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Motivation

The objective of this work is to make NIMROD more robust
and easier to use in application to nonlinear macroscopic
extended-MHD dynamics of magnetically confined plasma.
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Introduction

* In resistive-MHD with small or no viscous damping, growth rates of local
interchange/ballooning instabilities tend to increase with perpendicular
wavenumber.

* In physical cases where these modes exist, drift and/or kinetic effects
limit growth at small spatial scales.

« Many nonlinear computations of interest are impractical if nonlinear
convergence on interchange is from the unstable side, even when
including effects that stabilize high wavenumber modes physically.



Numerical tests for edge-localized modes (ELMs) provide
a demonstration of convergence from the unstable side.
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Growth rates computed with NIMROD
including 2-fluid Ohm’s law, gyro-viscous

stress, and ion diamagnetic drift. Here,
d/a=0.08 and w,,;7,=0.5 for n=20.

* NIMROD is known to converge from the unstable side for MHD.
» The above results show that 2-fluid modeling does not change this property.
» Other physical parameters: S=10° (using central T), Pm=1, x;/x, =10°.

Profiles of the dens8 circular-cross-section
equilibrium by P. Snyder. Number density
drops by 100, temperature drops by 10.



Eigenvalue tests: a flexible computational tool helps us
iInvestigate many basis-function and formulation
possibilities.

* The CYL_SPEC code generates matrices for generalized eigenmode
problems (Ax-ABx=0) that are solved with LAPACK routines.

- 1D cylindrical geometry with f — f(r)e" %" is a compromise

between non-trivial geometry and rapid development.

* Run-time parameters are used to select basis functions.
» Changing formulations requires minimal coding.

* First-order systems for V, B, p, and a scalar for the divergence
constraint test possibilities for NIMROD's expansions.



The cylindrical profile used for testing internal kink in [Gruber
and Rappaz] is also convenient for local interchange tests.
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* The q profile is parabolic and D, decreases monotonically in
radius.

* Most cylindrical results reported here are computed with
c,=4/7 and c,=10/7.



A tractable modification of NIMROD's representation is to
use different continuous basis functions for different fields.

» Expansions with B having larger polynomial degree than other fields is a
generalization of the XTOR approach.

* CYL_SPEC tests of two possibilities on the unstable m=4, k=-1.78 cylinder mode
at r,=0.371 and D(r,)=0.443 show convergence from the stable size.
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» The standard case (red) has all fields of the same polynomial degree.

* One ‘modified’ representation has only V of one degree lower (open), and the other
has both V and P lower (blue).



The expansion with both P and V at lower polynomial
degree than that for B is more accurate for stable m=1
oscillations in uniform axial field.
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« Computations with the first-order systems use four elements.
* All of the continuous expansions have at least one zero-frequency mode,
however.



Time-dependent results: a recent test branch of NIMROD allows
independent specification of the polynomial degree of B, V, and n/T.

* This test is the same cylindrical profile with ¢,=4/7 and ¢,=10/7.
* The converged m=4, k=-1.78 ideal-MHD mode grows at y=6.77x103.
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All fields have polynomial V, n, and T have reduced Only V has reduced
degree of 4, y=9x10-4, degree of 3, y=4x10-3, degree of 3, y=2x10-5,

» These computations have no viscosity and y;.,=n/u,=10%
e With a uniform 20x20 mesh, the reduced-V & n/T case is overstable.



The reduced-V expansion is the only representation of
the three to avoid a numerical mode in computations for
physically stable parameters.

* The equilibrium has ¢,=1/2 and ¢,=3/2, and D>1/4 for r<0.385.

« With k=-1.1 for n=1, q(0)=2.2 and m=2 is not resonant. The m=3
mode is resonant in the stable region.

» With a uniform 24x24 mesh, NIMROD computations with
polynomial degree reduced for V show no exponential growth.

* The other two continuous representations show growing noise at
v=7x10-3 for V expanded in polynomials of degree 4.



Resistive-MHD computations using the reduced-V expansion
on the dens8 ELM test show convergence from the stable

side in toroidal geometry. "
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 The MHD computation has a 48x64

mesh, and the 2-fluid computations have
a 42x96 mesh.

» The 2-fluid results may indicate | | R

competing numerical effects as V, component of the n=21 mode for the
resolution is increased. MHD (top) and 2-fluid (bottom) models.



Discussion and Conclusions

» Expansions with continuous representations of flow-velocity and
polynomial basis of one degree lower than those of other fields
converges reliably from the stable side for MHD.

* |deal MHD spectra with 1D elements shows this property but
points to unphysical stable modes between the Alfvén frequency
and the first fast mode.

 Tests with a modified version of NIMROD confirm convergence
from the stable side with 2D spectral elements.

* Tests with reduced number density and temperature
representations allow growth of mesh-scale noise.

* More testing is needed for 2-fluid computations with the reduced-V
expansion.

* The continuous expansions using lower polynomial degree for V may
benefit from finite-element ‘stabilization’ or *filtering.’
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Equilibrium

Profiles:
n,(x)=n, exp(x [ L,,)

P, (x)=n,(x)T,,(x)=n,exp(x/L,)T,,exp(x /L)
= ISSO exp[(ns + I)X/Ln:l ’ ns = Ln /LTS ’ § = e’i

d B} (x) | |
. I)iO(x)+PeO(x)+ — _Mno (x)g B, found by integration
dx 2U,

Drifts:
E 1 dP
\,O(X) _ x0 0 g
B, nOeBO dx E , = constant
E 1 dl)eo Coordinate transformation
‘/ieO (X) = o g _
BO n,eB, dx Stable in ideal MHD with g = 0.



Preliminary NIMROD Results

Growth Rate vs.n.
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Convergence Properties of Spectral

Elements on Thermal Transport in
Chaotic Magnetic Fields
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As the anisotropy increases (k =108%), a higher
poly. degree allows more features to be resolved.
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For high anisotropy the temperature profile at the

midplane begins to approximate a Devil’s Staircase.
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Helicity Injection in NSTX

Status of Simulations
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Plasma heating

Plasma temperature — Joof
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n=1 mode — PRELIMINARY RESULT

Initial n=1 calculations show a mode in the discharge-current channel

Fluid vortices and local current flow are generated in a region with large n=0 velocity
and current shear
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