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What ”the general expression” means:

Lowest significant order in 6 = p/L < 1.

Applicable to both /0t ~ 6., u ~ vy, (fast dynamics where I1997° ~ &p) and 9/0t ~ 6°Q., u ~ Jvg,

(slow dynamics where 197 ~ §%p).

No simplifying assumptions on magnetic geometry, parallel gradients, (3, parallel flow, compressibility etc.

Valid for arbitrary collisionality.

Does not require the distribution function to be close to a Maxwellian.

Divergence of the stress tensor (gyroviscous force) in exact, coordinate-free vector form.



Define the gyroviscous stress as the traceless and perpendicular (i.e. 117" = II7/"°b;b; = 0) part

of the stress tensor in the fluid rest frame that does not depend explicitly on the collision frequencies:
m/d3v [’U@' — ui(x,t)][vj — Uj(X, t)] f(V,X,t) = pL&j + (pH — pL)bibj + ng]yro + Hj_ollj .

Then,
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where, retaining the lowest-significant-order terms for both the fast dynamics and slow dynamics !,
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and
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The collision-independent perpendicular stress flux tensor 623 . 1s needed only in the slow dynamics. For

this case, with the required accuracy of O(dpvy,), @w . 18 also given in Ref.1. Its divergence is
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d = (3aj/B)s + V x (gL xb) + [(ZgL—FQaVXb—l—Vosz)-V]b

+bx |aV(V-b)+V(b-Va) - (b-V)Va|] — a(V-b)V xb.



The fourth rank moments 7|, 7, A are
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FA = TZ/d?’v v — u\4 cos? X (5sin A — 1)(f — frimazwell);

where sinA = (v—u)-b/|v—u|.

If the lowest-order distribution function is isotropic, (p| — p1), (7 — 7L) and 7o vanish in lowest order.

They can then be neglected in 007 °/0x;, which becomes:
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[f the lowest-order distribution function is a Maxwellian, then 7, can be neglected too.



SOME SPECIAL LIMITS

1) For fast dynamics and high collisionality (Braginskii ?):
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in which case, p; = p.

2) For slow dynamics and high collisionality (Mikhailowskii-Tsypin °):
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in which case, p; = p and qpb; + qr1;/2 = 2q;/5.

3) For fast dynamics and arbitrary collisionality (Macmahon *):
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4) For slow dynamics under the assumption that, for arbitrary collisionality, the lowest-

order distribution function could still be Maxwellian or just isotropic:
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where pL =D, and

SdrL = 491 = e%bx V(%)

if the lowest-order distribution function is assumed to be Maxwellian (Simakov-Catto ®), or
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if the lowest-order distribution function is assumed to be isotropic, with 7 = 7, = 7, but not necessarily

Maxwellian (Ramos ).



BRAGINSKII'S GYROVISCOUS FORCE
Braginskii’s gyroviscosity term is:
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[ts divergence, in coordinate-free vector notation, is exactly:
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where w = V X u is the vorticity.



Using the explicit expression of Braginskii’s gyroviscous force term, the momentum

conservation equation can be written as:

mn%—? + mnl[(u—u,)-Vju + V(p, —x) + (B-V)(p“ _%LJFX b)
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+ V- (e — et + 1Y) — en(E4+uxB) — FOU = 0,

where

U, = —%V X (%b) and X =

Thus, u, cancels only partially (i.e. except for derivatives of the magnetic field) the diamagnetic drift
uy; = b x Vp, /(enB) in the convective derivative mn(u - V). The parallel vorticity acts as an effective

renormalization of the perpendicular pressure: p; — p; — x = pi[l — m(b-w)/(2eB)).
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