### V&V of the Hybrid Kinetic-MHD Model

Charlson C. Kim
Dalton D. Schnack
Scott E. Kruger
and the NIMROD Team
charlson@aa.washington.edu

Plasma Science and Innovation Center University of Washington, Seattle

April 18, 2010 Sherwood 2010, Seattle, WA



### Outline

#### Hybrid Kinetic MHD

computational model equations of motion

#### Giant Sawtooth

preliminary calculations comparison of mode plots higher n potential plans example applications



### The Hybrid Kinetic-MHD Equations

C.Z.Cheng, JGR, 1991

▶  $n_h \ll n_0$ ,  $\beta_h \sim \beta_0$ , quasi neutrality, MHD momentum equation modified by addition of hot particle pressure tensor:

$$\rho\left(\frac{\partial \mathbf{U}}{\partial t} + \mathbf{U} \cdot \nabla \mathbf{U}\right) = \mathbf{J} \times \mathbf{B} - \nabla \rho_b - \nabla \cdot \underline{\mathbf{p}}_h$$

b, h denote bulk plasma and hot particles

- $\triangleright \rho$ , **U** for entire plasma, both bulk and hot particle
- steady state equation

$$\mathbf{J}_0 \times \mathbf{B}_0 = \nabla p_0 = \nabla p_{b0} + \nabla p_{b0}$$

- p<sub>b0</sub> is scaled to accommodate hot particles
- assumes equilibrium hot particle pressure is isotropic



# Linearized Momentum Equation and $\delta \underline{\mathbf{p}}_h$

$$\rho_s \frac{\partial \delta \mathbf{U}}{\partial t} = \mathbf{J}_s \times \delta \mathbf{B} + \delta \mathbf{J} \times \mathbf{B}_s - \nabla \delta \rho_b - \nabla \cdot \delta \mathbf{\underline{p}}_h$$

► CGL-like 
$$\delta \mathbf{\underline{p}}_h = \begin{pmatrix} \delta \mathbf{p}_{\perp} & 0 & 0 \\ 0 & \delta \mathbf{p}_{\perp} & 0 \\ 0 & 0 & \delta \mathbf{p}_{\parallel} \end{pmatrix}$$

evaluate pressure moment at x

$$\delta \underline{\mathbf{p}}(\mathbf{x}) = \int m \langle \mathbf{v} - \mathbf{V}_h \rangle \langle \mathbf{v} - \mathbf{V}_h \rangle \delta f(\mathbf{x}, \mathbf{v}) d^3 v$$

 $\delta f$  is perturbed phase space density, m mass of particle, and  $V_h$  is COM velocity of particles



### The Hybrid $\delta f$ PIC-MHD model

ightharpoonup advance particles and  $\delta f$  using NIMROD fields

$$\mathbf{z}_{i}^{n+1} = \mathbf{z}_{i}^{n} + \dot{\mathbf{z}}(\mathbf{z}_{i})\Delta t$$
$$\delta f_{i}^{n+1} = \delta f_{i}^{n} + \dot{\delta f}(\mathbf{z}_{i})\Delta t$$

- ▶ deposit moment  $\delta p(\mathbf{x}) = \sum_{i=1}^{N} \delta f_i m(v_i V_h)^2 S(\mathbf{x} \mathbf{x}_i)$  on FE grid
- advance NIMROD field equations with hybrid Kinetic-MHD momentum equation

$$\rho_{s} \frac{\partial \delta \mathbf{U}}{\partial t} = \mathbf{J}_{s} \times \delta \mathbf{B} + \delta \mathbf{J} \times \mathbf{B}_{s} - \nabla \delta p_{b} - \nabla \cdot \delta \underline{\mathbf{p}}_{h}$$

particle dynamics augment fluid dynamics



#### PIC in FEM - nontrivial

- ▶ particles pushed in real space (R, Z) but field quantities in logical space  $(\eta, \xi)$
- ▶ particle coordinate  $(R_i, Z_i)$  needs to be inverted to logical coordinates

$$R = \sum_{j} R_{j} N_{j}(\eta, \xi), \quad Z = \sum_{j} Z_{j} N_{j}(\eta, \xi),$$

- iterative process
- sorting and parallelization done at same time
- sorting done by a bucket sort
- computationally most demanding greatest room for performance increase



### PIC options

- two equations of motion available
  - drift kinetic equations of motion
  - full Lorentz force equations of motion
- eventually provide capability of direct comparison
- several distribution functions are available
  - slowing down distribution
  - Maxwellian
  - monoenergetic
  - monoenergetic, no  $v_{\parallel}$
- several spatial profiles are available
  - proportional to MHD profile
  - uniform
  - peaked gaussian
- room for growth



### Slowing Down Distribution for Hot Particles

for the slowing down distribution function

$$\begin{split} \delta \dot{f} &= f_{\text{eq}} \left\{ \frac{mg}{e\psi_0 B^3} \left[ \left( v_{\parallel}^2 + \frac{v_{\perp}^2}{2} \right) \delta \mathbf{B} \cdot \nabla B - \mu_0 v_{\parallel} \mathbf{J} \cdot \mathbf{E} \right] \right. \\ &+ \frac{\delta \mathbf{v} \cdot \nabla \psi_p}{\psi_0} + \frac{3}{2} \frac{e\varepsilon^{1/2}}{\varepsilon^{3/2} + \varepsilon_0^{3/2}} \mathbf{v}_D \cdot \mathbf{E} \right\} \end{split}$$

where

$$\mathbf{v}_{D} = \frac{m}{eB^{3}} \left( v_{\parallel}^{2} + \frac{v_{\perp}^{2}}{2} \right) (\mathbf{B} \times \nabla B) + \frac{\mu_{0} m v_{\parallel}^{2}}{eB^{2}} \mathbf{J}_{\perp}$$

$$\delta \mathbf{v} = \frac{\mathbf{E} \times \mathbf{B}}{B^{2}} + \mathbf{v}_{\parallel} \cdot \frac{\delta \mathbf{B}}{B}$$



#### Benchmark with M3D





- velocity shows most activity in the most energetic particles
- mostly in trapped region, also in extremes of passing particles

Hybrid Kinetic MHD Giant Sawtooth oreliminary calculations omparison of mode plot ligher n octential plans xample applications

#### **GIANT SAWTOOTH**



### DIII-D shot #096043





# V&V of Hybrid-Kinetic MHD Model

- effect of energetic particles on internal kink mode using DIII-D EFIT equilibria
- excitation of fishbones
- role of trapped and passing particles
- ightharpoonup role of distribution parameters  $(\varepsilon_c, v_{max})$
- identify subdominant modes
- implement and study role of high energy tail
- compare to theory and numeric work (M.Choi PoP2007)
- nonlinear will require all of the aobve



### Preliminary Simulations - D. Schnack





# Preliminary Simulations (t = 1700ms) - C. C. Kim

| $v_{max}ackslasheta_{frac}$ | .25          | .5           | .75          |
|-----------------------------|--------------|--------------|--------------|
| $2 \times 10^6 \text{m/s}$  | 0.0033/0.012 | 0.0075/0.017 | 0.0101/0.021 |
| $3 	imes 10^6 \mathrm{m/s}$ |              | 0.0013/0.019 | 0.0053/0.026 |
| $4 	imes 10^6 	ext{m/s}$    | 0.0/0.0      | 0.0/0.0      | 0.0045/*     |

Table: Comparison of (growth rate/real frequency  $\times \tau_A$ ) of (1,1) for DIII-D shot #96043 t=1700ms shows stabilization with increasing velocity cutoff. Ideal growth rate is  $\gamma \tau_A = 0.0054$ 

no stabilization seen for t = 1900, 2020



### eigenmodes



- ▶ comparison of case1( $\beta_{frac} = .5, v_{max} = 2 \times 10^6$ ) and case2( $\beta_{frac} = .75, v_{max} = 4 \times 10^6$ )
- ▶ ideal ( $\gamma \tau_A = .0054$ ), case1( $\gamma \tau_A = .0075, \omega \tau_A = .017$ ), case2( $\gamma \tau_A = .0045$ ?)



### velocity plots indicates different physics



- case1 shows usual velocity interaction
- case2 shows indication of Landau resonance subdominant mode?



### onto higher *n*, scan in S - D. Schnack

DIII-D Shot 96043 t = 1900 ms.







preliminary calculations comparison of mode plot higher n potential plans example applications

#### Potential Plans

- ▶ development
  - other distribution functions
  - multi-species
  - improve parallelization
  - better shape function
- studies
  - condition equilibria with NIMEQ
  - compare to Maxwellian for KO
  - passing/trapped runs
  - energetic tail
  - multi-species



## $\delta f$ and the Lorentz Equations

Lorentz equations of motion

$$\dot{\mathbf{x}} = \mathbf{v}$$
 $\dot{\mathbf{v}} = \frac{q}{m} (\mathbf{E} + \mathbf{v} \times \mathbf{B})$ 

- use Boris push
- weight equation is

$$\dot{\delta f} = -\frac{2q}{m} \delta \mathbf{E} \cdot \mathbf{v} \frac{\partial f_0}{\partial v^2}$$



### Full orbit recovers drift kinetic result

 $\beta_{frac}$  scan of (1,1) benchmark kink



