Ideal and Non-Ideal Tokamak Edge Stability Calculations

N.M. Ferraro, ^{1,2} S.C. Jardin, ³ P.B. Snyder²

¹Oak Ridge Institute For Science and Education
²General Atomics
³Princeton Plasma Physics Laboratory

Outline

- Results of ELM benchmark with M3D-C1
- Extension to non-ideal physics
- Numerical Methods
- Conclusions

Three Equilibria Considered

- CBM18: circular; wide pedestal ($\Delta \Psi \approx .12$)
- DBM18: shaped; narrower pedestal ($\Delta \Psi \approx .08$)
- Meudas1: diverted; narrowest pedestal ($\Delta \Psi \approx .06$)

CBM18 Equilibrium: Good Agreement Among Codes

 Both compressible (Г = 5/3) and compressionless (Г = 0) cases agree well.

DBM18 Equilibrium: Good Agreement

📌 GENERAL ATOMICS

Meudas1 Equilibrium: Decent Agreement

Meudas1 Discrepancy

• Equilibrium

- M3D-C1 does not interpolate equilibrium data, but re-solves equilibrium
- Burke (2010) showed sensitivity to equilibrium mapping
- "Vacuum" region is probably too conductive in M3D-C1
 - Meudas case is highly sensitive to SOL resistivity

• Ideal Meudas eigenmode is unresolvable

- Even ideal codes agree at to ~10%

Growth Rates are Sensitive to Cutoffs Within LCFS

- Diverted case is extremely sensitive to position of vacuum-plasma interface
- Sensitivity is to ρ cutoff, not η

GENERAL ATOMICS

Wall Stabilization is Negligible

 Growth rates are essentially unaffected by the conducting wall, even at n = 5

GENERAL ATOMICS

Toroidal Rotation is Destabilizing and Stabilizing

- No Rotation
- Rotation is selfconsistently included in equilibrium (Ω ~ p)
- Equilibrium is changed, but $\Omega = 0$
- Destabilizing at low-n
- Stabilizing at high-n
- Some stabilization due to equilibrium change

Rotational Destabilization Important for Diverted Case

 Low-n modes in the diverted equilibrium are more significantly destabilized

SOL is not a Vacuum

• How do SOL ρ and η affect growth rates?

- Realistic SOL densities are similar to vacuum model
- Realistic SOL resistivity less similar to vacuum model

Stabilization by Other Non-Ideal Effects

• A simple model for stabilization is:

$$1 - \frac{\gamma}{\gamma_0} = \left(\frac{D}{D_{crit}}\right)^m$$

- Here D measures size of non-ideal term (e.g. χ). D ≥ D_{crit} implies stability.
- γ_0 is the growth rate without the non-ideal effect
- All cases here are run using Spitzer resistivity

$$\gamma_0 = \gamma_{Spitz}$$

Perpendicular Thermal Conductivity

- Assuming $\chi_{\perp} = 1 \, m^2/s$, CBM and Meudas cases are stabilized at

Perpendicular Viscosity is Stabilizing

- Assuming μ_{\perp} =1 m^2/s , CBM and Meudas cases are stabilized at

Parallel Thermal Conductivity is Destabilizing

• Growth rate increases, saturates as $\chi_{\scriptscriptstyle \parallel}$ increases

- Lower-resolution runs give same result
- Could have some relation to MTI

Stabilization by Gyroviscosity: Results

• In reality, Meudas cases is stabilized at $n_{crit}^{Meudas} \approx 20$

Ideal Benchmark: Plasma-Vacuum Interface

- M3D-C1 Solution to plasma-vacuum interface:
 - Don't represent η , ρ on finite element basis
 - Instead, calculate $\eta(\psi)$, $\rho(\psi)$
 - ψ is a smooth function
 - η , ρ are true step functions
- If density is dynamical, ρ must be represented on finite element basis
- No reason for η ever to be represented on finite element basis

M3D-C1: Time Step Methods

- M3D-C1 uses a split time step $(1 - \theta^2 \delta t^2 L) u^{n+1} = (1 - \alpha \delta t^2 L) u^n + \delta t F(B^n)$ $B^{m+1} - \theta \, \delta t \, G(u^{n+1}) = B^m + (1 - \theta) \, \delta t \, G(u^n)$
 - Split Crank-Nicholson:

$$\alpha = \theta(\theta - 1)$$

m = n

- "Implicit Leapfrog": $\alpha = \theta^2$ m = n + 1/2

M3D-C1: Time Step Methods

- Implicit Leapfrog introduces less numerical dissipation than split CN.
- For some problems, IL converges faster with δt
 - Ferraro, Jardin, JCP **228**(20):7742 (2009)

- In linear peeling-ballooning calculations, split CN converges faster with δx than IL
 - IL does not damp grid-scale oscillations arising from unresolved spatial structures
 - We were not able to overcome problem with explicit damping terms

Split CN is Smoother Than Implicit Leapfrog

Seneral Atomics

Conclusions

- Successfully reproduced ideal results with M3D-C1
- Resistive SOL is more accurately modeled as force-free plasma than as a vacuum (factor of 2 difference in diverted case)

- Within plasma, Spitzer resistivity same as "ideal."

- Growth rates are more sensitive to moving cutoff inward from separatrix than outward
 - Good news: sensitivity is to ρ , not η
- Wall stabilization is insignificant except (possibly) at very low-n (n ≤ 3).
- Crank-Nicholson converges better without explicit diffusive term than Implicit Leapfrog for this application
 - Likely due to spatial unresolvability

