CEMM Meeting, Seattle WA, April 2010.

MODEL DEVELOPMENT AND PLANS IN CONTINUUM KINETIC-MHD*

J.J. Ramos

M.I.T. Plasma Science and Fusion Center

*Work supported by the U.S. Department of Energy

OUTLINE

STATUS AND PLANS FOR THEORETICAL MODEL DEVELOPMENT.

COMMENTS ON THE USE OF THE CEMM PLATFORM FOR TRANSPORT STUDIES.

GENERALIZED SPITZER PROBLEM WITH FOKKER-PLANCK OPERATORS IN A LOW COLLISIONALITY REGIME AND RELATED ISSUES IN THE NEOCLASSICAL THEORY OF AXISYMMETRIC EQUILIBRIA.

STATUS AND PLANS FOR THEORETICAL MODEL DEVELOPMENT

DRIFT-KINETIC CLOSURE THEORY FOR LOW-COLLISIONALITY ELECTRONS COMPLETED (TALK AT SHERWOOD CONFERENCE THIS WEEK):

- Rigorous account the electric field and consistency with the fluid system.
- First-order FLR magnetic gradient drifts and Fokker-Planck collision operators.
- Near-Maxwellian, Chapman-Enskog-like for slow dynamics. Non-Maxwellian perturbation with automatically vanishing 1, $\mathbf{v} \mathbf{u}_e$ and $|\mathbf{v} \mathbf{u}_e|^2$ moments.
- Compatible with the neoclassical theory in the electron banana regime. Yields neoclassical banana results for odd equilibrium closures and bootstrap current.

NUMERICAL IMPLEMENTATION IN A DRIFT-KINETIC CLOSURE MODULE FOR THE NIMROD CODE UNDER WAY (UPDATE BY E. HELD).

ON NUMERICAL IMPLEMENTATION OF THE ELECTRON DRIFT-KINETIC CLOSURE FOR EXTENDED-MHD:

- Ideally framed as an integration project. Standard fluid and drift-kinetic interface desirable.
- 5D+time dimensionality for data storage. 3D+time dimensionality for integration.
- Intrinsically implicit character of the time advance algorithm for the distribution function.
- Gyrophase-independent velocity coordinates in the moving reference frame of the mean flow: magnitude of the random velocity and its pitch angle relative to the local magnetic field direction, with a Legendre polynomial expansion of the pitch angle dependence.

Three distinct parts in drift-kinetic equation:

Collisionless streaming: band-diagonal with Legendre-l coupled to l+1 and l-1. Linear Fokker-Planck collision operator: diagonal in l.

Inhomogeneous drive: l = 0, l = 1 and l = 2 components.

Needed fluid closure moments are pure l = 1 and l = 2 Legendre components.

• Less clear choice for discretization of the dependence on the magnitude of the velocity.

ELECTRON DRIFT-KINETIC EQUATION

In polar random velocity coordinates ($v'_{\parallel} = v' \cos \chi, v'_{\perp} = v' \sin \chi$):

$$\begin{aligned} \frac{\partial \bar{f}_{NMe}}{\partial t} + \cos \chi \left(v' \mathbf{b} \cdot \frac{\partial \bar{f}_{NMe}}{\partial \mathbf{x}} + v_{the}^{2} \mathbf{b} \cdot \nabla \ln n \ \frac{\partial \bar{f}_{NMe}}{\partial v'} \right) &- \frac{\sin \chi}{v'} \left(v_{the}^{2} \mathbf{b} \cdot \nabla \ln n - \frac{v'^{2}}{2} \mathbf{b} \cdot \nabla \ln B \right) \frac{\partial \bar{f}_{NMe}}{\partial \chi} = \\ &= \left\{ \cos \chi \ \frac{v'}{2T_{e}} \left(5 - \frac{v'^{2}}{v_{the}^{2}} \right) \mathbf{b} \cdot \nabla T_{e} \ + \ \cos \chi \ \frac{v'}{nT_{e}} \ \mathbf{b} \cdot \left[\frac{2}{3} \nabla (p_{e\parallel} - p_{e\perp}) - \left(p_{e\parallel} - p_{e\perp} \right) \nabla \ln B - \mathbf{F}_{e}^{coll} \right] \ + \\ &+ P_{2} (\cos \chi) \ \frac{v'^{2}}{3v_{the}^{2}} \left(\nabla \cdot \mathbf{u}_{e} - 3 \mathbf{b} \cdot \left[(\mathbf{b} \cdot \nabla) \mathbf{u}_{e} \right] \right) \ + \ \frac{1}{3nT_{e}} \left(\frac{v'^{2}}{v_{the}^{2}} - 3 \right) \left[\nabla \cdot (q_{e\parallel} \mathbf{b}) - G_{e}^{coll} \right] \ + \\ &+ \frac{1}{6eB} \left[2P_{2} (\cos \chi) \frac{v'^{2}}{v_{the}^{2}} \left(\frac{v'^{2}}{v_{the}^{2}} - 5 \right) \ + \ \frac{v'^{4}}{v_{the}^{4}} - 10 \frac{v'^{2}}{v_{the}^{2}} + 15 \right] (\mathbf{b} \times \kappa) \cdot \nabla T_{e} \ + \\ &+ \frac{1}{6eB} \left[-P_{2} (\cos \chi) \frac{v'^{2}}{v_{the}^{2}} \left(\frac{v'^{2}}{v_{the}^{2}} - 5 \right) \ + \ \frac{v'^{4}}{v_{the}^{4}} - 10 \frac{v'^{2}}{v_{the}^{2}} + 15 \right] (\mathbf{b} \times \nabla \ln B) \cdot \nabla T_{e} \ + \\ &+ P_{2} (\cos \chi) \ \frac{v'^{2}}{3eBv_{the}^{2}} (\mathbf{b} \times \nabla \ln n) \cdot \nabla T_{e} \ \Big\} f_{Me} \ + \end{aligned}$$

+ $\langle C_{ee}[f_{Me}, f_{NMe}] + C_{ee}[f_{NMe}, f_{Me}] + C_{e\iota}^{(3)}[f_{NMe}, f_{M\iota}] \rangle_{\alpha} + \langle C_{e\iota}^{(3)}[f_{Me}, f_{\iota}] \rangle_{\alpha}$.

ELECTRON COLLISION OPERATORS

BASED ON THE COMPLETE LINEARIZED FOKKER-PLANCK-LANDAU OPERATORS and

using the electron collision frequency definition

$$\nu_e \equiv \frac{c^4 e^4 n \ln \Lambda_e}{4\pi m_e^2 v_{the}^3} ,$$

The GYROPHASE AVERAGED COLLISION OPERATORS needed in the electron drift-kinetic equation are:

$$\langle C_{e\iota}^{(3)}[f_{Me}, f_{\iota}] \rangle_{\alpha} = \nu_{e} v_{the} f_{Me}(v') \frac{j_{\parallel}}{env_{th\iota}^{2}} \xi\left(\frac{v'}{v_{th\iota}}\right) \cos \chi +$$

$$+ \nu_{e} v_{the} f_{Me}(v') \left(\frac{T_{e}}{T_{\iota}} - 1\right) \left[\frac{4\pi v_{th\iota}^{2}}{n} f_{M\iota}(v') - \frac{v'}{v_{the}^{2}} \xi\left(\frac{v'}{v_{th\iota}}\right)\right]$$

where

$$\xi(x) = \frac{1}{x^2} \left[\varphi(x) - x \frac{d\varphi(x)}{dx} \right]$$
 and $\varphi(x) = \frac{2}{(2\pi)^{1/2}} \int_0^x dt \exp(-t^2/2) dt$

$$\langle C_{ee}[f_{Me}, f_{NMe}] + C_{ee}[f_{NMe}, f_{Me}] + C_{e\iota}^{(3)}[f_{NMe}, f_{M\iota}] \rangle_{\alpha} = C_{e}[\bar{f}_{NMe}]$$
 is Legendre diagonal:
$$C_{e}\left[\sum_{l=0}^{\infty} f_{l}(v')P_{l}(\cos\chi)\right] = \sum_{l=0}^{\infty} P_{l}(\cos\chi) C_{e,l}[f_{l}](v')$$

with

$$\begin{aligned} \mathcal{C}_{e,l}[f_{l}](v') &= \frac{\nu_{e}v_{the}}{n} f_{Me}(v') \left\{ 4\pi v_{the}^{2} f_{l}(v') - \Phi_{l}[f_{l}](v') + \frac{v'^{2}}{v_{the}^{2}} \frac{d^{2}\Psi_{l}[f_{l}](v')}{dv'^{2}} \right\} + \\ &+ \frac{\nu_{e}v_{the}^{3}}{v'^{2}} \frac{d}{dv'} \left\{ \xi \left(\frac{v'}{v_{the}} \right) \left[v' \frac{df_{l}(v')}{dv'} + \frac{v'^{2}}{v_{the}^{2}} f_{l}(v') \right] + \xi \left(\frac{v'}{v_{th\iota}} \right) \left[v' \frac{df_{l}(v')}{dv'} + \frac{m_{e}v'^{2}}{m_{\iota}v_{th\iota}^{2}} f_{l}(v') \right] \right\} - \\ &- \frac{\nu_{e}l(l+1)v_{the}^{3}}{2v'^{3}} \left[\varphi \left(\frac{v'}{v_{the}} \right) - \xi \left(\frac{v'}{v_{the}} \right) + \varphi \left(\frac{v'}{v_{th\iota}} \right) - \xi \left(\frac{v'}{v_{th\iota}} \right) \right] f_{l}(v') \end{aligned}$$

and

$$\frac{1}{v'^2} \frac{d}{dv'} \left\{ v'^2 \frac{d\Phi_l[f_l](v')}{dv'} \right\} - \frac{l(l+1)}{v'^2} \Phi_l[f_l](v') = -4\pi f_l(v')$$

$$\frac{1}{v'^2} \frac{d}{dv'} \left\{ v'^2 \frac{d\Psi_l[f_l](v')}{dv'} \right\} - \frac{l(l+1)}{v'^2} \Psi_l[f_l](v') = \Phi_l[f_l](v') .$$

ON PLANNED THEORETICAL MODEL DEVELOPMENT WORK:

- Derivation of the corresponding low-collisionality model for the ions.
- Based on the same orderings and the same mean flow reference frame formalism used for the electrons.
- Consistent with these same low-collisionality and mass ratio orderings, the ion theory requires a second-order drift-kinetic equation in the gyroradius expansion.
- Departure from conventional ion banana neoclassical theory. (Recoverable as a subset).
- Well established groundwork in earlier fluid and collisionless drift-kinetic publications.

COMMENTS ON THE USE OF THE CEMM PLATFORM FOR TRANSPORT STUDIES

A CREDIBLE CONTRIBUTION IN THE TRANSPORT AREA COULD BE MADE WITH THE MOST ADVANCED CEMM SYSTEM ENVISIONED:

- Fluid continuity, ion momentum, electron momentum and electron temperature equations.
- Particle-based kinetic ions contributing the full P_{ι} tensor.
- Drift-kinetic electrons contributing $(p_{e\parallel} p_{e\perp})$, $q_{e\parallel}$ and $F_{e\parallel}^{coll}$.

FOR PROCESSES WHERE SUB-ION-LARMOR-RADIUS SCALES ARE NOT ESSENTIAL (SUCH AS FLUID-ITG TURBULENCE), A CONTINUUM FLR ION DESCRIPTION MAY BE SUFFICIENT. THIS WOULD STILL REQUIRE:

- A slow-dynamics ion stress tensor in the fluid system.
- A slow-dynamics ion drift-kinetic parallel closure.

ON THE VIABILITY OF TRANSPORT MODELS WITH REDUCED DIMENSIONALITY (2-D AXISYMMETRIC, 1-D MAGNETIC SURFACE AVERAGED):

- These models must rely on phenomenological diffusive terms to represent the radial transport (e.g. like in the TSC code).
- A self-consistent, first-principle description of the radial transport at realistically low collisionality in an axisymmetric system seems very unlikely: the degeneracy of this system is such that always some quantities are left undetermined within the orders where an underlying self-consistent theory can be reasonably worked out.
- Rather than deriving and implementing the extraordinarily high-order theory needeed to resolve the axisymmetric degeneracies, it appears more likely that computational advances will allow to carry out 3-D, initial value simulations over transport times.

GENERALIZED SPITZER PROBLEM WITH FOKKER-PLANCK OPERATORS IN A LOW COLLISIONALITY REGIME AND RELATED ISSUES IN THE NEOCLASSICAL THEORY OF AXISYMMETRIC EQUILIBRIA

Using the following representation for the non-Maxwellian part of the distribution function:

$$\bar{f}_{NMe}(\mathbf{x}, v', \chi) = f_{Me}^{(0)}(\psi, v') \left\{ \frac{e\left[\phi - \phi^{(1)}(\psi)\right]}{T_e^{(0)}(\psi)} - \frac{n - N^{(0)}(\psi)}{N^{(0)}(\psi)} - \left[\frac{m_e v'^2}{T_e^{(0)}(\psi)} - 3\right] \frac{T_e - T_e^{(0)}(\psi)}{2T_e^{(0)}(\psi)} \right\} - f_{Me}^{(0)}(\psi, v') \left\{ \frac{m_e U_e(\psi)B}{T_e^{(0)}(\psi)} + \frac{m_e I(\psi)}{2eBT_e^{(0)}(\psi)} \left[\frac{m_e v'^2}{T_e^{(0)}(\psi)} - 5\right] \frac{dT_e^{(0)}(\psi)}{d\psi} \right\} v' \cos \chi + h_e(\mathbf{x}, v', \chi) ,$$

the low-collisionality electron drift-kinetic equation in an axisymmetric equilibrium becomes

$$v'\left(\cos\chi \mathbf{b}\cdot\frac{\partial h_e}{\partial\mathbf{x}} + \frac{1}{2}\mathbf{b}\cdot\nabla\ln B \sin\chi \frac{\partial h_e}{\partial\chi}\right) - \mathcal{C}_e[h_e] = \mathcal{S}_e v'\cos\chi$$

where

$$S_{e} = \left\{ \frac{eV_{0}I}{T_{e}^{(0)}BR^{2}} + \nu_{e} \left[U_{\iota}B + \frac{I}{eN^{(0)}B} \frac{d\left(2N^{(0)}T_{e}^{(0)}\right)}{d\psi} \right] \frac{v_{the}}{v_{th\iota}^{2}v'} \xi\left(\frac{v'}{v_{th\iota}}\right) + \frac{\nu_{e}m_{e}I}{eBT_{e}^{(0)}} \frac{dT_{e}^{(0)}}{d\psi} \frac{v_{the}}{v'} \left[2\varphi\left(\frac{v'}{v_{the}}\right) - 10\xi\left(\frac{v'}{v_{the}}\right) + \frac{1}{2}\varphi\left(\frac{v'}{v_{th\iota}}\right) - \frac{5v_{the}^{2}}{2v_{th\iota}^{2}}\xi\left(\frac{v'}{v_{th\iota}}\right) \right] \right\} f_{Me}^{(0)} .$$

Changing variables to $(\psi, \theta, v', \lambda)$, with $\lambda(\psi, \theta, \chi) = \sin^2 \chi B_{max}(\psi)/B(\psi, \theta)$:

$$v_{\parallel}' \; ({f b} \cdot
abla heta) \; {\partial h_e \over \partial heta} \; - \; {\cal C}_e[h_e] \; = \; {\cal S}_e \; v_{\parallel}'$$

where

$$v'_{\parallel}(\psi, \theta, v', \lambda) = \pm v' [1 - \lambda B(\psi, \theta) / B_{max}(\psi)]^{1/2}$$
.

FOLLOWING THE STANDARD SOLUTION METHOD OF NEOCLASSICAL THEORY:

$$h_{e} = \sigma(v'_{\parallel})H(1-\lambda)K_{e}(\psi, v', \lambda) + h_{e}^{(3)}(\psi, \theta, v', \lambda) = O(\delta_{e}f_{Me}) + O(\delta_{e}\nu_{*}f_{Me})$$

with

$$v_{\parallel}' \; (\mathbf{b} \cdot
abla heta) \; rac{\partial h_e^{(3)}}{\partial heta} \; - \; \mathcal{C}_e[\sigma H K_e] \; = \; \mathcal{S}_e \; v_{\parallel}' \; .$$

THIS HAS THE SOLUBILITY CONDITION THAT DETERMINES $K_e(\psi, v', \lambda)$:

$$\oint_{\psi, v', \lambda} dl \ v_{\parallel}'^{-1} \ \mathcal{C}_e[\sigma H K_e] = - \oint_{\psi, v', \lambda} dl \ \mathcal{S}_e \ .$$

THE SOLUTION $K_e(\psi, v', \lambda)$ OF THE ABOVE GENERALIZED SPITZER PROBLEM GIVES:

The electron poloidal flow (whence the electron contribution to the bootstrap current):

$$u_{ep} = U_e(\psi)B_p$$
 where $U_e(\psi) = \frac{2\pi}{N^{(0)}(\psi)B_{max}(\psi)} \int_0^\infty dv' \ v'^3 \ \int_0^1 d\lambda \ K_e(\psi, v', \lambda)$.

The parallel heat flux:

$$q_{e\parallel} = -\frac{5N^{(0)}T_e^{(0)}I}{2eB} \frac{dT_e^{(0)}}{d\psi} + Q_e(\psi)B \quad \text{where} \quad Q_e(\psi) = \frac{\pi T_e^{(0)}}{B_{max}} \int_0^\infty dv' \ v'^3 \left(\frac{m_e v'^2}{T_e^{(0)}} - 5\right) \int_0^1 d\lambda \ K_e(\psi, v', \lambda) = \frac{\pi T_e^{(0)}}{B_{max}} \int_0^\infty dv' \ v'^3 \left(\frac{m_e v'^2}{T_e^{(0)}} - 5\right) \int_0^1 d\lambda \ K_e(\psi, v', \lambda) = \frac{\pi T_e^{(0)}}{B_{max}} \int_0^\infty dv' \ v'^3 \left(\frac{m_e v'^2}{T_e^{(0)}} - 5\right) \int_0^1 d\lambda \ K_e(\psi, v', \lambda) = \frac{\pi T_e^{(0)}}{B_{max}} \int_0^\infty dv' \ v'^3 \left(\frac{m_e v'^2}{T_e^{(0)}} - 5\right) \int_0^1 d\lambda \ K_e(\psi, v', \lambda) = \frac{\pi T_e^{(0)}}{B_{max}} \int_0^\infty dv' \ v'^3 \left(\frac{m_e v'^2}{T_e^{(0)}} - 5\right) \int_0^1 d\lambda \ K_e(\psi, v', \lambda) = \frac{\pi T_e^{(0)}}{B_{max}} \int_0^\infty dv' \ v'^3 \left(\frac{m_e v'^2}{T_e^{(0)}} - 5\right) \int_0^1 d\lambda \ K_e(\psi, v', \lambda) = \frac{\pi T_e^{(0)}}{B_{max}} \int_0^\infty dv' \ v'^3 \left(\frac{m_e v'^2}{T_e^{(0)}} - 5\right) \int_0^1 d\lambda \ K_e(\psi, v', \lambda) = \frac{\pi T_e^{(0)}}{B_{max}} \int_0^\infty dv' \ v'^3 \left(\frac{m_e v'^2}{T_e^{(0)}} - 5\right) \int_0^1 d\lambda \ K_e(\psi, v', \lambda) = \frac{\pi T_e^{(0)}}{B_{max}} \int_0^\infty dv' \ v'^3 \left(\frac{m_e v'^2}{T_e^{(0)}} - 5\right) \int_0^1 d\lambda \ K_e(\psi, v', \lambda) = \frac{\pi T_e^{(0)}}{B_{max}} \int_0^\infty dv' \ v'^3 \left(\frac{m_e v'^2}{T_e^{(0)}} - 5\right) \int_0^1 d\lambda \ K_e(\psi, v', \lambda) = \frac{\pi T_e^{(0)}}{B_{max}} \int_0^\infty dv' \ v'^3 \left(\frac{m_e v'^2}{T_e^{(0)}} - 5\right) \int_0^1 d\lambda \ K_e(\psi, v', \lambda) = \frac{\pi T_e^{(0)}}{B_{max}} \int_0^\infty dv' \ v'^3 \left(\frac{m_e v'^2}{T_e^{(0)}} - 5\right) \int_0^1 d\lambda \ K_e(\psi, v', \lambda) = \frac{\pi T_e^{(0)}}{B_{max}} \int_0^\infty dv' \ v'^3 \left(\frac{m_e v'^2}{T_e^{(0)}} - 5\right) \int_0^\infty dv' \ v'^3 \left(\frac{m_e$$

The parallel collisional friction force:

$$F_{e\parallel}^{coll} = \frac{2m_e\nu_e}{3(2\pi)^{1/2}} \left(\frac{j_{\parallel}}{e} + N^{(0)}U_eB - \frac{3N^{(0)}I}{2eB}\frac{dT_e^{(0)}}{d\psi}\right) - \frac{2\pi m_e\nu_e v_{the}^3 B}{B_{max}} \int_0^\infty dv' \int_0^1 d\lambda \ K_e(\psi, v', \lambda) \ .$$

The magnetic surface averaged neoclassical parallel viscosity:

$$-\oint_{\psi} dl \ (p_{e\parallel} - p_{e\perp}) \ \mathbf{b} \cdot \nabla \ln B \ = \ \oint_{\psi} dl \left(F_{e\parallel}^{coll} + \frac{eV_0 N^{(0)}I}{BR^2} \right) \ = \ \mu_{e1} U_e(\psi) \ + \ \mu_{e3} Q_e(\psi) \ + \ \dots$$

SELF-CONSISTENT OHMIC AND BOOTSTRAP EQUILIBRIUM CURRENT:

The magnetic surface average of the $\nabla \zeta$ component of the electron momentum equation,

$$\oint_{\psi} \frac{dl}{B} \left(R^2 \nabla \zeta \cdot \mathbf{F}_e^{coll} + e N^{(0)} V_0 \right) = 0 ,$$

yields

$$U_{\iota}(\psi) = -\frac{3(2\pi)^{1/2}eV_0}{2m_e\nu_eI} - \frac{\langle R^2 \rangle_{\psi}}{eI} \left(\frac{1}{2}\frac{dT_e^{(0)}}{d\psi} + \frac{2T_e^{(0)}}{N^{(0)}}\frac{dN^{(0)}}{d\psi} \right) + \frac{3(2\pi)^{3/2}v_{the}^3}{2N^{(0)}B_{max}} \int_0^\infty dv' \int_0^1 d\lambda \ K_e(\psi, v', \lambda) \ .$$

This, together with the previous $U_e(\psi)$, give the ohmic and bootstrap part of the current:

$$\frac{dI}{d\psi} = -\frac{3(2\pi)^{1/2}e^2V_0N^{(0)}}{2m_e\nu_eI} - \frac{\langle R^2\rangle_{\psi}}{I}\left(\frac{N^{(0)}}{2}\frac{dT_e^{(0)}}{d\psi} + 2T_e^{(0)}\frac{dN^{(0)}}{d\psi}\right) + \frac{(2\pi)^{3/2}e}{B_{max}}\int_0^\infty dv' \left[\frac{3v_{the}^3}{2} - \frac{v'^3}{(2\pi)^{1/2}}\right]\int_0^1 d\lambda \ K_e.$$

Also,

$$F_{e\parallel} = -\frac{eV_0 N^{(0)}B}{I} - \frac{2m_e\nu_e}{3(2\pi)^{1/2}eBI} \left(\langle R^2 \rangle_{\psi} B^2 - I^2 \right) \left(\frac{N^{(0)}}{2} \frac{dT_e^{(0)}}{d\psi} + 2T_e^{(0)} \frac{dN^{(0)}}{d\psi}\right)$$

OUTSTANDING ISSUE

The generalized Spitzer problem for $K_e(\psi, v', \lambda)$:

$$\oint_{\psi, v', \lambda} dl \ v_{\parallel}^{\prime - 1} \ \mathcal{C}_e[\sigma H K_e] = - \oint_{\psi, v', \lambda} dl \ \mathcal{S}_e \ ,$$

that stems from the perturbative equation

$$v'_{\parallel} (\mathbf{b} \cdot \nabla \theta) \frac{\partial h_e^{(3)}}{\partial \theta} - \mathcal{C}_e[\sigma H K_e] = \mathcal{S}_e v'_{\parallel},$$

is subject to the boundary conditions:

$$lim_{\lambda\to 0}\left[\lambda^{1/2}\frac{\partial K_e(\psi, v', \lambda)}{\partial \lambda}\right] = 0, \qquad K_e(\psi, v', 1) = 0 \quad \text{and} \quad \frac{\partial K_e(\psi, v', 1)}{\partial \lambda} = 0.$$

If no solution satisfying these boundary conditions can be found, then the original equation

$$v'_{\parallel} (\mathbf{b} \cdot \nabla \theta) \; \frac{\partial h_e}{\partial \theta} \; - \; \mathcal{C}_e[h_e] \; = \; \mathcal{S}_e \; v'_{\parallel}$$

must be taken into account, either globally or in a boundary layer near $\lambda = 1$.

Simplified collision operator models yield $\partial K_e(\psi, v', 1)/\partial \lambda \neq 0$, but it is not clear whether a satisfactory boundary layer solution exists that smooths this derivative jump.

SELF-CONSISTENT OHMIC AND BOOTSTRAP EQUILIBRIUM CODE

INPUT	-	G-S SOLVER		SPITZER SOLVER
$N(\hat{\psi})$		In: $2N(\hat{\psi})T(\hat{\psi})$		In: $N(\psi)$
$T(\hat{\psi})$	\Rightarrow guess $I(\hat{\psi}) \Rightarrow$	$I(\hat{\psi})$	\Rightarrow guess $U_{\iota}(\psi), V_0 \Rightarrow$	$T(\psi)$
$I(\psi_a)$	介	$I(\psi_a)$	\uparrow	$I(\psi)$
$I_t(\psi_a)$	↑	$I_t(\psi_a)$	\uparrow	$U_{\iota}(\psi)$
	↑	Out: $\psi(R,Z)$	\uparrow	V_0
	↑	ψ_a	介	$B(\psi, l_B)$
•	↑	$B(\psi, l_B)$	介	Out: $K_e(\psi, v', \lambda)$
	↑		↑	\Downarrow
•	↑		↑	\Downarrow
	↑		update $U_{\iota}(\psi), V_0 \Leftarrow \mathbf{e}$	evaluate $U_e(\psi),~U_\iota(\psi),~I_t(\psi_a)$
	↑			\downarrow
	↑			\downarrow
	update $I(\hat{\psi}) \Leftarrow$	$\leftarrow \leftarrow \leftarrow \leftarrow \leftarrow$	$= \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow$	\Leftarrow evaluate $dI(\psi)/d\psi$