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abstract

We have developed a new, high-order, implicit method for solving the time-
dependent extended magneto-hydrodynamic (X-MHD) equations in two 
dimensions [1], [2], [4] and have applied this to the problem of collisionless 
magnetic reconnection in the presence of a strong guide field.  The reconnection 
calculations extend the GEM [5], [4] reconnection problem to include a strong 
background (guide) magnetic field as is present in a fusion plasma.  We find that 
the background field significantly delays the onset of the fast reconnection phase 
and reduces the maximum reconnection rate and the amplitude of the velocities 
that develop in the reconnection region.  The flow structure changes to be nearly 
incompressible and its localization presents severe resolution requirements.  These 
calculations are performed with a new simulation code, M3D-C1, which uses a fully 
unstructured triangular mesh that is packed into regions with high gradients, but the 
time-step is limited only by resolution requirements.  Each finite element contains a 
complete 4th degree polynomial with additional terms to provide C1 continuity 
across element boundaries as required to efficiently solve the stream function/ 
potential form of the equations including the high-order derivatives that appear in 
the electron and ion viscosities.



The Extended MHD equations for a magnetized (fusion) 
plasma are a high-order system of 8 scalar variables that 
are characterized by a wide range of space and timescales.

The M3D-C1 approach is as follows:

Multiple space scales unstructured adaptive elements

Multiple time scales implicit time differencing

High order derivatives C1 continuity elements (up to 4th order)

8 scalar variables split implicit time advance & compact rep.

Strong magnetic field stream function/potential representation



2-Fluid MHD Equations:

( ) 2 2

2

2

( ) 0

( )

3 3
2 2
3 3

1 ( )

2 2

3 5
2 2

GV

e H

i

e
e e e

i
i

e
e

J B p x

n nV
t
B E J B
t

VnM V V p J B V

J
ne

pJ p n
n

t

E V B J

p p V p V J q Q
t
p pV p
t

e n

μ

η

λη

Δ

∂
+ ∇ • =

∂
∂

= −∇ × = ∇ ×
∂

∂
+ • ∇ + ∇ = × − + ∇

∂

+ × = +

∂ ⎛ ⎞+ ∇ = − ∇ + + − ∇ +⎜ ⎟∂ ⎝ ⎠
∂ ⎛ ⎞+ ∇ = −⎜ ⎟∂ ⎝

∇ Π

× − ∇ − Δ ∇

⎡ ⎤∇ − ∇⎢ ⎥⎣ ⎦

⎠

G

G G G G

G G G G G G

G G

i

G G G

G

G G

G G
i Gi i i

G
i 2

i iV V q Qμ Δ∇ + ∇ − ∇ −
G Gi i

2-fluid Extend
Resisti

ed MHD 
ve MHD

terms

ˆ zV z VU χ⊥= ∇ × + ∇ +
G

ˆ ˆB z zIψ= ∇ × +
G

8 scalar variables:  , , , , , , ,
 is typical zone (element) size

z e iI U V n p p
x

ψ χ
Δ



Scalar data is represented using 18 degree of 
freedom quintic triangular finite elements  Q18

• All data is at nodes:  function + first 5 
derivatives (6 DOF)

• Complete quintic polynomial has 21 
coefficients

• 18 values come from the 3 nodes (3 x 6)

• 3 values come from requirement that the 
normal derivative along each edge be only a 
(univariate) cubic….leads to C1 continuity

• Contains a complete Taylor series through 4th

order…error ~ h5

• Compact representation … only 3 DOF/triangle

• C1 continuity allows up to 4th derivatives in 
space without introducing auxiliary variables

• Unstructured triangular mesh allows adaptive 
zoning
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Implicit velocity time-advance substitutes in from field 
equations to contain all Ideal MHD wave phenomena
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A similar technique is used on the magnetic field equations.  Fully implicit 
Extended MHD (2-fluid) equations-- time step determined by accuracy only:
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Alfven Wave physics

Whistler, KAW, field diffusion physics

density

pressure

• 4 sequential matrix solves per time step

• 3 non-trivial subsets with 6,4,2 variables
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1. Resistive MHD 
High and Low Viscosity
(μ = 10 η, μ = 0.1 η)

2. Two-Fluid 

• Provides a non-trivial, convenient test problem for code 
verification and validation and cross-code comparison

• Also, extending this by adding an equilibrium magnetic field 
into the plane (guide field)

J.Birn, J.F.Drake, M.A. Shay et al.,J. Geophys. Res. 106 3715 (2001)



t = 1

t = 16

t = 24

t = 32

t = 40

t = 8

Current Density contours for 2-fluid MHD 

• Starts like resistive MHD

• Dramatic change in configuration for t > 20



Close-up of 2-fluid current density at  t=32

t=32

• Note very 
localized region of 
high current 
density in center

midplane

These calculations 
did not assume any 
symmetry, except for 
initial and boundary 
conditions



Midplane Current density collapses to 
the width of 1-3 triangular elements

t=32 time of previous contour plot
( note sudden collapse at t=23+)



Midplane electric field before and after transition
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Blowup showing electric field after transition
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Hyper-resistivity coefficient must 
be large enough that current 
density collapse is limited to 1-2 
triangles:  reason for factor (Δx)2
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2-fluid reconnection  
requires high 
resolution for 

convergent results

• Note sudden transition where 
velocity abruptly increases 

•These calculations used a 
hyperviscosity term in Ohm’s law 
proportional to (Δx)2 . . .     required 
for a stable calculation



Results are 
converging

Now working on 180 x 180 and higher:  Details for bassi.nersc.gov:

Mesh points 180 x 180
Matrix Rank 5.9 x 105

# Non-zeros 9.5 x 107

# NZ in L/U 8.8 x 108

# processors 8 32 128

Factor (s) 69.5 38.1 16.9

Gflop/s 27.2 50.1 112.8

Total problem time (8 processors) = 208 s x 400 cycles x 8p = 185 p-hrs

NOTE:  mesh adaptation (almost implemented) should bring this down sharply



Reconnection  Rate (μ=0.05)
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Reconnection Rate (μ=0.005)
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Adding a guide field B0 to the GEM reconnection problem causes the 
reconnection rate to decrease significantly.  Reducing the viscosity 

offsets this some



Reconnected Flux (μ = 0.05)
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Reconnected Flux (μ = 0.005)
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Adding a guide field B0 to the GEM reconnection problem causes the 
reconnected flux to saturate at a lower value.  Reducing the viscosity 

causes the saturated value to be obtained slightly earlier.



High Viscosity μ = 0.05
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Low Viscosity μ = 0.005
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Adding a guide field B0 to the GEM reconnection problem causes the 
kinetic energy to decrease significantly.  Reducing the viscosity offsets 

this some



Peak Initial density 1.2 (μ=0.05)
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Lowering the peak density from 1.2 to 0.3 significantly increases the 
reconnection rates for the higher guide field cases



Effect of Gyroviscosity on K.E.
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Effect of Gyroviscosity on dψ/dt
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Gyroviscosity leads to somewhat larger kinetic energy, but does not 
change the reconnection rate much



Change in velocity field with toroidal field strength
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• Velocity field becomes more like incompressible flow as toroidal field 
strength increases



Andy Bauer (RPI) has implemented an arbitrary unstructured mesh in the 
M3D-C1 code and is exploring different adaptive strategies.  This greatly 
improves the efficiency of the 2-fluid reconnection problem.

Adaptive Meshing



Nonuniform mesh with resolution of 121x121 structured mesh near 
center gives same results as 121x121 calculation in 1/3 the time.

(4-field calculation)



Summary and Conclusions
• Full 8-field 2F-MHD equations solved in 2D slab 

geometry with stream function/potential form
• Guide field significantly reduces “fast 

reconnection” phase in slab geometry
• Gyroviscosity has little effect on reconnection 

rate when guide field is present
• 2-fluid reconnection problems require localized 

regions with high resolution…natural for 
adaptive refinement

• Now generalized to toroidal geometry (Ferraro) 
• 3D extensions underway
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