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After destruction of the KAM surfaces, the cantori severely inhibit 
field line flow, and thus present barriers to heat transport in chaotic 
fields.

Ghost surfaces are constructed from the cantori by                 
“filling in the holes”, and coincide closely with isotherms. 



Anisotropic transport is dominated by structure of 
magnetic field

• Coordinates adapted to the structure of the magnetic field, magnetic 
coordinates, provide elegant description of plasma dynamics and can enhance 
numerical accuracy.

• Magnetic coordinates can be constructed globally when the field lines lie on 
nested toroidal surfaces.

– The temperature takes the simple form T=T(ψ), where ψ labels flux surfaces;
• Error fields, non-axisymmetry, instabilities . . . result in partially chaotic fields.

– The temperature takes the general form T=T(ψ,θ,φ);
• For chaotic fields, the cantori (broken KAM surfaces) play an important role in 

restricting heat transport.
– cantori are invariant sets, with irrational transform; cantorus = KAM surface with gaps/holes; 
– cantori are approximated by high-order minimizing periodic orbits;

• Coordinates adapted to the cantori, called chaotic coordinates, recover a 
simple description of the temperature.

– T≈T(s), where s labels chaotic coordinates;



Cantori restrict transport in chaotic regions
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sensitive to exponential 
increase of integration 
error in chaotic fields;

Magnetic field lines (in particular the cantori), are 
determined from Lagrangian variational principles
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Magnetic field lines,  , are stationary curves  of the action integral = ,
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Periodic orbits can be located by 
1) field line following;
2) adjusting a   to find an extremum of .
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The simplest representation of a trial curve is piecewise-linear
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Action integral integrated piecewise analytically

Hessian cyclic tridiagonal;
easily inverted O(N);
initial guess by tracking;
2nd order convergence;



unstable X curve;
action minimizing

su
rfa

ce

stable O curve;
action minimax

Ghost surfaces are constructed by deforming the stable 
periodic orbit into the unstable periodic orbit

 Ghost surfaces are constructed by sliding a trial periodic curve

down the gradient flow, , from the minimax (O) to the minimum (X)

p As the periodicity  (irrational), we have q

i

i

S

irrationa

θ
τ θ

ι

•
∂ ∂

= −
∂ ∂

• →  ghost-surfaces, 

which fill in the gaps in the cantori
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Steady state heat transport is solved numerically
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 heat diffusion equation     

   solved using operator splitting:
 Parallel :  locally field alligned coordinates 
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 Sparse linear system solved using BiCGStab
       confirmed 2nd order scaling of error
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red lines = 
ghost surfaces

black dots = 
cantori

black lines = 
isotherms
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The temperature profile is a smoothed devils staircase for 
strongly anisotropic systems
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CONCLUSIONS
Chaotic coordinates recover a simple description of 

heat transport in chaotic fields.

(and ghost surfaces can be constructed extremely quickly compared to 

 the numerically intensive solutio

 Temperature gradients are supported by cantori.

 Ghost surfaces coincide closely with isotherms
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