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In practice, we will have a discrete set of toroidal surfaces that will be used as “coordinate surfaces”. 

 

The Fourier harmonics, Rm,n & Zm,n, of a discrete set of toroidal surfaces 

are interpolated using piecewise cubic polynomials. 

 

A regularization factor is introduced, e.g.    

to ensure that the interpolated surfaces do not overlap near the coordinate origin=magnetic axis. 

The magnetic field is given in cylindrical coordinates, 

and arbitrary, toroidal coordinates are introduced.  

ζ 

ϑ 

ρ 

If the surfaces are smooth and well separated, 

this “simple-minded” interpolation  works. 

Begin with circular cross section coordinates, 

centered on the magnetic axis. 



hereafter, we will use the commonly used notation 

 

 

ψ  is the toroidal flux, and χ is called the magnetic field-line Hamiltonian 

A magnetic vector potential, in a suitable gauge,  

is quickly determined by radial integration. 



The magnetic field-line action is the  

                                         line integral of the vector potential 

piecewise-constant, piecewise-linear 

 

reduces to                 , which can be solved locally,  

the piecewise-linear approximation allows  

the cosine integral to be evaluated analytically, 

i.e. method is FAST 

tridiagonal Hessian, inverted in O(N) operations,    i.e. method is FAST 

 

Not required to follow magnetic field lines, and 

does not depend on coordinate transformation. 

To find extremizing curves, use Newton method to set  ∂ρS=0,   ∂ϑS=0  



ρ  

poloidal angle, ϑ 

ϑO 

“stable” 

periodic orbit 

ϑX 

“unstable” 

periodic orbit 

The trial-curve is constrained to be periodic, 

and a family of periodic curves is constructed. 
Usually, there are only the “stable” periodic field-line and the “unstable” periodic field line, 

However, we can “artificially” constrain the poloidal angle, i.e. ϑ(0)=given constant,  

and search for extremizing periodic curve of the constrained action-integral 

A rational, quadratic-flux minimizing surface  
is a family of periodic, extremal curves of  the constrained action integral, and 

is closely to related to the rational ghost-surface,  
which is defined by an action-gradient flow between the minimax periodic orbit and the minimizing orbit. 

 



The “upward” flux = “downward” flux across a toroidal 

surface passing through an island chain can be computed. 

consider a sequence of rationals, p/q, that approach an irrational, 

poloidal angle, ϑ 

ρ  

If Ψp/q→∆, where ∆ ≠ 0, then the KAM surface is “broken”, and Ψp/q is the upward-flux across the cantorus 

the total flux across any closed surface of a divergence free field is zero. 



The diagnostics include:  

1. Greene’s residue criterion: the existence of an irrational surface can be 

determined by calculating the stability of nearby periodic orbits. 

2. Chirikov island overlap: flux surfaces are destroyed when magnetic islands 

overlap. 

3. Cantori: can present effective, partial barriers to fieldline transport, and cantori 

can be approximated by high-order periodic orbits. 



In chaotic coordinates, the temperature becomes a surface function, T=T(s), 

where s labels invariant (flux) surfaces or almost-invariant surfaces. 

 
If T=T(s), the anisotropic diffusion equation can be solved analytically, 

 

where c is a constant, and 

                           

                            is related to the quadratic-flux across an invariant or almost-invariant surface, 

 

                              is a geometric coefficient. 

The construction of chaotic coordinates simplifies anisotropic diffusion 

particle “knocked” 

onto nearby field line 

An expression for the temperature gradient in chaotic fields 

S.R. Hudson, Physics of Plasmas, 16:010701, 2009 

Temperature contours and ghost-surfaces for chaotic magnetic fields 

S.R.Hudson and J.Breslau 

Physical Review Letters, 100:095001, 2008 

When the upward-flux is sufficiently small,  
so that the parallel diffusion across an almost-invariant surface is comparable to the perpendicular diffusion,  

the plasma cannot distinguish between a perfect invariant surface and an almost invariant surface 



Generalized action-angle coordinates defined on island chains 

R.L.Dewar, S.R.Hudson and A.M.Gibson 

Plasma Physics and Controlled Fusion, 55:014004, 2013 

 

Unified theory of Ghost and Quadratic-Flux-Minimizing Surfaces 

Robert L.Dewar, Stuart R.Hudson and Ashley M.Gibson 

Journal of Plasma and Fusion Research SERIES, 9:487, 2010  

 

Are ghost surfaces quadratic-flux-minimizing? 

S.R.Hudson and R.L.Dewar 

Physics Letters A, 373(48):4409, 2009 

 

An expression for the temperature gradient in chaotic fields 

S.R.Hudson 

Physics of Plasmas, 16:010701, 2009 

 

Temperature contours and ghost-surfaces for chaotic magnetic fields 

S.R.Hudson and J.Breslau 

Physical Review Letters, 100:095001, 2008  

 

Calculation of cantori for Hamiltonian flows 

S.R.Hudson 

Physical Review E, 74:056203, 2006 

 

Almost invariant manifolds for divergence free fields 

R.L.Dewar, S.R.Hudson and P.Price 

Physics Letters A, 194(1-2):49, 1994 

List of publications,     http://w3.pppl.gov/~shudson/ 



islands & chaos emerge at every rational     about each rational / ,  introduce excluded region, width /

flux surface can survive if | / | / ,                                       

k

k

n m r m

n m r m



  KAM Theorem 

(Kolmogorov, Arnold, Moser)                     - "  "

for all ,

                               

Greene's residue criterion the most robust flux s

stronglywe say that is iirrati f avoids all exclona uded r ionsl eg

n m

 

 urfaces are associated with alternating paths

0 1 1 2 3 5 8 13 21
                                       Fibonacci ratios  ,  ,  ,  ,  ,  ,  ,  ,  ,  . .

1 1 2 3 5 8 13 21 34


1 2

1 2

1 2

1 2

                                  

               

p p

q q

p p

q q





The fractal structure of chaos is related to the structure of numbers 
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For non-integrable fields, field line transport is 

restricted by KAM surfaces and cantori 
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510  iterations 

“noble” 

cantori 
(black dots) 

KAM surface 

cantor set 

complete barrier 

partial barrier 

 KAM surfaces are closed, toroidal surfaces  

     that stop radial field line transport 

       

 Cantori have “holes” or “gaps”; 

     but cantori can severely “slow down” 

     radial field line transport 

 

 Example: all flux surfaces destroyed by chaos, 

     but even after 100 000 transits around torus 

     the field lines cannot get past cantori 

Calculation of cantori for Hamiltonian flows 

S.R. Hudson,  Physical Review E 74:056203, 2006 
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Chaotic coordinates “straighten out” chaos 

Poincaré plot of chaotic field 
(in action-angle coordinates of unperturbed field) 

Poincaré plot of chaotic field 
in chaotic coordinates 

     phase-space is partitioned into (1)   regular (“irrational”) regions      with “good flux surfaces”, temperature gradients 

                                                  and (2) irregular (“   rational”) regions      with islands and chaos, flat profiles 

o
ld

 r
a

d
ia

l 
co

o
rd

in
a

te
  

 →
 

Generalized magnetic coordinates for toroidal magnetic fields 

S.R. Hudson, Doctoral Thesis, The Australian National University, 1996 
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new angle coordinate   → old angle coordinate   → 



1. Transport  along  the  magnetic field  is unrestricted 
→ consider parallel random walk,  with long steps collisional mean free path 

 

2. Transport  across the magnetic field is very  small 
→consider perpendicular random walk with short steps Larmor radius                                                            

 

3. Anisotropic diffusion balance 

 

4. Compare solution of numerical calculation to ghost-surfaces 
                                                                                                                                                          

 

5. The temperature adapts to KAM surfaces,cantori, 

     and ghost-surfaces! 

         i.e. T=T(s), where s=const. is a ghost-surface 

 

       from T=T(s,,) to T=T(s) is a fantastic simplification, allows analytic solution 

Chaotic coordinates simplify anisotropic transport 
 

The temperature is constant on ghost surfaces, T=T(s) 

hot 

cold 
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Temperature contours and ghost-surfaces for chaotic magnetic fields 

S.R. Hudson et al.,  Physical Review Letters, 100:095001, 2008 

Invited talk 22nd IAEA Fusion Energy Conference, 2008 

Invited talk 17th International Stellarator, Heliotron Workshop, 2009 

An expression for the temperature gradient in chaotic fields 

S.R. Hudson,  Physics of Plasmas, 16:100701, 2009 
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particle “knocked” 

onto nearby field line 

212 ×212 = 4096 ×4096 grid points 

(to resolve small structures) 

isotherm ghost-surface ghost-surface 


