 & \theta \delta t \nabla^2 & 1 & -\theta \delta t \nabla^2 \\ -\theta \delta t \nabla^2 & 0 & \theta \delta t \nabla^2 & 1 \end{bmatrix} \begin{bmatrix} V_x \\ V_y \\ J_x \\ J_y \end{bmatrix}^{n+1} = \begin{bmatrix} 1 - \theta (\theta - 1)(\delta t)^2 \nabla^2 & 0 & -\theta (\delta t)^2 \nabla^2 & \delta t \\ 0 & 1 - \theta (\theta - 1)(\delta t)^2 \nabla^2 & -\delta t & -\theta (\delta t)^2 \nabla^2 \\ 0 & (\theta - 1)\delta t \nabla^2 & 1 & -\delta t \nabla^2 (\theta - 1) \\ -(\theta - 1)\delta t \nabla^2 & 0 & \delta t \nabla^2 (\theta - 1) & 1 \end{bmatrix} \begin{bmatrix} V_x \\ V_y \\ J_x \\ J_y \end{bmatrix}^n$$



# **Dispersion Relation**

$$A = iB \qquad \delta t \nabla^2 \to E \quad \delta t^2 \nabla^2 \to \delta t E$$

$$A = A_0 + A_1 r + A_2 r^2 + A_3 r^3 = (r-1) \Big[ C_0 + C_1 r + C_2 r^2 \Big]$$
$$B = B_0 + B_1 r + B_2 r^2$$

$$A_{0} = -1 + (1 - \theta)^{2} \left[ \delta t E - E^{2} + \theta^{2} \delta t E^{3} \right]$$

$$A_{1} = 3 - (1 - \theta)(1 - 3\theta) \left[ \delta t E - E^{2} + \theta^{2} \delta t E^{3} \right]$$

$$A_{2} = -3 - \theta \left( 2 - 3\theta \right) \left[ \delta t E - E^{2} + \theta^{2} \delta t E^{3} \right]$$

$$A_{3} = 1 - \theta^{2} \left[ \delta t E - E^{2} + \theta^{2} \delta t E^{3} \right]$$

$$D = B_{0} = \delta t E^{2} (1 - \theta)(1 - 2\theta)$$

$$B_{1} = \delta t E^{2} \theta (3 - 4\theta)$$

$$B_{2} = \delta t E^{2} 2\theta^{2}$$
We have evaluate

$$C_0 = 1 - (1 - \theta)^2 D$$
  

$$C_1 = -2[1 + \theta(1 - \theta)D]$$
  

$$C_2 = 1 - \theta^2 D$$

 $D = \delta t E - E^2 + \theta^2 \delta t E^3$ 

We have evaluated this dispersion relation numerically and find  $|r| \le 1$ ; i.e. stability, for  $\theta > \frac{1}{2}$ 



# Summary

- Major upgrade to the M3D code is underway-based on  $C^1$  finite elements
- Primary motivation is to allow efficient, high order, implicit solution of extended MHD equations with whister and KAW
- Staged implementation using reduced sets of equations with 2, 4, and then 6 variables
- Looks promising

