Implicit Heat Conduction in M3D and Recent Scaling Results

J. Breslau, J. Chen and the M3D Group

Sherwood CEMM Meeting Seattle April 18, 2010

Background

The parallel heat transport model in M3D has historically been the "artificial sound wave": the MHD-like energy equation

$$\frac{\partial p}{\partial t} + \mathbf{v} \cdot \nabla p + \gamma p \nabla \cdot \mathbf{v} = \frac{2}{3} \nabla_{\perp} \cdot \left[n \chi_{\perp} \nabla_{\perp} \left(\frac{p}{\rho} \right) \right] + \text{heating terms}$$

where

$$\nabla_{\perp} \equiv \hat{R} \frac{\partial}{\partial R} + \hat{z} \frac{\partial}{\partial z}$$

is supplemented by a pair of wave equations for temperature and an auxiliary variable *u*:

$$\frac{\partial T}{\partial t} = s \frac{\mathbf{B} \cdot \nabla u}{n}$$
$$\frac{\partial u}{\partial t} = s \mathbf{B} \cdot \nabla T + v \nabla_{\perp}^{2} u$$

for sound speed s and artificial viscosity v.

Drawbacks of the Artificial Sound Approach

- This model is not a part of standard MHD, and not directly comparable to results from codes that implement the standard model (unclear what the equivalent χ_{\parallel} should be).
- Because the perpendicular operator is perpendicular to the φ direction rather than **B**, parallel and perpendicular transport are not cleanly separated.
- The implementation of the parallel operator is explicit in time, unlike the perpendicular one, and so can restrict the time step when *s* is large.

Parallel Heat Diffusion

The MHD energy equation with anisotropic heat conduction can be written ∂p ______

$$\frac{\partial p}{\partial t} + \mathbf{v} \cdot \nabla p + \gamma p \nabla \cdot \mathbf{v} = -\frac{2}{3} \nabla \cdot \mathbf{q} + \text{heating terms}$$

where the heat flux \mathbf{q} is given by

$$\mathbf{q} = -n \Big[\Big(\chi_{||} - \chi_{\perp} \Big) \hat{\mathbf{b}} \hat{\mathbf{b}} \cdot \nabla T + \chi_{\perp} \nabla T \Big].$$

Straightforward solution of this equation using finite differences or loworder finite elements is susceptible to numerical pollution of perpendicular heat transport by parallel when $\chi_{\parallel}/\chi_{\perp} \gg 1$, as is typical.

Günter, *et al.*, have a 2nd-order scheme based on centered differences that largely avoids this problem¹.

¹S. Günter, K. Lackner, and C. Tichmann, J. Comp. Phys. 226 (2007) 2306-2316.

Günter's Method for Finite Elements

The Galerkin integral of the heat conduction term against a test function is

$$-\int \lambda_i \nabla \cdot \mathbf{q} \, dV = \int \mathbf{q} \cdot \nabla \lambda_i \, dV + \text{surface term}$$

Substituting in the expression for \mathbf{q} , we rewrite the integral on the RHS as

$$-\int n\left(\chi_{||}-\chi_{\perp}\right)\tilde{q}_{||}\hat{\mathbf{b}}\cdot\nabla\lambda_{i}dV-\int n\chi_{\perp}\nabla T\cdot\nabla\lambda_{i}dV$$

The key procedure is the replacement of the factor $\hat{b} \cdot \nabla T$ in the first integral with

$$\widetilde{q}_{||m} \equiv rac{\int_{\Delta_m} \hat{\mathbf{b}} \cdot \nabla T dV}{\int_{\Delta_m} dV},$$

reducing the order of the representation by one, in this case from a C^0 bilinear function to a C^{-1} piecewise constant function over element *m*.

M3D Implementation

New routine advances

$$\frac{\partial \tilde{T}}{\partial t} = \nabla \cdot \left\{ n \left[\left(\chi_{||} - \chi_{\perp} \right) \hat{\mathbf{b}} \, \hat{\mathbf{b}} \cdot \nabla \, \tilde{T} + \chi_{\perp} \nabla \, \tilde{T} \right] \right\}$$

where

$$\tilde{T} = T - T_0$$

with arbitrary source term T_0 ; performs 3D numerical Galerkin integration (3×7-point quadrature) using trilinear test functions to construct global mass matrix **M** and heat conduction operator matrix **Q**; solves

Vertex values affect function over 12 adjoining triangular prisms

$$\left(\overline{\mathbf{M}} - \theta \delta t \overline{\mathbf{Q}}\right) \cdot \widetilde{\mathbf{T}}^{n+1} = \left[\overline{\mathbf{M}} + (1 - \theta) \delta t \overline{\mathbf{Q}}\right] \cdot \widetilde{\mathbf{T}}^{n}$$

using GMRES, $\theta = 1/2$ for 2nd-order accurate implicit time advance.

Qualitative Comparison with Artificial Sound Wave Method

- Use circular cross-section equilibrium, aspect ratio 3; 1.33 < q < 4.79.
 - Peak $T = 3.1 \times 10^{-7}$ near axis.
- Add temperature perturbation $\delta T = 3 \times 10^{-5} \exp\left\{-\left(\frac{\varphi - \pi}{0.07709}\right)^2 - \left[\frac{(R - 3.53)^2 + (z - 0.53)^2}{(0.04)^2}\right]\right\}$

• Freeze density and **B** and **v** fields, evolve *T* only; $\chi_{\perp}=10^{-50}$ and either $s=6, v=10^{-3}$ or $\chi_{\parallel}=60$

Artificial Sound Results

t = 0.025

t = 1.5

Implicit χ_{\parallel} Results

t = 0.025

t = 0.15

Late Time States

Implicit $\chi_{||}$, t = 15.0

Artificial sound, t = 9.0

Numerical instability

Quantitative Test of Accuracy

The figure of merit is the normalized RMS parallel temperature gradient, defined as

2nd Test: Find steady state using misaligned grid with inhomogeneous bcs

- Start with circular cross-section equilibrium, aspect ratio three. ۲
- Add 1,1 helical perturbation to poloidal flux to shift surfaces away from ٠ mesh.
- Use boundary condition T=0 on outer surface; T=1 on inner surface defined ۲ by ψ =-0.235.
- Run to steady state using 32 planes, 141 radial zones.

Detail of misaligned mesh, surfaces

Summary

- True implicit parallel and perpendicular heat conduction have been implemented in M3D.
- Use of Günter's method appears to allow high accuracy with linear finite elements even when tensor is highly anisotropic and mesh is misaligned.
- The new operator is an improvement on the old one in some respects.
- Further verification is needed. Because cases with analytic solutions are scarce, benchmarking with other codes would be useful.

M3D Scales to 12k+ Franklin Processors

• Algebraic multigrid preconditioner used for GMRES solves.

• Reverse Cuthill-McKee (RCM) matrix re-ordering used to reduce fill-in in ILU preconditioning for other linear solves.

• Base case is nonlinear C-Mod sawtooth with 24,000 vertices/CPU.

• ~200 toroidal CPUs, ~50 poloidal CPUS for largest cases.

J. Chen