Ghost-surfaces and island detection.
S.R.Hudson

Abstract

1. Various routines for

1.
2.
3.

constructing quadratic-flux minimizing surfaces & ghost surfaces,
estimating island widths,
locating the homoclinic tangle, homoclinic points,

identifying the last closed flux surface,
Iocating cantori. flux across cantori needs construction of vector potential B=VxA
? 7

almost straight fieldline coordinates for arbitrary, non-integrable fields,

have now been incorporated (post-processor) into HINT2, M3D-Cy, ...

2. Planis to construct an easy-to-use library of magnetic diagnostic subroutines for
use by all codes.

This presentation is online at
http://w3.pppl.gov/~shudson/Papers/Conference/2015Sherwood/Hudson2015SherwoodCEMM.pdf



Classical Mechanics 101:
The action integral is a functional of a curve in phase space.

1. The action, S, is the line integral along an arbitrary “trial” curve {C : ¢ = ¢(¢t)}, of the Lagrangian,

L=T(q.q9)— Ulgt), S= fﬁ(q,q} t)dt
—— = C

kinetic  potential

2. For magnetic fields, B, the action is the line integral, of the vector potential, B =V x A,
S = / A -dl, along {C:0=06((),p=pd)}.
C

3. Physical trajectories (magnetic fieldlines) extremize the action:

o8 a8 oS as .
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extremal curves satisfy p = B? /B¢, and 6 = B?/B¢. °

/A /iy

4. Action-extremizing, periodic curves may be minimizing or minimax.

5. Ghost surfaces are defined by an action-gradient flow between the minimax and minimizing periodic orbit.



Ghost surfaces, a class of almost-invariant surface, are
defined by an action-gradient flow between the
action minimax and minimizing fieldline.

oS
1. Action, S|C] = f A - dl, and action gradient, 20 = /9B’ — pBS.
C
aS A C 9 . . b 9 . ) .
2. Enforce 5, = 0B°—/gB’ =0, i.e. invert § = BY/B°® to obtain p = p(0, 0, ¢); so that trial curve
P

is completely described by 6((), and the action reduces from S = S|p((),0(()| to S = 5[6(C
pletely y 0(C) p(€), 0(¢)] [6(C)]

90(¢;T) . 95]0] | L |
= ————— |, where 7 is an arbitrary integration parameter.

or 00

3. Define action-gradient flow:

4. Ghost-surfaces are constructed as follows:

i. Begin at action-minimax (“O”, “not-always-stable”) periodic fieldline, which is a saddle;
ii. initialize integration in decreasing direction (given by negative eigenvalue/vector of Hessian);
iii. the entire curve “flows” down the action gradient, 0,0 = —dy.S;

. . . . ___.---""f'—'_#_._-___-_-_h\“\--.__
iv. action is decreasing, 0,5 < 0; ,//[/_\

v. finish at action-minimizing (“X”, unstable) periodic fieldline.

vi. ghost surface described by x((, 7), where r is a fieldline label. M




The construction of extremizing curves of the action
generalized extremizing surfaces of the quadratic-flux

1.
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oS

. Extremal curves satisfy g—g =0, i.e. p= B”/BS, and 9, = 0, i.e. § = B?/B¢.

P

Introduce toroidal surface, p = P(#,¢), and family of angle curves, 0,(¢) = o+ pC/q + 0(C), where
a is a fieldline label; p and ¢ are integers that determine periodicity; and 67(0) = é(QTrq) =0.

On each curve, p,(¢) = P(0,(¢),¢) and 0,(¢), can enforce g—s = 0; generally v = g—g = (.
0

The pseudo surface dynamics is defined by § = B? /BS and p = Oy P 6 + OcP.

v

. Corresponding pseudo field B, = p B¢ e, + 0 BC eg + BCeC; simplifies to B, = B — — e,,.

V9

1 35S\ *
Introduce the quadratic-flux functional: | 5 = 3 f f dOd( (%)

. Allowing for d P, the first variation is dps = //deC 0P \/g (B989 + Biag) V.

Euler-Lagrange for QFMs



Alternative Lagrangian integration construction:
QFM surfaces are families of extremal curves of the
constrained-area action integral.

1. Introduce F'(p,0) = f A-dl—v (f OV - dl — a,) , where p = {p;}, 6 = {6;};
C C

2mq
where v is a Lagrange multiplier, and a is the required “area”, / 0(¢) dc¢.
0

2. An identity of vector calculus gives §F" = ] dl x (Vx A —vV0O x V() -dl,

C
extremizing curves are tangential to B — vV x V(=B — Lep =B,.
V9
: : .. .. OF OF
3. Constrained-area action-extremizing curves satisfy 99 — 0 and 98, — 0.
Pi i

4. The piecewise-constant representation for p(¢) and 0, F' = 0 yields p; = p;(0;-1,0;), so
the trial curve is completely described by 6;, i.e. F = F(0).

OF
50 = Do Fi(0i-1,0;) + 01 Fi1(0;,0i11),

so the Hessian, V2F(0), is tridiagonal (assuming v is given) and is easily inverted.

5. The piecewise-linear representation for (() gives

6. Multi-dimensional Newton method: 60 = — (VQF)_l -VF(0) ;

global integration, much less sensitive to “Lyapunov” integration errors.



The action gradient, v, is constant along the pseudo
fieldlines; construct Quadratic Flux Minimzing (QFM)
surfaces by pseudo fieldline (local) integration.

1.

The true fieldline flow along B around ¢ toroidal periods from (6, po)

produces a mapping, ( % ) = M1 ( % ) .
Pq 0

. Periodic fieldlines are fixed points of MY, i.e. 8, = 0y + 27, p, = po.

. In integrable case: given 6y, a one-dimensional search in p is required

to find the true periodic fieldline.

In non-integrable case, only the
(i) “stable” (action-minimax), O, (which is not always stable), and the

(ii) unstable (action minimizing), X, periodic fieldlines are guaranteed to survive.

vV

. The pseudo fieldline flow along B, = B — —e, around ¢ periods from (6o, po)

V9

produces a mapping, ( gq ) = P1 ( ;)/ ), but v is not yet known.
q 0

. In general case: given 6y, a two-dimensional search in (v, p) is required

to find the periodic pseudo fieldline.



Lagrangian integration is sometimes preferable,
but not essential:
can iteratively compute radia

Il(

error” field

0. Usually, there are only the “stable” periodic fieldline and the unstable periodic fieldline,

1. At every 6 = o, determine v(«) via numerical search so that B — v e,/,/g yields a periodic integral curve;

where « is a fieldline label.

L K 'm

pseudo fieldlines
2. At the true periodic fieldlines, the required additional radial field is zero: i.e. v(ag) =0 and v(ax) = 0.

3. Typically, v(a) ~ Sin(qoz)m VT/X\ T

4. The pseudo fieldlines “capture” the true fieldlines; QFM surfaces pass through the islands.




Algorithm
Step 1: start with some magnetic field, in this case

provided by the M3D-C1 C1.h5 file.

1. Given B(R, ¢, Z).
2. Given guess, (Ryp, Zy), for magnetic axis on ¢ = 0 plane

i. locate magnetic axis by fieldline integration:
a. follow magnetic field line around A¢ = 27

b. iterate on (Ry, Zp), until fieldline closes . . .

3. Construct Poincaré plot in cylindrical coordinates.
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Algorithm

Step 2: construct initial set of toroidal coordinates

1. Unless a better approximation is provided, use circular cross section coordinates

based on magnetic axis.

2. Toroidal coordinates, (p, 0, () defined via

R = R(p,0,() = Ro+ pcosb
¢ = ¢
Z = Z(p,0,() =Zy+ psinf

3. Can iteratively update coordinates to approach
straight-fieldline flux coordinates.

4. Coordinate transformation generates
vector transformation

B? Bt

B |=M| B? |.

B¢ B?

5. Construct rotational transform (by fieldline tracing).
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A magnetic vector potential, in a suitable gauge,
is quickly determined by radial integration.

1. Generally, gauge freedom allows A = Ay(p,0,)VO+ As(p,0,()VC.
2. Vx B = A gives

\/EBZ — aQAC — 8@‘149,
V9BY = —  0,A¢,
JIBS = 08,4.

3. Given the magnetic field, A is quickly determined by radial integration in Fourier
space:

a,oAH,m,n — +(\/§Bg)m,na
OpA¢mm = _(\/ng)m,m

and the 3¢ equation, V9BP = 0gA¢ — O¢ Ag, is satisfied if V- B = 0;
present implementation assumes coordinate axis coincides with magnetic axis,

which causes a problem for sawteeth . .

4. Hereafter, use notation A = ¢V — V.



Algorithm

construct rational pseudo-surface

Step 3

select rational, e.g. + = 1/2.

1. User must

2. The cylindrical harmonics of the rational surface

are Fourier decomposed in

straight pseudo fieldline poloidal angle.
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Algorithm
Step 3: update toroidal coordinates

1.

The background toroidal coordinates are now based
on an interplation/extrapolation of the
constructed pseudo surfaces

The new coordinates coincide with flux coordinates
only on the pseudo surfaces.
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Algorithm
Step 3: repeat:

1. Include additional surfaces.

2. Approximate straight fieldline coordinates.

1000 = — < (1,2)
0.800
< (2,3))
0.600 [ 5
P
0.400 F =
0.200E - < (L1)

0.000



Algorithm
Step 3: repeat:

1. Can examine magnetic field varying in time.

Given the “rational =
1.400 - -4 surface”, and shear, ~
’ it is easy to

island
separatrix.




Can also construct separatrix/homoclinic tangle

1. Shown is the

i. X point; -
ii. the stable and unstable eigenvectors
of the tangent map (blue);

iii. the stable and unstable manifolds;

iv. the intersections of the
stable and unstable manifolds
(called the homoclinic points, red squares).



Plan is to construct a flexible library of routines to be

made freely available.
(No two users ever seem to want the same thing!)

1. Usually, | like to use the magnetic axis as the coordinate axis, but this has problems
when “sawteeth” are present;
1. coordinate axis = magnetic axis is now a user option.

2. Usually, I like to construct the magnetic vector potential and introduce an almost-
straight fieldline angle;
1. but sometimes it is better to work directly with the cylindrical field provided.

3. The separatrix is a singularity in straight fieldline coordinates;
1. under construction.

4. Plan is to construct a collection of subroutines that can be used for a variety of
purposes.



The structure of phase space is related to the
structure of rationals and irrationals.
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THE FAREY TREE;

or, according to Wikipedia,

THE STERN-BROCOT TREE. }
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. Islands, and chaos, emerge at every rational:
about each rational, n/m, introduce “excluded region” with width r/mk; if excluded regions don’t overlap, then
KAM theorem: irrational flux surface can survive if [¢ — n/m/| > r/m" for all n, m.
Call ¢ strongly irrational. Diophanti;l; condition
Greene’s residue criterion: the most robust flux surfaces have “noble” transform:
noble irrationals = limit of ultimately alternating paths = limit of Fibonacci ratios;
0112 3 5 8 13 21 34 55 _(1+\/_) 1011235 8 13 21 -1

€.g. TJ67I9I7§:§757§7ﬁ92_1:3_47"'%VEgOldenmean: ; €.g. 67T7T7§7§:§:§:ﬁ72_1)3_47"'_>7



Irrational KAM surfaces break into cantori when

perturbation exceeds critical value.
Both KAM surfaces and cantori restrict transport.
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— KAM surfaces are closed, toroidal surfaces
that stop radial field line transport

10° iterations —»

— Cantori have “gaps” that ficldlines can pass through; I
however, cantori can severely restrict radial transport . for §
— Example: all flux surfaces destroyed by chaos, “noble” —¢ |- EN ' WS
but even after 100 000 transits around torus ~ cantori . | - e T | 8
the fieldlines don’t get past cantori ! (block dots} — === w . i T

\ -CSU

\!

— Regions of chaotic fields can provide some
confinement because of the cantori partial barriers. 10° iterations —»




Ghost surfaces are (almost) indistinguishable from
QFM surfaces

can redefine poloidal angle to unify ghost surfaces with QFMs.

1. Ghost-surfaces are defined by
an (action gradient) flow.

2. QFM surfaces are defined by
minimizing / (action gradient)?ds.

3. Not obvious if the different
definitions give the same surfaces.

4. For model chaotic field: \

(a) ghosts = thin solid lines;
(b) QFMs = thick dashed lines;>_)
(c) agreement is excellent;
(d) difference = O(e?),

where € is perturbation. /

5. Can redefine 6 to obtain
unified theory of ghosts & QFMs;

straight pseudo fieldline angle.




Isotherms of the steady state solution to the

anisotropic diffusion coincide with ghost surfaces;
analytic, 1-D solution is possible.

1.

. Simple transport model: anisotropic diffusion,

Transport along the magnetic field is unrestricted:

e.g. parallel random walk with long steps ~ collisional mean free path.

Transport across the magnetic field is very small:

e.g. perpendicular random walk with short steps &~ Larmor radius.

KJHVﬁT + HZJ_V%_T =0 RJ_/H,” ~ 10710 grid = 212 x 212,

steady state, no source, inhomogeneous boundary conditions.

. Compare numerical solution to “irrational” ghost-surfaces |:> A

The temperature adapts to KAM surfaces, cantori,
and ghost-surfaces!, i.c. T =T(p).

From T =T(p,0,() to|T = T(p) | allows an expression

for the temperature gradient in chaotic fields:

dT 1
8.8 ?
dp  Kp2+Kk1G

where 9 = /Bi ds, and G = /Vp -Vpds.
—— N—— —

quadratic flux metric

particle “knocked”
onto nearby field line

ghost-surfacwthvnﬂ cold

[Hudson & Breslau, 2008] hot




