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Outline

» Ideal DCON uses 2D Newcomb equation to determine ideal MHD stability of axisymmetric
toroidal plasmas.

» Resistive DCON solves the same equations in the outer region, using a different algorithm, a
singular Galerkin method, a la Pletzer and Dewar. Determines outer region matching data.

» Greatly improved convergence due to advanced basis functions and grid packing scheme.

» Inner region equations of GGJ solved with DELTAR (adaptive integration in Fourier space z)
or INNER (4"-order finite difference in configuration space x), vacuum region with

VACUUM, matched with MATCH code, dispersion relation.

» Compare to straight-through MARS code. Good agreement with one singular surface, poor
agreement with two or more.

» Explanation: difficult boundary conditions for realistic parameters, especially for odd-W
solution.

» New inner region code DELTAC, Galerkin method in configuration space, Hermite cubic
basis functions, packed grid, better treatment of boundary conditions.

» Result: excellent agreement with MARS with multiple singular surfaces.
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Outer Region, Singular Galerkin Method

Euler-Lagrange Equation

LE= —(F2' + KE)' + (K'Z' + GE) =0
Galerkin Expansion

1
() = [ @)y

N

E(y) =) Eiu(y)
1=0
(()“i, LE) = (Q’z’, L()“j)Ej =0
Lij = (o}, Fa}) + (o}, Kaj) + (i, KTa) + (i, Gay)
Finite-Energy Response Driven by Large Solution

Lijéj = —(O’i, Lé)
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Better Basis Functions:
C! Hermite Cubics
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Cubic polynomials on (0,1), within each grid cell.

C! continuity of function values and first derivatives
across grid cells.

Imposes boundary conditions on nonresonant solutions
across the singular surface.
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Better Basis Functions:
Singular Elements

» Weierstrass Convergence Theorem:
Polynomial approximation uniformly convergent for analytic functions.

» Large and small resonant solutions are non-analytic near the singular surface.

» Supplement Hermite basis with power series for resonant solution near singular
surface.

» Evaluation of singular element quadratures with LSODE.

» DCON fits equilibrium data to Fourier series and cubic splines, computes
resonant power series to arbitrarily high order. Recent work extends this to the
degenerate zero-f3 limit.

» Convergence requires that the large solution be computed to at least
n= 2\/(—DI) terms. PEST 3 is limited to n = 1. Higher n required for small
shear and high .
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Adjustable Grid Packing Between Singular Surfaces
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Better Basis Functions:
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Layout of Basis Functions

Lu = - (Fu'+Ku)+(K'@'+Gi)=r

Variational Principle

W=%(1_1,Lﬁ)—(ﬁ,r)

oW =(6u,Lu)-(ou,r)

0

Resonant-Galerkin Expansion
4 . .. D i(s i
u(w)=Yua @) ¥ wl@)a,  ouly)-Fa P 3 o),

Hermite cubic Small solution

S\

N N E R R E N N
Pr

Extension element (E) connecting Resonant element (R) and Normal element (N)

allows the resonant small solution smoothly vanishes.

P, Adjustable grid packing is applied to
the interval between each two adjacent resonant surfaces. £
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Inner Region Equations

Inner Region Equations

Uyx — HYx = Q(¥ — XE)
Q% — QX2+ QXU+ (E4+F)Y+ HUx =0
QYxx — XY+ XV +Q*[G(E-Y) - K(EE+ FYT + HUx)] =0

Matrix Form

7
T=|Z|, ¥-v¥_ub=0
T

Galerkin Expansion

N
T(X) = Z P (X)
=0

Discretized Equations

(u,v) = /:mu u(z)v(z)dx

Ly = (o4, o)) — (o, Va) — (ay, Uay), L(J"f’;m" = —Lx\;‘l’fig

Details

Use Hermite cubics on a packed grid, 4th-order accurate, C* continuous.
LAPACK complex banded routines ZGBTRF and ZGBTRS.
Amner = coefficient of small power-like solution at Tmas.
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Boundary Conditions

Behavior at Large X
6 K
T(X) = Z ¢ exp(,BJXQ/Q)XfZ X*gp
j=1 k=0

Exponentially Large and Small Solutions

i=1,256, B;=0,Q° 012=+1, o56=-1

Py =—4+30,Q*% 1+ G + K(F + H?))
+Q**{(G+KF -1+ KH? [KH* +2(G + KF +1)]
+4[(G— KE —1)Dg + H*|}

Power-Like Solutions

i=34, B;=0, pj=-1x(-Dp)"
Boundary Conditions

Exclude exponentially large solutions, ¢; = ¢ = 0.
Match ratio power-like coefficients to outer region, ¢;/c3 = A.
Exponentially small solutions arbitrary, solve for ¢5 and cg.

Problem

For large scaled growth rate |Q| > 1, power-like terms dominate
exponential solutions, making it difficult to impose boundary conditions.
Both DELTAR and INNER fail in this limit.

Solution

genceang . . .
2 2, At Tpar impose power-like and small functions and derivatives.
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Comparison of Inner Region Codes

» INNER
e Authors: Jardin & Tesauro
* Space: Configuration
e Method: 4"-order finite difference

» DELTAR
e Author: Glasser
* Space: Fourier
* Method: Adaptive Integration

» DELTAC
* Authors: Glasser & Wang
* Space: Configuration
* Method: Galerkin, Hermite Cubic, 4"-order, C! continuous, grid packing
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Parameters

Published Test Cases
-1<E<1,F=G=H=K=0,1e-5<Q< 10

MARS Benchmark Parameters

E =-5912E-003

F = 5.480E-004

H= 3.721E-003

G = 3.200E+003

K = 1.716E+003
M = 1.943E+001

Q = 5.390E+002

The benchmark parameters are much more challenging
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Inner Region Code Comparison, Benchmark Case
DELTAR INNER DELTAC

30
30

30

2
25
2

15
15

10
10

10

Odd-=

vy v w
e = S
5 4 3 2 1 0 1 2 5 -4 3 -2 -1 0 1 2 s 4 3 1 0
logl0 Q log10 Q 1ao10 O
~ 1 ™~ ~1
[l - 2 2
~ ™~ 1 ~ 1

logl0 A

5 60 65
logl0 A

55 60 65
logl0 A

55 60 65

50
S
50

wn
N
(V]
(8]
—_
(e
—
n
N
5]
Wl
—
[«
—
I
Jl
N
W)
(8]
—
(=

‘\e“ce and 4
o2 %

2
By,

T

o

o
wone™

Glasser, Resistive DCON, CEMM/Sherwood 2015 Slide 11

[




PJa,

\e“ce ang 4
o2 %

PSI-Cente!

Inner and Outer Region Solutions

Outer Region Basis Functions and Linear Combination
n R

W) =Y Y [Big0rauby (1) + AL 0, (0)]

j=1 =L

n R
- Z Z Ci kWi k(1)

i=1 k=L
Inner Region Basis Functions and Linear Combination

vix(z) = V?,i(f) + A +(Q)v Vi r) = £v;+(—2)

vi(r)=d; v (z)+d;_v; ()

Inner region solutions computed with DELTAC.

@)\
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Matching Conditions

Matching Conditions

Z Z ikl jr = 44084+ (Q) — dj A _(Q)

i=1 k=L

DD crinir = a4 (Q) + ¢85 (Q)

i=1 k=L
Matrix Form and Dispersion Relation

c = (cin,dry,di_, c1R, Cop, doy, do_, o, -+ )T
M(Q)-c=0, detM(Q)=0

Outer region solved once in < 10 seconds.

Inner region solved many times, 20,000 per second.
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Chease Equilibrium, 2 Singular Surfaces, 5 = 0.5

Flux Surfaces

Pressure
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PSI Cente!

Safety Factor
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MARS Benchmark, Growth Rate
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MARS Benchmark, Eigenfunction
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More Complete Inner Region

Fields

E=-3A-Vyp, b=VxA
V.j=V-A=0, j=-V?A

Density and Pressure

Op+V -(pv) =0
d,p+v‘Vp+7PV-v+§(V-q+R-U+'r.:Vv_) =0

Momentum Conservation and Ohm’s Law

d(pv)=jxB+Ixb-Vp-V.-m
1

T
)

INE

E4+vxB=R+

(jxB+Jxb-Vp,.—V.-m,)

Ions and Electrons

Ne=ZN,, Te=Ty,, F.=N.[T., F=NT

P=F+PF, wm=mm,+m, q=9q.,+9q, uU=-—
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A Future Role for Matched Asymptotic Expansions

» The method of matched asymptotic expansions was introduced by Furth, Killeen, and
Rosenbluth in order to obtain analytical results.

» Most recent work uses straight-through methods, such as MARS, M3D and NIMROD, using
packed grids to resolve singular layers.

» Thermonuclear plasmas are in a regime where conditions for the validity of matched
asymptotic expansion are very well satisfied.

» Resistive DCON and DELTAC provide numerical methods to do the full matching problem
numerically and very efficiently.

» Inner region dynamics can be extended to include full fluid and kinetic treatments.

» Nonlinear effects are localized to the neighborhood of the singular layers and can be solved
with the 2D HiFi code, exploiting helical symmetry, matched through ideal outer regions.

» Asymptotic matching and straight-through methods can complement and verify each other.
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Future Work

» Further efforts to extend agreement with MARS code.

»More complete fluid regime model of linear inner
region; Braginskii.

» Neoclassical inner region model, drift kinetic equation;
Ramos.

»Nonlinear model, NTM, with nonlinear effects
localized to inner regions, coupled through ideal linear
outer region. 2D HiFi1 code, helical symmetry.

»Nonlinear verification with straight-through nonlinear
codes: NIMROD, M3D-CI1.

Glasser, Resistive DCON, CEMM/Sherwood 2015 Slide 19



