Linear Stability Calculations with M3D-C1

N. M. Ferraro¹, S. C. Jardin², X. Luo³ ¹General Atomics ²PPPL ³RPI (SCOREC)

CEMM Meeting Sherwood International Fusion Theory Conference Denver, CO May 2, 2009

Motivation

• Use of M3D-C1 allows study of:

- Diverted geometries
- Non-ideal effects on ideal modes
 - Resistivity
 - Two-fluid effects
 - Gyroviscosity
- Non-ideal modes
 - RWMs, tearing modes
- Boundary effects
 - Resistive walls

Method

- M3D-C1 has been extended to included linear non-axisymmetric equations
- Nonlinear code (relatively) easily adapted to linear equations
 - $\text{REAL} \rightarrow \text{COMPLEX}$
 - $\partial_{\varphi} \rightarrow in$
- New coding to allow non-rectangular boundaries; EFIT, GATO, TOQ equilibria
- Vacuum region = resistive plasma

New Velocity Form

- Old form: $\vec{u} = \nabla U \times \nabla \varphi + V \nabla \varphi + \nabla \chi$
 - U advects, but does not compress, n and p
- New form: $\vec{u} = R^2 \nabla U \times \nabla \varphi + R^2 \omega \nabla \varphi + R^{-2} \nabla \chi$ - U advects, but does not compress, RB_{ϕ}
- Using the "new form," the most unstable eigenmode should have $|R^2 \nabla U \times \nabla \varphi| >> |R^{-2} \nabla \chi|$
- Full equations using both velocity forms have been implemented

Comparison of Velocity Forms

Seneral Atomics

Benchmarks: dbm18: Mesh

🔶 GENERAL ATOMICS

Benchmarks: dbm18: Equilibrium & Eigenmode

SENERAL ATOMICS

Benchmarks: dbm18

dbm18_comp.data

Toroidal Mode Number (n)

Benchmarks: cbm18-dens8

N=1 Resistive Internal Kink Mode in CMOD

CMOD is stable to ideal MHD n=1 mode at operating point of $P_0/B^2 = .006$ Ideal MHD stable even down to $q_0 = 0.6$. Why does it exhibit sawteeth?

The resistive internal kink is unstable, but at a much lower growth rate. Can this explain the sawtooth crash?

GENERAL ATOMICS

N=1 Resistive Internal Kink Mode in CMOD

N=1 Resistive Internal Kink Mode in CMOD with S=10⁷

Close-up

Perturbed Current with Mesh

Conclusions

- Linear capability for M3D-C1 for full equations is now implemented
- Ideal benchmarks show good agreement
- $\vec{u} = R^2 \nabla U \times \nabla \varphi$ velocity form is best for linear instabilities in tokamak geometry
- Future work:
 - Apply to more realistic equilbria
 - Benchmark non-ideal effects
 - RWMs
 - Linear response to error fields

