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How can one model neoclassical tearing modes? 

Introduction 3 



Neoclassical tearing mode modeling 
4 

 NTM stability place a severe limit on maximum β 

 Most common cause of disruptions on JET1 

 High-fidelity simulations required for prediction, 
control, avoidance, and understanding of NTMs 
 Especially important for ITER operation, in which very 

few disruptions can be tolerated2 

 NTMs incorporate a lot of physics  
 Cause:  Neoclassical kinetic theory (bootstrap current) 

 Effect:  MHD destabilization (island growth) 

 Requires a hybrid model 

 1 P.C. de Vries, et al., Nucl. Fusion 51, 053018 (2011) 
2 T.C. Hender, et al., Nucl. Fusion 47, S128-S202 (2007) 



Framework for hybrid solver 
5 

 Use existing MHD time-evolution code (e.g., M3D-C1, 
NIMROD) 

 Desirable traits for neoclassical drift–kinetic equation 
(DKE) solver 
 Three-dimensional toroidal geometry 

 Study nonaxisymmetric geometries with magnetic islands 

 Full Fokker-Planck-Landau collision operator 
 Use of model collision operators can lead to errors of 5%-10%3 

 Continuum model 
 Good convergence properties, especially for long times 

 Straight-forward coupling to MHD solvers 

 Potentially more computationally efficient than PIC 

3 E.A. Belli and J. Candy, Plasma Phys. Control. Fusion 54, 015015 (2012) 



Ramos Form of DKE 
6 

 J.J. Ramos (Phys. Plasmas 2010 & 2011) provides 
analytic framework for a neoclassical solver 
appropriate for core plasma instability simulations 

 DKE evolves          , difference between full distribution 
function and shifting Maxwellian (similar to delta-f) 

 Small parameters for high-temperature fusion plasmas   

 

 Important properties:   
 Maintained to collisional inverse timescale of 

 Conventional neoclassical banana regime for electrons  

 Velocity referenced to each species’ macroscopic flow 

 Perturbed distribution carries no density, parallel 
momentum, or kinetic energy 



Axisymmetric case 

Analytic & Numerical Formulation 7 



Overview of next step 
8 

 NIES code (previously presented at 6/12 & 10/12 
CEMM meetings) successfully solved axisymmetric 
Ramos DKEs to zeroth order in collisionality 

 We’ll retain axisymmetric geometry for now 

 Want to solve the full Ramos DKE without further 
expansions in collisionality 
 Extends result to first-order in collisionality 

 Allows solution to vary poloidally 

 Solves for trapped and passing particles’ distribution 
functions 

 Will couple directly to reduced MHD equations 



MHD equations 
9 

 Besides Maxwell’s Eqs., we have: 

 Ohm’s Law 

 Momentum evolution 

 Pressure evolution 

 Use the 2-field representation to start (no pressure eq.)  

 



Required Moments for Closure 
10 

 Pressure Anisotropy 

 Parallel Heat Flux 

 Collisional Friction Force 

 Collisional Heat Source 

 All of these moments are given by the solution to appropriate DKEs 

 We’ll only consider the electron DKE here 

 



Reduced Electron DKE 
11 

 Assume flat, stationary temperature & density profiles 
with equal ion & electron temperatures 

 Work in axisymmetric 4D phase space 
     denotes a flux surface,     is the poloidal angle 

     is the total velocity,                    is cosine of the pitch angle 

 Electron DKE simplifies to 

 

     

    where 

 

  



Time evolution of Electron DKE 
12 

 First line consists of convective flow and homogeneous 
collision operator and is treated implicitly 

 Second and third lines consist of moments of the 
solution and are treated explicitly 
 No stability constraints expected since these are integrals 

over the solution. 

 Last line consists of the inhomogeneous drive terms 



Expansions in DKE 
13 

 Velocity 

 Cubic B-spline finite elements for 

 Pitch angle 

 Legendre polynomials in  

 May try finite elements as well 

 Configuration Space 

 Fourier modes in 

     is just a parameter (each flux surface treated locally) 

 May try finite elements in     or in  



DKE Solution Method 
14 

 Poisson equations for Rosenbluth potentials solved 
simultaneously with DKE at each time step 

 Galerkin method with cubic B-spline finite elements creates a 
block septadiagonal matrix in 
 
 
 
 
 
 

 Each block contains information on     and θ derivatives 
 Solve as a sparse banded matrix using ScaLAPACK 

 May transition to SuperLU at some point to take advantage of 
sparsity within blocks 



Timescales 

 Difficult to consider DKE time dependently 
 In DKE, collision time 10-103  longer than convective time 
 MHD resistive time 106-108 longer than collision time 

 Reasonable to expect the distribution function to evolve 
to steady state within an MHD time step 

15 



Proposed solution iteration 
16 

Solve DKE(s) to 
steady state to get 

distribution function 
for given equilibrium 

Take moments to get 
necessary closures 
for MHD equations  

(e.g., friction force) 

Evolve MHD 
equations to get new 

equilibrium using 
(modified) M3D-C1 



Current Progress 17 



Status of code 
18 

 All terms discussed have been implemented 

 Can reproduce known result with good agreement 

 Currently debugging some computational issues 

 Convergence with number of velocity finite elements 

 Spurious density, parallel momentum, and kinetic 
energy formation 

 



Adiabatic Solution Test 
19 

 A reduced version of the steady-state electron DKE:  

  
has a known particular solution: 

 

 

 Our computed  
steady-state  
solution to  
this equation 

 



Convergence to Adiabatic Solution? 
20 

 Level of random error can be 
reduced with smaller time 
step or larger grid spacing 

 Possible stability issue? 
 

 Possible boundary condition 
problems 

 Eq. ill-defined at origin? 

 Cause of oscillations? 
 



Full DKE Solutions 
21 

 Don’t observe same issue in steady-state convergence (except at 
small magnitude ~10-11); many time steps for convergence though 

 Currently working on numerical convergence 



Conservation Laws 
22 

 Define: 

 

 

 One can show that the analytic electron DKE should 
enforce several conservation laws 

 

 

 Expect numerical equations to deviate from these, 
but spurious values should converge as solution 
converges 



Using Conservation Laws to Debug 
23 

 Producing spurious momentum of ~1% of mean flow 
 
 
 
 
 
 
 
 

 Derivation of these laws show which terms balance, e.g., 
 Convective terms balance parallel heat flux to produce no 
 No other terms should contribute to 
 Preliminary tests show that this balance is not converging, though 

spurious kinetic energy is small (~10-6 of electron temperature) 



Calculating Neoclassical Conductivity 
24 

 Despite these problems, it would be useful to 
calculate the neoclassical conductivity given by our 
computed solution 

 Parallel Ohm’s Law gives 

 

 Thus, the neoclassical conductivity is 

 

 

 

 Should be done soon (perhaps by my poster Monday) 



Future work & Conclusion 25 



Test problem 
26 

 Diffusion of current into a toroidal plasma due to a 
loop voltage at its edge 

 Current evolves self-consistently with equilibrium 

 Should observe neoclassical conductivity reduction 

 Trapped particles carry no net current 

 Can benchmark to theoretical and numerical results 



Extensions to axisymmetric code 
27 

 When current code is working, we will 

 Allow separate ion and electron temperatures 

 Relax constraints on density and temperature profiles 

 Will have to solve separate, but similar, ion DKE 

 Will allow for simulations of the inductive 
formation of the bootstrap current 

 Use full six-field MHD model with M3D-C1 to self-
consistently evolve pressure as well 

 



Summary 
28 

 The operation of ITER and other future MCF 
experiments requires predictive capabilities for core 
plasma instabilities (e.g., Sawtooths, NTMs) 

 To date, no neoclassical code exists that is well-suited 
for such simulations (work by E. Held excepted) 

 We are creating such a code based on the Ramos 
drift-kinetic formulation 

 Axisymmetric hybrid code currently being debugged 

 Hope to start work on nonaxisymmetric code in late 2013 

 My poster:  Monday, Session II,  #24 
 


