Calculations of Linear Two-Fluid Plasma Response to Nonaxisymmetric Fields

Nathaniel M. Ferraro

General Atomics Oak Ridge Institute for Science and Education

> CEMM Meeting Austin, TX May 1, 2011

Understanding Time-Independent 3D Plasma Response Requires Non-Ideal Physics

- When is response ideal? When is it vacuum?
- Does the response vary smoothly between these two limits?
- If so, what is the relevant dimensionless parameter? $\tau_R \Omega$?
- To what extent are other effects important?
 Viscosity, two-fluid, FLR, etc..
- How can this inform our interpretation of experimental results?

Progress in 3D Response Since Last Meeting

Implementation of time-independent method

- Response to Boozer's concerns
- Better understanding of results, especially in two-fluid case
- Application to several DIII-D experiments
 - Lanctot, Mordijck, Buttery

Time-Dependent Method

- $B(t) = B_0 + B_1(t)$
 - **B**₀ is the axisymmetric equilibrium field
 - B₁(0) is the "vacuum field" from non-axisymmetric coils (I-coils).
- Conducting-wall boundary condition
 - n•B is held constant in time on simulation domain boundary (approximately vacuum vessel).
- Simulation is time-advanced until the steady-state is reached.
- Final B₁ is applied field + plasma response.
- Caveats:
 - Equilibrium must be stable (otherwise response is ∞)
 - More computationally intensive than time-independent calculation

Time-Independent Method

• Time-dependent time-step:

$$\frac{\mathbf{x}^{n+1} - \mathbf{x}^n}{\delta t} = A \cdot \left[\theta \, \mathbf{x}^{n+1} + (1 - \theta) \mathbf{x}^n\right]$$

• Time-independent solution (xⁿ⁺¹=xⁿ) is

 $A \cdot \mathbf{x}^{n+1} = 0$

(BCs make some elements of RHS nonzero)

• This is equivalent to our time-dependent calculation, if we remove d/dt terms and set $\theta = 1$

• Caveats:

- Doesn't work with semi-implicit methods
- Only makes sense for linear calculations
- System may be very poorly conditioned
- Says nothing about dynamics

Response Calculated For DIII-D Discharges

- Use EFIT reconstructions of DIII-D shots 135758--73
- Equilibrium is recalculated selfconsistently using $\rho \Omega^2 = \alpha p_0$
- Numerical considerations require I-Coils to be outside wall (unlike experiment)
- Wall excludes plasma response, invalidating magnetics diagnostics

* Lanctot et al., Phys. Plasmas 17:030701 (2010)

RAL ATOMICS

Plasma Screens Resonant Fields, Enhances Non-Resonant Fields

• Generally, two types of responses are seen

NERAL ATOMICS

Rotation (Usually) Improves Screening; Response Depends on Beta

- Co-current rotation is found to screen better than counter-current (even in resistive 1F model)
- In low-β case, plasma screens even without rotation
- In high-β case without rotation plasma amplifies resonant fields

Shot 135762 Responds Most Strongly at q=3 Surface

- Rotation generally suppresses resonant response
- Strong rotation enhances resonant response near edge (especially q=5)

Rotation Improves Core Screening; But Stochasticizes Edge

📌 GENERAL ATOMICS

Core Penetration Depends on Perpendicular Electron Velocity

 2F terms introduced by raising d_i

 Core penetration correlates better with perp. electron rotation (bottom) than with ion rotation (top).

What is "Perpendicular" Electron Velocity?

- For incompressible flow, $\mathbf{v} = R^2 \omega(\psi) \nabla \varphi + \lambda(\psi) \mathbf{B}$ - Note that $\omega(\psi) \neq \Omega = \mathbf{v} \cdot \hat{\varphi} / R$ unless $\lambda(\psi) = 0$
- The perpendicular angular velocity is defined as

$$\Omega_{\perp} = \frac{\mathbf{v}}{R} \cdot \frac{\mathbf{B} \times \mathbf{v}\psi}{\left|\mathbf{B} \times \nabla\psi\right|}$$

- From radial force balance: $\omega(\psi) = \phi'(\psi) + \frac{p'(\psi)}{nq}$ $\omega^e = \omega^i + \omega^e_* - \omega^i_*$
- Ω_{\perp} vanishes wherever ω vanishes, but also at nulls
 - If Ω_{\perp} is the relevant quantity, toroidal rotation is less effective at screening near x-point

 ω_*

Parallel Currents Persist in Steady State

These are from timeindependent calculations, without rotation!

• Currents do not affect energy balance at first order (currents are periodic in ϕ)

Summary and Conclusions

- M3D-C1 can calculate linear two-fluid response with realistic values of resistivity, rotation, and perpendicular transport
 - Time-independent and time-dependent methods agree
- Time-independent parallel currents do exist in resonant layers
 - This is true even without rotation
- Screening is more complicated than ratio of rotational to resistive time-scales
 - Depends crucially on proximity to marginal stability
 - Viscosity and thermal diffusion inhibit resonant response (both screening and resonant field amplification)
- Perpendicular electron velocity appears to be the relevant rotation quantity for screening

Future Work

Torque calculation

- General NTV models can be used to calculate torque generated by linear perturbation a posteriori
- Torque can be calculated self-consistently using Braginskii-like NTV models

Nonlinear calculations

- M3D-C1 is now capable of 3D nonlinear calculations (see poster 1P24)
- Unclear how to extend time-independent method to nonlinear model
- How do we use this to optimize coils? Optimize for what?

Extra Slides

Rotation Magnitude, Not Shear, Is Responsible For Screening

- **Red**: rotation profile proportional to pressure
- Blue: uniform rotation throughout plasma (i.e. no shear)

 Rotation screens, even when there is no shear.

Rotation-Driven Edge Response Depends on Ion Rotation (Not Electron Rotation)

- Edge mode correlates better with ion rotation (top) than with perp. electron rotation (bottom)
- Not "penetration," but proximity to marginal stability.

